1
|
Constantin M, Chifiriuc MC, Vrancianu CO, Petrescu L, Cristian RE, Crunteanu I, Grigore GA, Chioncel MF. Insights into the effects of lanthanides on mammalian systems and potential applications. ENVIRONMENTAL RESEARCH 2024; 263:120235. [PMID: 39461700 DOI: 10.1016/j.envres.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Lanthanides, a group of elements with unique chemical properties, have garnered significant attention for their varied biological effects, ranging from cytotoxic to protective, depending on concentration, cell type, and exposure conditions. This review provides a detailed examination of the biological interactions of lanthanides with mammalian systems, including humans, by exploring their impact on different cell lines and organisms. Through a systematic assessment of current research, this work highlights the dual nature of lanthanides, identifying them as both potential therapeutic agents and environmental toxins. Furthermore, it underscores the importance of understanding their mechanisms to mitigate health risks, particularly for those exposed occupationally or via environmental sources. The review concludes with an overview of knowledge gaps and future research directions necessary for unlocking the therapeutic potential of lanthanides while ensuring safety and sustainability in their applications.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031, Bucharest, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania.
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ioana Crunteanu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
2
|
Juntao L, Wenxue L, Guangyu Y, Xudong L, Runxuan Z, Bo Z, Wei Z. Lanthanum nitrate demonstrated no genotoxicity in the conducted tests. Regul Toxicol Pharmacol 2024; 151:105670. [PMID: 38936798 DOI: 10.1016/j.yrtph.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Given the widespread applications in industrial and agricultural production, the health effects of rare earth elements (REEs) have garnered public attention, and the genotoxicity of REEs remains unclear. In this study, we evaluated the genetic effects of lanthanum nitrate, a typical representative of REEs, with guideline-compliant in vivo and in vitro methods. Genotoxicity assays, including the Ames test, comet assay, mice bone marrow erythrocyte micronucleus test, spermatogonial chromosomal aberration test, and sperm malformation assay were conducted to assess mutagenicity, chromosomal damage, DNA damage, and sperm malformation. In the Ames test, no statistically significant increase in bacterial reverse mutation frequencies was found as compared with the negative control. Mice exposed to lanthanum nitrate did not exhibit a statistically significant increase in bone marrow erythrocyte micronucleus frequencies, spermatogonial chromosomal aberration frequencies, or sperm malformation frequencies compared to the negative control (P > 0.05). Additionally, after a 24-h treatment with lanthanum nitrate at concentrations of 1.25, 5, and 20 μg/ml, no cytotoxicity was observed in CHL cells. Furthermore, the comet assay results indicate no significant DNA damage was observed even after exposure to high doses of lanthanum nitrate (20 μg/ml). In conclusion, our findings suggest that lanthanum nitrate does not exhibit genotoxicity.
Collapse
Affiliation(s)
- Li Juntao
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Li Wenxue
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yang Guangyu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Li Xudong
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhuang Runxuan
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhang Bo
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Zhu Wei
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
3
|
Sharma P, Jha AB, Dubey RS. Addressing lanthanum toxicity in plants: Sources, uptake, accumulation, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172560. [PMID: 38641102 DOI: 10.1016/j.scitotenv.2024.172560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Lanthanum (La), the second most abundant rare earth element (REE) is emerging as an environmental issue, with the potential to impact ecosystems and human health. Major sources of soil contamination by La include agricultural, and industrial activities. Lanthanum is non-essential for plant growth but accumulates in various plant parts. The uptake of La by plants is intricately influenced by various factors such as soil pH, redox potential, cation exchange capacity, presence of organic acids and rhizosphere composition. These factors significantly impact the availability and absorption of La ions. Lanthanum impact on plants depends on soil characteristics, cultivated species, developmental stage, La concentration, treatment period, and growth conditions. Excessive La concentrations affect cell division, DNA structure, nutrient uptake, and photosynthesis and induce toxicity symptoms. Plants employ detoxification mechanisms like vacuolar sequestration, osmolyte synthesis, and antioxidant defense system. However, higher concentrations of La can overwhelm these defense mechanisms, leading to adverse effects on plant growth and development. Further, accumulation of La in plants increases the risk for human exposure. Strategies to mitigate La toxicity are, therefore, vital for ecosystem protection. The application of phytoremediation, supplementation, chelation, amendments, and biosorption techniques contributes to the mitigation of La toxicity. This review provides insights into La sources, uptake, toxicity, and alleviation strategies in plants. Identifying research gaps and discussing advancements aims to foster a holistic understanding and develop effective strategies for protecting plant health and ecosystem resilience against La contamination.
