1
|
Dhar R, Basu S, Bhattacharyya M, Acharya D, Dutta TK. Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products. Microb Biotechnol 2024; 17:e70055. [PMID: 39548699 PMCID: PMC11568242 DOI: 10.1111/1751-7915.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Phthalic acid esters (PAEs), the pervasive and ubiquitous endocrine-disrupting chemicals of environmental concern, generated annually on a million-ton scale, are primarily employed as plasticisers in the production of a variety of plastic products and as additives in a large number of commercial supplies. The increased awareness of various adverse effects on the ecosystem and human health including reproductive and developmental disorders has led to a striking increase in research interest aimed at managing these man-made oestrogenic chemicals. In these circumstances, microbial metabolism appeared as the major realistic process to neutralise the toxic burdens of PAEs in an ecologically accepted manner. Among a wide variety of microbial species capable of degrading/transforming PAEs reported so far, bacteria-mediated degradation has been studied most extensively. The main purpose of this review is to provide current knowledge of metabolic imprints of microbial degradation/transformation of PAEs, a co-contaminant of plastic pollution. In addition, this communication illustrates the recent advancement of the structure-functional aspects of the key metabolic enzyme phthalate hydrolase, their inducible regulation of gene expression and evolutionary relatedness, besides prioritising future research needs to facilitate the development of new insights into the bioremediation of PAE in the environment.
Collapse
Affiliation(s)
- Rinita Dhar
- Department of MicrobiologyBose InstituteKolkataIndia
| | - Suman Basu
- Department of MicrobiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
2
|
Wang G, Chen M, Jiang L, Zhang Y. Nitenpyram biodegradation by a novel nitenpyram-degrading bacterium, Ochrobactrum sp. strain DF-1, and its novel degradation pathway. Front Microbiol 2023; 14:1209322. [PMID: 37520376 PMCID: PMC10373928 DOI: 10.3389/fmicb.2023.1209322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Nitenpyram is a neonicotinoid insecticide that is commonly found in the environment. However, its biodegradation by pure cultures of bacteria has not been widely investigated and the catabolic pathway (s) for nitenpyram metabolism remain elusive. In this study, the aerobic strain DF-1, isolated from a wastewater-treatment pool contaminated with nitenpyram. The strain was designated an Ochrobactrum sp. utilizing a combination of traditional methods and molecular ones. Strain DF-1 can use nitenpyram as a sole carbon or nitrogen source for growth. In liquid medium, 100 mg·L-1 nitenpyram was metabolized to undetectable levels within 10 days. Four metabolites were found by gas chromatography-mass spectrometry (GC-MS) analyses during nitenpyram degradation. According to the aforementioned data, a partial metabolic pathway of nitenpyram was proposed of strain DF-1. Inoculation of strain DF-1 promoted nitenpyram (10 mg·kg-1) degradation in either sterile or non-sterile soil. To our knowledge, this is the first characterization of nitenpyram degradation by a specific bacterium and likely to be exploited for the remediation of nitenpyram-contaminated sites.