Collapse
Affiliation(s)
- Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| |
Collapse
|
4
|
Alyami NM, Alobadi H, Maodaa S, Alothman NS, Almukhlafi H, Yaseen KN, Alnakhli ZA, Alshiban NM, Elnagar DM, Rady A, Alharthi WA, Almetari B, Almeer R, Alarifi S, Ali D. Determination of dose- and time-dependent hepatotoxicity and apoptosis of Lanthanum oxide nanoparticles in female Swiss albino mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17124-17139. [PMID: 38334922 DOI: 10.1007/s11356-024-32209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Nanosized lanthanum oxide particles (La2O3) are commonly utilized in various industries. The potential health risks associated with La2O3 nanoparticles, cytotoxic effects at varying doses and time intervals, and the mechanisms behind their induction of behavioral changes remain uncertain and necessitate further investigation. Therefore, this study examined in vivo hepatotoxicity, considering the quantity (60, 150, and 300 mg/kg) and time-dependent induction of reactive oxygen species (ROS) over one week or 21 days. The mice received intraperitoneal injections of three different concentrations in Milli-Q water. Throughout the experiments, no physical changes or weight loss were observed among the groups. However, after 21 days, only the highest concentration showed signs of anxiety in the activity cage (p < 0.05). Subsequently, all animals treated with La2O3 NPs exhibited a significant loss of learning and memory recall using the Active Avoidances test, after 21 days (p < 0.001). Markers for anti-reactive oxygen species (ROS) such as superoxide dismutase (SOD) were significantly upregulated in response to all concentrations of NPs after seven days compared to the control group. This was confirmed by a significant increase in glutathione peroxidase (Gpx1) and pro-apoptotic Caspase-3 expression at the lowest and highest doses. Additionally, both transcription and protein levels of the anti-apoptotic BCL-2 surpassed P53 protein in a dosage-dependent manner, indicating activation of the primary anti-apoptosis pathway. After 21 days, P53 levels exceeded BCL-2 protein levels, confirming a significant loss of BCL-2 mRNA, particularly at the 300 mg/kg concentration. Furthermore, a higher transcription level of Caspase-3, SOD, and Gpx1 was observed, with the highest values detected at the 300 mg/kg concentration, indicating the activation of cell death. Histopathological analysis of the liver illustrated apoptotic bodies resulting from La2O3 NP concentration. The investigation revealed multiple inflammatory foci, cytoplasmic degeneration, steatosis, and DNA fragmentation consistent with increased damage over time due to higher concentrations. Blood samples were also analyzed to determine liver enzymatic changes, including alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), and lipid profiles. The results showed significant differences among all La2O3 NP concentrations, with the most pronounced damage observed at the 300 mg/kg dose even after 21 days. Based on an animal model, this study suggests that La2O3 hepatotoxicity is likely caused by the size and shape of nanoparticles (NPs), following a dose and time-dependent mechanism that induces the production of reactive oxygen species and behavioral changes such as anxiety and memory loss.
Collapse
Affiliation(s)
- Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia.