Collapse
Affiliation(s)
- Guangli Wang
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Mengqing Chen
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yunfang Zhang
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
3
|
Ningthoujam R, Satiraphan M, Sompongchaiyakul P, Bureekul S, Luadnakrob P, Pinyakong O. Bacterial community shifts in a di-(2-ethylhexyl) phthalate-degrading enriched consortium and the isolation and characterization of degraders predicted through network analyses. CHEMOSPHERE 2023; 310:136730. [PMID: 36209845 DOI: 10.1016/j.chemosphere.2022.136730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used and toxic phthalate plasticizer that is widely reported in marine environments. Degradation of DEHP by bacteria from several environments have been studied, but little is known about marine sediment bacteria that can degrade DEHP and other phthalate plasticizers. Therefore, in this study, we enriched a bacterial consortium C10 that can degrade four phthalate plasticizers of varying alkyl chain lengths (DEHP, dibutyl phthalate, diethyl phthalate, and dimethyl phthalate) from marine sediment. The major bacterial genera in C10 during degradation of the phthalate plasticizers were Glutamicibacter, Ochrobactrum, Pseudomonas, Bacillus, Stenotrophomonas, and Methylophaga. Growth of C10 on DEHP intermediates (mono-ethylhexyl phthalate, 2-ethylhexanol, phthalic acid, and protocatechuic acid) was studied and these intermediates enhanced the Brevibacterium, Ochrobactrum, Achromobacter, Bacillus, Sporosarcina, and Microbacterium populations. Using a network-based approach, we predicted that Bacillus, Stenotrophomonas, and Microbacterium interacted cooperatively and were the main degraders of phthalate plasticizers. Through selective isolation techniques, we obtained twenty isolates belonging to Bacillus, Microbacterium, Sporosarcina, Micrococcus, Ochrobactrum, Stenotrophomonas, Alcaligenes, and Cytobacillus. The best DEHP-degraders were Stenotrophomonas acidaminiphila OR13, Microbacterium esteraromaticum OR16, Sporosarcina sp. OR19, and Cytobacillus firmus OR20 (83.68%, 59.1%, 43.4%, and 40.6% degradation of 100 mg/L DEHP in 8 d), which agrees with the prediction of key degraders. This is the first report of DEHP degradation by all four bacteria and, thus, our findings reveal as yet unknown PAE-degradation capabilities of marine sediment bacteria. This study provides insights into how bacterial communities adapt to degrade or resist the toxicities of different PAEs and demonstrates a simple approach for the prediction and isolation of potential pollutant degraders from complex and dynamic bacterial communities.
Collapse
Affiliation(s)
- Ritu Ningthoujam
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Meyawee Satiraphan
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pontipa Luadnakrob
- Southeast Asian Fisheries Development Center/Training Department, Samut Prakan, Thailand
| | - Onruthai Pinyakong
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. ENVIRONMENTAL RESEARCH 2022; 214:114059. [PMID: 35961545 DOI: 10.1016/j.envres.2022.114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a family of reprotoxicant compounds, predominantly used as a plasticizer to improve the flexibility and longevity of consumable plastic goods. After their use these plastic products find their way to the waste disposal sites where they leach out the hazardous phthalates present within them, into the surrounding environment, contaminating soil, groundwater resources, and the nearby water bodies. Subsequently, phthalates move into the living system through the food chain and exhibit the well-known phenomenon of biological magnification. Phthalates as a primary pollutant have been classified as 1B reprotoxicants and teratogens by different government authorities and they have thus imposed restrictions on their use. Nevertheless, the release of these compounds in the environment is unabated. Bioremediation has been suggested as one of the ways of mitigating this menace, but studies regarding the field applications of phthalate utilizing microbes for this purpose are limited. Through this review, we endeavor to make a deeper understanding of the cause and concern of the problem and to find out a possible solution to it. The review critically emphasizes the various aspects of phthalates toxicity, including their chemical nature, human health risks, phytoaccumulation and entry into the food chain, microbial role in phthalate degradation processes, and future challenges.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sanjeev Pandey
- Department of Botany, Banwarilal Bhalotia College, Asansol, 713303, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| |
Collapse
|
5
|
Xu WJ, Wan Q, Wang WF, Wang Y, Feng FY, Cheng JJ, Yuan JJ, Yu XY. Biodegradation of dibutyl phthalate by a novel endophytic Bacillus subtilis strain HB-T2 under in-vitro and in-vivo conditions. ENVIRONMENTAL TECHNOLOGY 2022; 43:1917-1926. [PMID: 33251967 DOI: 10.1080/09593330.2020.1858181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The environmental prevalence and potential toxicity of dibutyl phthalate (DBP) motivate the attempt to develop feasible strategies to deal with DBP contamination. In this study, a strain of endphytic bacteria HB-T2 was isolated from sorrel roots and identified as Bacillus sp. by analysing its morphology, physiology, biochemistry and 16S rDNA sequence. The degradation efficiency of DBP by HB-T2 was almost identical under the temperature of 30∼40°C, but was significantly enhanced as the culture pH and inoculum size increases from 6.0 to 8.0, and 1% to 5% respectively. The degradation kinetics of DBP could be well described by the first-order kinetic model, with the degradation half-life ranging from 1.59 to 7.61 h when the initial concentrations of DBP were in the range of 5-20 mg/L. LC-MS analysis of the culture samples taken at varying intervals revealed monobutyl phthalate, phthalic acid and protocatechuic acid as the major metabolic intermediates during the degradation process. HB-T2 exhibited an excellent capability to degrade a wide range of phthalate esters (PAEs), especially butyl benzyl phthalate (BBP), dipentyl phthalate (DPP), and diisobutyl phthalate (DIBP). Inoculation of HB-T2 into Chinese cabbage (Brassica chinensis L.) growing in DBP-contaminated soils could significantly reduce the DBP levels in plant tissues and relieve the phytotoxic effects of DBP. Results of this study highlighted the great potential of this novel endophytic Bacillus subtilis strain HB-T2 for bioremediation of PAEs contamination and improvement of agricultural product safety by reducing PAEs accumulation in edible crops.
Collapse
Affiliation(s)
- Wen-Jun Xu
- College of Oceanology and Food Science, Quanzhou Normal University/Key Laboratory of Inshore Resources Biotechnology, Quanzhou, People's Republic of China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
| | - Qun Wan
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Wen-Feng Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ya Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Fa-Yun Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Jin-Jin Cheng
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Jian-Jun Yuan
- College of Oceanology and Food Science, Quanzhou Normal University/Key Laboratory of Inshore Resources Biotechnology, Quanzhou, People's Republic of China
| | - Xiang-Yang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Shariati S, Ebenau-Jehle C, Pourbabaee AA, Alikhani HA, Rodriguez-Franco M, Agne M, Jacoby M, Geiger R, Shariati F, Boll M. Degradation of dibutyl phthalate by Paenarthrobacter sp. Shss isolated from Saravan landfill, Hyrcanian Forests, Iran. Biodegradation 2021; 33:59-70. [PMID: 34751871 PMCID: PMC8803807 DOI: 10.1007/s10532-021-09966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Phthalic acid esters are predominantly used as plasticizers and are industrially produced on the million ton scale per year. They exhibit endocrine-disrupting, carcinogenic, teratogenic, and mutagenic effects on wildlife and humans. For this reason, biodegradation, the major process of phthalic acid ester elimination from the environment, is of global importance. Here, we studied bacterial phthalic acid ester degradation at Saravan landfill in Hyrcanian Forests, Iran, an active disposal site with 800 tons of solid waste input per day. A di-n-butyl phthalate degrading enrichment culture was established from which Paenarthrobacter sp. strain Shss was isolated. This strain efficiently degraded 1 g L-1 di-n-butyl phthalate within 15 h with a doubling time of 5 h. In addition, dimethyl phthalate, diethyl phthalate, mono butyl phthalate, and phthalic acid where degraded to CO2, whereas diethyl hexyl phthalate did not serve as a substrate. During the biodegradation of di-n-butyl phthalate, mono-n-butyl phthalate was identified in culture supernatants by ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. In vitro assays identified two cellular esterase activities that converted di-n-butyl phthalate to mono-n-butyl phthalate, and the latter to phthalic acid, respectively. Our findings identified Paenarthrobacter sp. Shss amongst the most efficient phthalic acid esters degrading bacteria known, that possibly plays an important role in di-n-butyl phthalate elimination at a highly phthalic acid esters contaminated landfill.