| | - Hussah Alobadi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Norah S Alothman
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Hanouf Almukhlafi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Khadijah N Yaseen
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Zainab A Alnakhli
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Noura M Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Doaa M Elnagar
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Wed A Alharthi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Bader Almetari
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Bacha L, Ventura R, Barrios M, Seabra J, Tschoeke D, Garcia G, Masi B, Macedo L, Godoy JMDO, Cosenza C, de Rezende CE, Lima V, Ottoni AB, Thompson C, Thompson F. Risk of Collapse in Water Quality in the Guandu River (Rio de Janeiro, Brazil). MICROBIAL ECOLOGY 2022; 84:314-324. [PMID: 34424345 DOI: 10.1007/s00248-021-01839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The Guandu River, one of the main rivers in the state of Rio de Janeiro, provides water for more than nine million people in the metropolitan region. However, the Guandu has suffered from massive domestic and industrial pollution for more than two decades, leading to high levels of dissolved total phosphorus, cyanobacteria, and enteric bacteria observed during the summers of 2020 and 2021. The use of Phoslock, a palliative compound, was not effective in mitigating the levels of phosphorus in the Guandu River. Furthermore, potable water driven from the river had levels of 2-MIB/geosmin and a mud smell/taste. With all these problems, several solutions are proposed for improving the Guandu River water quality, including establishment of (i) sewage treatment plants (STPs), (ii) strict water quality monitoring, (iii) environmental recovery (e.g., reforestation), and (iv) permanent protected areas. The objective of this paper is to verify the poor water quality in the Guandu and the ineffectiveness and undesired effects of Phoslock.
Collapse
Affiliation(s)
- Leonardo Bacha
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodrigo Ventura
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Barrios
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean Seabra
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gizele Garcia
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Masi
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Larissa Macedo
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Carlos Cosenza
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos E de Rezende
- Laboratório de Ciências Ambientais, Universidade Estadual Do Norte Fluminense (UENF), Campos de Goytacazes, Brazil
| | - Vinicius Lima
- Laboratório de Ciências Ambientais, Universidade Estadual Do Norte Fluminense (UENF), Campos de Goytacazes, Brazil
| | - Adacto B Ottoni
- Departamento de Engenharia Sanitária E Do Meio Ambiente, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Han G, Tan Z, Jing H, Ning J, Li Z, Gao S, Li G. Comet Assay Evaluation of Lanthanum Nitrate DNA Damage in C57-ras Transgenic Mice. Biol Trace Elem Res 2021; 199:3728-3736. [PMID: 33403576 DOI: 10.1007/s12011-020-02500-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Due to the wide application of rare-earth elements (REEs) in the last decades, lanthanum has increasingly entered the environment and has gradually accumulated in the human body through the food chain. Lanthanum is worth paying attention in terms of food safety. Although the genotoxicity of lanthanum has been studied in vitro, data on its DNA damage in vivo rodent are limited, moreover, which have also presented some controversy. This study aimed to conduct an in vivo rodent alkaline comet assay, and as a companion test to the lanthanum nitrate carcinogenicity test. We conducted an oral gavage experiment for 180 days (26 weeks) to test for the persistence of DNA damage of long-term low-dose accumulation of lanthanum nitrate (12.5, 25, and 50 mg/kg body weight), in F1 hybrid C57-ras transgenic mice (CB6F1) by using alkaline comet assay in the blood and liver. The comet assay revealed that all the tested concentrations of lanthanum nitrate did not induce DNA damage in any of the tissues investigated, whereas DNA damage was induced in the positive control group. These results could indicate that lanthanum nitrate can accumulate in tissues and organs of the mice after exposure, and does not possess DNA damage in C57-ras transgenic mice after repeated treatments at oral doses up to 50 mg/kg·BW for 26 weeks; also, it did not cause pathological changes in the liver of the mice.
Collapse
Affiliation(s)
- Gaochao Han
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Zhuangsheng Tan
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
| | - Haiming Jing
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Junyu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Zinan Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Shan Gao
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
| | - Guojun Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
7
|
Malvandi AM, Shahba S, Mohammadipour A, Rastegar-Moghaddam SH, Abudayyak M. Cell and molecular toxicity of lanthanum nanoparticles: are there possible risks to humans? Nanotoxicology 2021; 15:951-972. [PMID: 34143944 DOI: 10.1080/17435390.2021.1940340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lanthanum nanoparticles are widely used in industry, agriculture, and biomedicine. Over 900 kg of lanthanum is annually released into the environment only in Europe, 50 times higher than the metals, mercury, and cadmium's environmental spread. Human health risk associated with long-term exposure to the abundant lanthanum nanoparticles is a concerning environmental issue. Due to lanthanum's ability to disrupt the main biological barriers and interrupt various cells' hemostasis, they seem to cause severe disruptions to various tissues. This review opens a new perspective regarding the cellular and molecular interaction of nanosized and ionic lanthanum with the possible toxicity on the nervous system and other tissues that would show lanthanum nanoparticles' potential danger to follow in toxicological science.
Collapse
Affiliation(s)
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Heller A, Pisarevskaja A, Bölicke N, Barkleit A, Bok F, Wober J. The effect of four lanthanides onto a rat kidney cell line (NRK-52E) is dependent on the composition of the cell culture medium. Toxicology 2021; 456:152771. [PMID: 33831499 DOI: 10.1016/j.tox.2021.152771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022]
Abstract
Lanthanide (Ln) exposure poses a serious health risk to animals and humans. In this study, we investigated the effect of 10-9-10-3 M La, Ce, Eu, and Yb exposure onto the viability of rat renal NRK-52E cells in dependence on Ln concentration, exposure time, and composition of the cell culture medium. Especially, the influence of fetal bovine serum (FBS) and citrate onto Ln cytotoxicity, solubility, and speciation was investigated. For this, in vitro cell viability studies using the XTT assay and fluorescence microscopic investigations were combined with solubility and speciation studies using TRLFS and ICP-MS, respectively. The theoretical Ln speciation was predicted using thermodynamic modeling. All Ln exhibit a concentration- and time-dependent effect on NRK-52E cells. FBS is the key parameter influencing both Ln solubility and cytotoxicity. We demonstrate that FBS is able to bind Ln3+ ions, thus, promoting solubility and reducing cytotoxicity after Ln exposure for 24 and 48 h. In contrast, citrate addition to the cell culture medium has no significant effect on Ln solubility and speciation nor cytotoxicity after Ln exposure for 24 and 48 h. However, a striking increase of cell viability is observable after Ln exposure for 8 h. Out of the four Ln elements under investigation, Ce is the most effective. Results from TRLFS and solubility measurements correlate well to those from in vitro cell culture experiments. In contrast, results from thermodynamic modeling do not correlate to TRLFS results, hence, demonstrating that big gaps in the database render this method, currently, inapplicable for the prediction of Ln speciation in cell culture media. Finally, this study demonstrates the importance and the synergistic effects of combining chemical and spectroscopic methods with cell culture techniques and biological methods.
Collapse
Affiliation(s)
- Anne Heller
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| | - Alina Pisarevskaja
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| | - Nora Bölicke
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| | - Astrid Barkleit
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Jannette Wober
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| |
Collapse
|
9
|
Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111996. [PMID: 33545409 DOI: 10.1016/j.ecoenv.2021.111996] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 05/22/2023]
Abstract
Rhizosphere microbes are essential partners for plant stress tolerance. Recent studies indicate that arbuscular mycorrhizal fungi (AMF) can facilitate the revegetation of soils contaminated by heavy metals though interacting with rhizosphere microbiome. However, it is unclear how AMF affect rhizosphere microbiome to improve the growth of plant under rare earth elements (REEs) stress. AMF (Claroideoglomus etunicatum) was inoculated to maize grown in soils spiked with Lanthanum (0 mg kg-1, La0; 10 mg kg-1, La10; 100 mg kg-1, La100; 500 mg kg-1, La500). Plant biomass, nutrient uptake, REE uptake and rhizosphere bacterial and fungal community were evaluated. The results indicated that La100 and La500 decreased significantly root colonization rates and nutrition uptake (K, P, Ca and Mg content). La500 decreased significantly α-diversity indexes of bacterial and fungal community. AMF enhanced significantly the shoot and root fresh and dry weight of maize in all La treatments (except for the root fresh and dry weight of La0 and La10 treatment). For La100 and La500 treatments, AMF increased significantly nutrition uptake (K, P, Ca and Mg content) in shoot of maize by 27.40-441.77%. For La500 treatment, AMF decreased significantly shoot La concentration by 51.53% in maize, but increased significantly root La concentration by 30.45%. In addition, AMF decreased bacterial and fungal Shannon index in La0 treatment, but increased bacterial Shannon index in La500 treatment. Both AMF and La500 affected significantly the bacterial and fungal community composition, and AMF led to more influence than La. AMF promoted the enrichment of bacteria, including Planomicrobium, Lysobacter, Saccharothrix, Agrococcus, Microbacterium, Streptomyces, Penicillium and other unclassified genus, and fungi (Penicillium) in La500, which showed the function for promoting plant growth and tolerance of heavy metal. The study revealed that AMF can regulate the rhizosphere bacterial and fungal composition and foster certain beneficial microbes to enhance the tolerance of maize under La stress. Phytoremediation assisted by AMF is an attractive approach to ameliorate REEs-contaminated soils.