Collapse
Affiliation(s)
- S Shariati
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - C Ebenau-Jehle
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - A A Pourbabaee
- Department of Soil Science Engineering, University of Tehran, Tehran, Iran
| | - H A Alikhani
- Department of Soil Science Engineering, University of Tehran, Tehran, Iran
| | - M Rodriguez-Franco
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - M Agne
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - M Jacoby
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - R Geiger
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - F Shariati
- Department of Environmental Science, Islamic Azad University, Lahijan, Iran
| | - M Boll
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Vanhoutte I, De Tender C, Demeyere K, Abdallah MF, Ommeslag S, Vermeir P, Saeger SD, Debode J, Meyer E, Croubels S, Audenaert K, De Gelder L. Bacterial Enrichment Cultures Biotransform the Mycotoxin Deoxynivalenol into a Novel Metabolite Toxic to Plant and Porcine Cells. Toxins (Basel) 2021; 13:toxins13080552. [PMID: 34437423 PMCID: PMC8402469 DOI: 10.3390/toxins13080552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON), produced in wheat, barley and maize by Fusarium graminearum and Fusarium culmorum, is threatening the health of humans and animals. With its worldwide high incidence in food and feed, mitigation strategies are needed to detoxify DON, maintaining the nutritional value and palatability of decontaminated commodities. A promising technique is biological degradation, where microorganisms are used to biotransform mycotoxins into less toxic metabolites. In this study, bacterial enrichment cultures were screened for their DON detoxification potential, where DON and its potential derivatives were monitored. The residual phytotoxicity was determined through a bioassay using the aquatic plant Lemna minor L. Two bacterial enrichment cultures were found to biotransform DON into a still highly toxic metabolite for plants. Furthermore, a cytotoxic effect was observed on the cellular viability of intestinal porcine epithelial cells. Through liquid chromatography high-resolution mass spectrometry analysis, an unknown compound was detected, and tentatively characterized with a molecular weight of 30.0 Da (i.e., CH2O) higher than DON. Metabarcoding of the subsequently enriched bacterial communities revealed a shift towards the genera Sphingopyxis, Pseudoxanthomonas, Ochrobactrum and Pseudarthrobacter. This work describes the discovery of a novel bacterial DON-derived metabolite, toxic to plant and porcine cells.
Collapse
Affiliation(s)
- Ilse Vanhoutte
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (C.D.T.); (S.O.); (J.D.)
- Computer Science and Statistics, Department of Applied Mathematics, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (K.D.); (E.M.); (S.C.)
| | - Mohamed F. Abdallah
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (S.D.S.)
| | - Sarah Ommeslag
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (C.D.T.); (S.O.); (J.D.)
| | - Pieter Vermeir
- Laboratory of Chemical Analysis (LCA), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (S.D.S.)
| | - Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (C.D.T.); (S.O.); (J.D.)
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (K.D.); (E.M.); (S.C.)
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (K.D.); (E.M.); (S.C.)
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-9-243-24-75
| |
Collapse
|
8
|
Zhang H, Zhao C, Na H. Theoretical Design of Biodegradable Phthalic Acid Ester Derivatives in Marine and Freshwater Environments. ChemistryOpen 2020; 9:1033-1045. [PMID: 33101830 PMCID: PMC7570447 DOI: 10.1002/open.202000093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/07/2020] [Indexed: 11/19/2022] Open
Abstract
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D‐QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.
Collapse
Affiliation(s)
- Haigang Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun City, 130012, Jilin Province, PR China
| | - Chengji Zhao
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun City, 130012, Jilin Province, PR China
| | - Hui Na
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun City, 130012, Jilin Province, PR China
| |
Collapse
|
9
|
The genomic attributes of Cd-resistant, hydrocarbonoclastic Bacillus subtilis SR1 for rhizodegradation of benzo(a)pyrene under co-contaminated conditions. Genomics 2020; 113:613-623. [PMID: 33002627 DOI: 10.1016/j.ygeno.2020.09.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis SR1 is a metal resistant, polyaromatic hydrocarbon-degrading bacterium isolated from petroleum contaminated sites. This study reports the characteristics of the genome of the isolate containing one circular chromosome (4,093,698 bp) annotated into 4155 genes and 4095 proteins. The genome analysis confirmed the presence of multiple catabolic genes: aromatic ring-hydroxylating dioxygenase (COG2146), aromatic ring hydroxylase (COG2368), catechol 2, 3 dioxygenase (COG2514), 4-hydroxybenzoate decarboxylase (COG0043), carboxymuconolactone decarboxylase (COG0599) responsible for the catabolism of aromatic hydrocarbons along with the genes for biosurfactant production and functional genes (czcD and cadA) for resistance to cadmium, zinc, and cobalt. Gas Chromatography-Mass spectroscopy analysis revealed up to 35% in-vitro degradation of benzo(a)pyrene after 21 days of growth along with the production of different intermediate metabolites. The pot trial analysis in the greenhouse condition validated the rhizodegradation of BaP, which was significantly higher in the presence of plant-microbe association (85%) than degradation in bulk soil (68%).