Collapse
Affiliation(s)
- Lijun Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jingxia Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
10
|
Lu VM, Jue TR, McDonald KL. Cytotoxic lanthanum oxide nanoparticles sensitize glioblastoma cells to radiation therapy and temozolomide: an in vitro rationale for translational studies. Sci Rep 2020; 10:18156. [PMID: 33097778 PMCID: PMC7584621 DOI: 10.1038/s41598-020-75372-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumour with a dismal prognosis, despite best treatment by surgical resection, radiation therapy (RT) and chemotherapy with temozolomide (TMZ). Nanoparticle (NP) therapy is an emerging consideration due to the ability of NPs to be formulated and cross the blood brain barrier. Lanthanum oxide (La2O3) NPs are therapeutically advantageous due to the unique chemical properties of lanthanum making it cytotoxic to cancers, and able to enhance existing anti-cancer treatments. However, La2O3 NPs have yet to be thoroughly investigated in brain tumors. We show that these NPs can reach the brain after venous injection, penetrate into GBM cells via endocytosis, dissociate to be cytotoxic, and enhance the therapeutic effects of RT and TMZ. The mechanisms of cell death by La2O3 NPs were found to be multifaceted. Increasing NP concentration was correlated to increased intrinsic and extrinsic apoptosis pathway markers in a radical oxygen species (ROS)-dependent manner, as well as involving direct DNA damage and autophagic pathways within GBM patient-derived cell lines. NP interactions to sensitize GBM to RT and TMZ were shown to involve these pathways by enhancing ROS and apoptotic mechanisms. We therefore demonstrate the therapeutic potential of La2O3 NPs to treat GBM cells in vitro, and encourage translational exploration in the future.
Collapse
Affiliation(s)
- Victor M Lu
- Lowy Cancer Center, University of New South Wales, Sydney, NSW, Australia.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Toni Rose Jue
- Lowy Cancer Center, University of New South Wales, Sydney, NSW, Australia
| | - Kerrie L McDonald
- Lowy Cancer Center, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Li C, Ma H, Venkateswaran S, Hsiao BS. Sustainable carboxylated cellulose filters for efficient removal and recovery of lanthanum. ENVIRONMENTAL RESEARCH 2020; 188:109685. [PMID: 32512372 DOI: 10.1016/j.envres.2020.109685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Carboxylated cellulose filters were fabricated by oxidation of a cellulose fibrous mat via TEMPO-mediated oxidation. These carboxylated cellulose filters were employed as sustainable filters for removal and recovery of lanthanum ions (La (III)) with high adsorption capability. The surface chemistry of the carboxylated cellulose fibers before and after adsorption of La (III) was investigated systematically. The distribution of La (III) on carboxylated cellulose fibers were explored by EDX mapping approach, which revealed that the adsorption occurred on both the surface and the internal structure of the cellulose fibers. The kinetics and isotherms of the adsorption were conducted to understand the adsorption mechanism of the carboxylated cellulose filter and to learn the maximum adsorption capacity for La (III) which was as high as 33.7 mg/g. The adsorption selectivity of the carboxylated cellulose filter for La (III) was determined when interfering ions including mono- and di-covalent ions were involved. The carboxylated cellulose filter exhibited high adsorption capability and high permeation flux evidenced by the breakthrough curves of the dynamic adsorption of La (III) under an extremely low pressure of 0.07 kPa. A variety of desorption reagents were selected to recover lanthanum from the carboxylated cellulose filter, where the optimized conditions for recovery were explored. Finally, a spiral wound cartridge of the carboxylated cellulose fibrous mat was fabricated and the removal and the recovery of La (III, 2.5 ppm) from massive lanthanum-containing water were demonstrated. It was very impressive that the high rejection ratio of 94.3% was achieved under the low pressure drop of 3.0 kPa remaining throughout the separation process, and the treated solution volume was high up to 21.4 L, which was about six-times higher than that of commercially available nanofibrous adsorption membranes, indicating that the carboxylated cellulose filter could be used as a highly efficient adsorption medium for industrial recovery of rare earth metals.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA.
| | - Shyam Venkateswaran
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| |
Collapse
|
12
|
Souza LPL, Lopes JH, Ferreira FV, Martin RA, Bertran CA, Camilli JA. Evaluation of effectiveness of 45S5 bioglass doped with niobium for repairing critical‐sized bone defect in in vitro and in vivo models. J Biomed Mater Res A 2019; 108:446-457. [DOI: 10.1002/jbm.a.36826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Lucas P. L. Souza
- Department of Structural and Functional Biology Institute of Biology, University of Campinas – UNICAMP Campinas Brazil
| | - João H. Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF) Aeronautics Institute of Technology (ITA) Sao Jose dos Campos Brazil
| | - Filipe V. Ferreira
- School of Chemical Engineering University of Campinas – UNICAMP Campinas Brazil
| | - Richard A. Martin
- School of Engineering and Aston Institute of Materials Research Aston University Birmingham UK
| | - Celso A. Bertran
- Department of Physical Chemistry Institute of Chemistry, University of Campinas – UNICAMP Campinas Brazil
| | - José A. Camilli
- Department of Structural and Functional Biology Institute of Biology, University of Campinas – UNICAMP Campinas Brazil
| |
Collapse
|
13
|
Heller A, Barkleit A, Bok F, Wober J. Effect of four lanthanides onto the viability of two mammalian kidney cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:469-481. [PMID: 30802736 DOI: 10.1016/j.ecoenv.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Exposure to lanthanides (Ln) poses a serious health risk to animals and humans. Since Ln are mainly excreted with urine, we investigated the effect of La, Ce, Eu, and Yb exposure on renal rat NRK-52E and human HEK-293 cells for 8, 24, and 48 h in vitro. Cell viability studies using the XTT assay and microscopic investigations were combined with solubility and speciation studies using ICP-MS and TRLFS. Thermodynamic modeling was applied to predict the speciation of Ln in the cell culture medium. All Ln show a concentration- and time-dependent effect on both cell lines with Ce being the most potent element. In cell culture medium, the Ln are completely soluble and most probably complexed with proteins from fetal bovine serum. The results of this study underline the importance of combining biological, chemical, and spectroscopic methods in studying the effect of Ln on cells in vitro and may contribute to the improvement of the current risk assessment for Ln in the human body. Furthermore, they demonstrate that Ln seem to have no effect on renal cells in vitro at environmental trace concentrations. Nevertheless, especially Ce has the potential for harmful effects at elevated concentrations observed in mining and industrial areas.
Collapse
Affiliation(s)
- Anne Heller
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217 Dresden, Germany.
| | - Astrid Barkleit
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Jannette Wober
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217 Dresden, Germany.