Collapse
|
10
|
Liu T, Li J, Qiu L, Zhang F, Linhardt RJ, Zhong W. Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in
Arthrobacter
sp. ZJUTW. Biotechnol Bioeng 2020; 117:3712-3726. [DOI: 10.1002/bit.27524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Tengfei Liu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| | - Jun Li
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| | - Lequan Qiu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute Troy New York
| | - Weihong Zhong
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou China
| |
Collapse
|
11
|
Li X, Wang J, Jia Y, Reheman A, Yan Y. The Genome Analysis of Methylobacterium populi YC-XJ1 with Diverse Xenobiotics Biodegrading Capacity and Degradation Characteristics of Related Hydrolase. Int J Mol Sci 2020; 21:ijms21124436. [PMID: 32580446 PMCID: PMC7352507 DOI: 10.3390/ijms21124436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Methylobacterium populi YC-XJ1 isolated from desert soil exhibited a diverse degrading ability towards aromatic oxyphenoxypropionic acid esters (AOPPs) herbicide, phthalate esters (PAEs), organophosphorus flame retardants (OPFRs), chlorpyrifos and phoxim. The genome of YC-XJ1 was sequenced and analyzed systematically. YC-XJ1 contained a large number of exogenous compounds degradation pathways and hydrolase resources. The quizalofop-p-ethyl (QPE) degrading gene qpeh2 and diethyl phthalate (DEP) degrading gene deph1 were cloned and expressed. The characteristics of corresponding hydrolases were investigated. The specific activity of recombinant QPEH2 was 0.1 ± 0.02 U mg-1 for QPE with kcat/Km values of 1.8 ± 0.016 (mM-1·s-1). The specific activity of recombinant DEPH1 was 0.1 ± 0.02 U mg-1 for DEP with kcat/Km values of 0.8 ± 0.02 (mM-1·s-1). This work systematically illuminated the metabolic versatility of strain YC-XJ1 via the combination of genomics analysis and laboratory experiments. These results suggested that strain YC-XJ1 with diverse xenobiotics biodegrading capacity was a promising candidate for the bioremediation of polluted sites.
Collapse
Affiliation(s)
- Xianjun Li
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Junhuan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Aikebaier Reheman
- Key Laboratory of Toxicology, Ningde Normal University, Ningde 352100, China
- Correspondence: (A.R.); (Y.Y.); Tel.: +86-10-82109685 (Y.Y.)
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
- Correspondence: (A.R.); (Y.Y.); Tel.: +86-10-82109685 (Y.Y.)