| |
Collapse
|
14
|
Yang H, Zhang X, Liu H, Cui W, Zhang Q, Li Y, Yu Z, Jia X. Lanthanum nitrate genotoxicity evaluation: Ames test, mouse micronucleus assay, and chromosome aberration test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 810:1-5. [PMID: 27776686 DOI: 10.1016/j.mrgentox.2016.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/19/2016] [Accepted: 09/14/2016] [Indexed: 01/24/2023]
Abstract
The increasing use of rare-earth elements (REE) and their compounds has led to their accumulation in the environment and has raised concern about their safety. The toxic effects of REE such as lanthanum are largely unknown; genotoxicity studies have been limited and results are controversial. We evaluated the genotoxicity of lanthanum nitrate (La(NO3)3) in several in vitro and in vivo tests, including bacterial reverse mutation assay (Ames test), mouse bone marrow micronucleus assay, and chromosome aberration assay. La(NO3)3 was not mutagenic in the Ames test. La(NO3)3 did not increase the frequencies of bone marrow micronuclei or chromosome aberration in the mouse after repeated treatments at oral doses up to 735 (females) and 855mg/kg (males). The compound did not increase the frequency of chromosome aberrations in CHO cells in vitro. These results indicate that lanthanum is not a genotoxic hazard.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xiaopeng Zhang
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Haibo Liu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Wenming Cui
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Qiannan Zhang
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Li
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhou Yu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
15
|
Hasan MS, Kehoe S, Boyd D. Temporal analysis of dissolution by-products and genotoxic potential of spherical zinc-silicate bioglass: "imageable beads" for transarterial embolization. J Biomater Appl 2014; 29:566-81. [PMID: 24913613 DOI: 10.1177/0885328214537694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Embolization of vascular tumors is an important tool in minimally invasive surgical intervention. Radiopaque, non-degradable, and non-deformable spherical zinc-silicate glass particles were produced in a range of 45-500 μm. Three size ranges (45-150, 150-300, and 300-500 μm) were used in the current study. The glass microspheres were eluted in polar (saline solution) and non-polar (dimethyl sulfoxide) medium, and ion release profiles were recorded using inductively coupled plasma atomic emission spectroscopy. Approximately 80% of Gaussian distribution was achieved by simple sieving. The ions released from the microspheres were dependent upon surface area to volume ratio as well as the nature of elution media. Greater ions were released from smaller particles (45-150 μm) having largest surface area in polar medium. For the genotoxicity bacterial mutation Ames assay, the concentrations of all the ions were well below their therapeutic concentration reported in the literature. No mutagenic effect was observed in the bacterial mutation Ames test. Hence, it can be concluded that the glass microspheres produced herein are non-mutagenic further supporting the materials potential as a suitable embolic agent.
Collapse
Affiliation(s)
- M S Hasan
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, Canada School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - S Kehoe
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - D Boyd
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, Canada School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada ABK Biomedical Inc., Halifax, Canada
| |
Collapse
|
16
|
Cellular response to rare earth mixtures (La and Gd) as components of degradable Mg alloys for medical applications. Colloids Surf B Biointerfaces 2014; 117:312-21. [DOI: 10.1016/j.colsurfb.2014.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/18/2023]
|
17
|
Alexandrescu L, Bourosh P, Oprea O, Jitaru I. Synthesis and crystal structure of [La(NO3)3(H2O)2(BiPy)]·1.5(BiPy). J STRUCT CHEM+ 2014. [DOI: 10.1134/s002247661401017x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Oliveira MS, Duarte IM, Paiva AV, Yunes SN, Almeida CE, Mattos RC, Sarcinelli PN. The role of chemical interactions between thorium, cerium, and lanthanum in lymphocyte toxicity. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2014; 69:40-45. [PMID: 23930795 DOI: 10.1080/19338244.2012.719557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thorium, cerium, and lanthanum are metals present in several types of minerals, the most common of which is monazite. Cerium and lanthanum are elements in the lanthanides series. Thorium, an actinide metal, is a hazardous element due to its radioactive characteristics. There is a lack of information describing the possible chemical interactions among these elements and the effects they may have on humans. Toxicological analyses were performed using cell viability, cell death, and DNA damage assays. Chemical interactions were evaluated based on the Loewe additivity model. The results indicate that thorium and cerium individually have no toxic effects on lymphocytes. However, thorium associated with lanthanum increases the toxicity of this element, thereby reducing the viability of lymphocytes at low concentrations of metals in the mixture.