| |
Collapse
|
12
|
Nshimiyimana JB, Khadka S, Zou P, Adhikari S, Proshad R, Thapa A, Xiong L. Study on biodegradation kinetics of di-2-ethylhexyl phthalate by newly isolated halotolerant Ochrobactrum anthropi strain L1-W. BMC Res Notes 2020; 13:252. [PMID: 32448295 PMCID: PMC7247211 DOI: 10.1186/s13104-020-05096-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Di-2-ethylhexyl phthalate (DEHP) pollution is one of the major environmental concerns all over the world. This research aimed at studying the biodegradation kinetics of DEHP by a newly isolated bacterial strain. Water and sediment samples were collected from Wuhan South Lake and potent bacterial isolates were screened for DEHP degradation, characterized by biochemical, physiological, morphological and 16S rDNA gene sequencing, and optimized under suitable pH, temperature, NaCl and DEHP concentrations. DEHP and its metabolites were quantified by High Performance Liquid Chromatography and their degradation kinetics were studied. Results The newly isolated bacterium was identified as Ochrobactrum anthropi strain L1-W with 99.63% similarity to Ochrobactrum anthropi ATCC 49188. It was capable of utilizing DEHP as the carbon source. The optimum growth temperature, pH, DEHP and NaCl concentration for the strain L1-W were 30 °C, 6, 400 mg/L and 10 g/L respectively. Strain L1-W was capable of degrading almost all (98.7%) of DEHP when the initial concentration was 200 mg/L within a period of 72 h. Besides, it was also found capable of degrading five other phthalates, thus making it a possible candidate for bioremediation of phthalates in the environmental settings.
Collapse
Affiliation(s)
- Jean Bosco Nshimiyimana
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.,Department of Natural Resources and Environment Management, Protestant Institute of Arts and Social Science, Po Box 619, Huye, Rwanda
| | - Sujan Khadka
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China. .,Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, 44200, Nepal. .,State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Piao Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Sanjib Adhikari
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, 44200, Nepal
| | - Ram Proshad
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alina Thapa
- State Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Xiong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
13
|
Zhang S, Ying Z, You J, Ye J, Cheng Z, Chen D, Chen J. Superior performance and mechanism of chlorobenzene degradation by a novel bacterium. RSC Adv 2019; 9:15004-15012. [PMID: 35516324 PMCID: PMC9064227 DOI: 10.1039/c9ra01229j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023] Open
Abstract
A newly isolated strain was identified as Ochrobactrum sp. by 16S rRNA sequence analysis and named as ZJUTCB-1.
Collapse
Affiliation(s)
- Shihan Zhang
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Zanyun Ying
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
| | - Juping You
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
| | - Jiexu Ye
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Zhuowei Cheng
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Dongzhi Chen
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Jianmeng Chen
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| |
Collapse
|
14
|
Li F, Liu Y, Wang D, Zhang C, Yang Z, Lu S, Wang Y. Biodegradation of di-(2-ethylhexyl) phthalate by a halotolerant consortium LF. PLoS One 2018; 13:e0204324. [PMID: 30321184 PMCID: PMC6188624 DOI: 10.1371/journal.pone.0204324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022] Open
Abstract
A halotolerant bacterial consortium capable of degrading di-(2-ethylhexyl) phthalate (DEHP) was enriched from activated sludge. Community analysis revealed that LF contained seven families and seven genera of bacteria. The predominant species was Gordonia sp. (54.93%), Rhodococcus. sp. (9.92%) and Achromobacter sp. (8.47%). The consortium could degrade 93.84% of 1000 mg/l DEHP after 48 h incubation. The optimal temperature and pH for LF to degrade DEHP were 30 °C and 6.0, respectively. LF degraded more than 91% of DEHP with salt concentrations ranging from 0–3%. The inoculum size had great effects on DEHP degradation (incubation time < 24h). LF could degrade high concentrations of DEHP (from 100 to 2000 mg/l) with the degradation ratio above 92% after 72 h incubation. Kinetics analysis revealed that the degradation of DEHP by LF was best fitted by the first-order kinetics when the initial concentration ranged from 100 to 2000 mg/l. The main intermediates (2-ethylhexyl pentyl phthalate, butyl (2-ethylhexyl) phthalate (BEHP), mono-ethylhexyl phthalate (MEHP), mono-hexyl phthalate (MHP), mono-butyl phthalate (MBP)) in DEHP degradation process were identified using gas chromatography–mass spectrometry (GC-MS), and a new complex biochemical pathway was proposed. Furthermore, LF could also degrade dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), di-n-octyl phthalate (DOP) and phthalic acid (PA).