Collapse
Affiliation(s)
- Monica S Oliveira
- Radioprotection and Dosimetry Institute, CNEN, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
19
|
LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells. Acta Biomater 2013; 9:7556-63. [PMID: 23542555 DOI: 10.1016/j.actbio.2013.03.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/06/2013] [Accepted: 03/21/2013] [Indexed: 11/22/2022]
Abstract
In this study, LaB6 nanoparticles are used as a novel nanomaterial for near-infrared (NIR) photothermal therapy because they are cheaper than nanostructured gold, are easy to prepare and have an excellent NIR photothermal conversion property. Furthermore, the surface of LaB6 nanoparticles is coated with a carbon-doped silica (C-SiO2) shell to introduce a fluorescent property and improve stability and biocompatibility. The resulting LaB6@C-SiO2 nanoparticles retain the excellent NIR photothermal conversion property and exhibit a bright blue emission under UV irradiation or a green emission under visible irradiation. Using a HeLa cancer cell line, it is demonstrated that LaB6@C-SiO2 nanoparticles have no significant cytotoxicity, but their presence leads to remarkable cell death after NIR irradiation. In addition, from the observation of cellular uptake, the fluorescence labeling function of LaB6@SiO2 (LaB6 core/SiO2 shell) nanoparticles is also confirmed. These results suggest that LaB6@C-SiO2 nanoparticles may potentially serve as an efficient multifunctional nano-platform for simultaneous fluorescent imaging and NIR-triggered photothermal therapy of cancer cells.
Collapse
|
20
|
Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 2013; 4:12-26. [PMID: 23516020 PMCID: PMC3601293 DOI: 10.5491/shaw.2013.4.1.12] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/20/2022] Open
Abstract
In concert with the development of new materials in the last decade, the need for toxicological studies of these materials has been increasing. These new materials include a group of rare earths (RE). The use of RE nanotechnology is being considered in some green applications, to increase their efficiency by using nano-sized RE compounds, and therefore hazard evaluation and risk assessment are highly recommended. This review was conducted through an extensive contemplation of the literatures in toxicology with in vitro and in vivo studies. Major aspects reviewed were the toxicological evaluations of these elements and metallic compounds at the molecular and cellular level, animal and human epidemiological studies and environmental and occupational health impacts on workers. We also discuss the future prospect of industries with appliances using RE together with the significance of preventive efforts for workers' health. To establish a safe and healthy working environment for RE industries, the use of biomarkers is increasing to provide sustainable measure, due to demand for information about the health risks from unfavorable exposures. Given the recent toxicological results on the exposure of cells, animals and workers to RE compounds, it is important to review the toxicological studies to improve the current understanding of the RE compounds in the field of occupational health. This will help to establish a sustainable, safe and healthy working environment for RE industries.
Collapse
|
21
|
Wang C, Zhang K, He M, Jiang C, Tian L, Tian Y, Wang X. Mineral nutrient imbalance, DNA lesion and DNA-protein crosslink involved in growth retardation of Vicia faba L. seedlings exposed to lanthanum ions. J Environ Sci (China) 2012; 24:214-220. [PMID: 22655379 DOI: 10.1016/s1001-0742(11)60760-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Effects of mineral nutrient imbalance, DNA lesion and DNA-protein crosslink on growth of Vicia faba L. seedlings hydroponically cultivated in concentrations of extraneous lanthanum (La) for 20 days were investigated in the present experiment. The results showed that contents of La, Cu or K elements in roots generally changed synchronously with those in leaves, while Ca, Fe, Zn, Mg, Mn or P in the roots altered inversely to those in the leaves. Thus, the extraneous La led to redistribution and imbalance of mineral nutrient elements in the roots and leaves. DNA lesion and DNA-protein crosslink were investigated by single cell gel electrophoresis (SCGE) and sodium dodecyl sulfate/potassium (SDS/K+) precipitation methods, respectively. The results demonstrated that the increasing La induced DNA break and DNA-protein crosslinks (DPCs) in the seedlings. These results suggested that mineral nutrient imbalance, DNA lesion and DNA-protein crosslink were involved in the growth retardation and growth alteration of the seedlings, which may help to understand the mechanisms of rare earth elements (REEs) on plant growth.
Collapse
Affiliation(s)
- Chengrun Wang
- School of Life Science, Huainan Normal University, Huainan 232001, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gramowski A, Jügelt K, Schröder OHU, Weiss DG, Mitzner S. Acute Functional Neurotoxicity of Lanthanum(III) in Primary Cortical Networks. Toxicol Sci 2010; 120:173-83. [DOI: 10.1093/toxsci/kfq385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|