Collapse
Affiliation(s)
- Fangfang Li
- Institute of Sustainable Development in Agriculture and Rural Area, Henan University, Kaifeng, Henan, China
| | - Yidan Liu
- Institute of Sustainable Development in Agriculture and Rural Area, Henan University, Kaifeng, Henan, China
| | - Diwei Wang
- Institute of Sustainable Development in Agriculture and Rural Area, Henan University, Kaifeng, Henan, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography and Archaeology, National University of Ireland, Galway, Ireland
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, China
| | - Siqi Lu
- College of Plant Science, Jilin University, Changchun, China
| | - Yangyang Wang
- Institute of Sustainable Development in Agriculture and Rural Area, Henan University, Kaifeng, Henan, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
- * E-mail:
| |
Collapse
|
15
|
Biochemical pathways and enhanced degradation of di-n-octyl phthalate (DOP) in sequencing batch reactor (SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6 isolated from activated sludge. Biodegradation 2018; 29:171-185. [PMID: 29450665 DOI: 10.1007/s10532-018-9822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
Two bacterial strains designated as Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6, capable of utilizing di-n-octyl phthalate (DOP) as sole source of carbon and energy, were isolated from activated sludge. The analysis of DOP degradation intermediates indicated Arthrobacter sp. SLG-4 could completely degrade DOP. Whereas DOP could not be mineralized by Rhodococcus sp. SLG-6 and the final metabolic product was phthalic acid (PA). The proposed DOP degradation pathway by Arthrobacter sp. SLG-4 was that strain SLG-4 initially transformed DOP to PA via de-esterification pathway, and then PA was metabolized to protocatechuate acid and eventually converted to tricarboxylic acid (TCA) cycle through meta-cleavage pathway. Accordingly, Phthalate 3,4-dioxygenase genes (phtA) responsible for PA degradation were successfully detected in Arthrobacter sp. SLG-4 by real-time quantitative PCR (q-PCR). q-PCR analysis demonstrated that the quantity of phthalate 3,4-dioxygenase was positively correlated to DOP degradation in SBRs. Bioaugmentation by inoculating DOP-degrading bacteria effectively shortened the start-up of SBRs and significantly enhanced DOP degradation in bioreactors. More than 91% of DOP (500 mg L-1) was removed in SBR bioaugmented with bacterial consortium, which was double of the control SBR. This study suggests bioaugmentation is an effective and feasible technique for DOP bioremediation in practical engineering.
Collapse
|
16
|
Wang Y, Li F, Ruan X, Song J, Lv L, Chai L, Yang Z, Luo L. Biodegradation of di-n-butyl phthalate by bacterial consortium LV-1 enriched from river sludge. PLoS One 2017; 12:e0178213. [PMID: 28542471 PMCID: PMC5444784 DOI: 10.1371/journal.pone.0178213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
A stable bacterial consortium (LV-1) capable of degrading di-n-butyl phthalate (DBP) was enriched from river sludge. Community analysis revealed that the main families of LV-1 are Brucellaceae (62.78%) and Sinobacteraceae (14.83%), and the main genera of LV-1 are Brucella spp. (62.78%) and Sinobacter spp. (14.83%). The optimal pH and temperature for LV-1 to degrade DBP were pH 6.0 and 30°C, respectively. Inoculum size influenced the degradation ratio when the incubation time was < 24 h. The initial concentration of DBP also influenced the degradation rates of DBP by LV-1, and the degradation rates ranged from 69.0–775.0 mg/l/d in the first 24 h. Degradation of DBP was best fitted by first-order kinetics when the initial concentration was < 300 mg/l. In addition, Cd2+, Cr6+, and Zn2+ inhibited DBP degradation by LV-1 at all considered concentrations, but low concentrations of Pb2+, Cu2+, and Mn2+ enhanced DBP degradation. The main intermediates (mono-ethyl phthalate [MEP], mono-butyl phthalate [MBP], and phthalic acid [PA]) were identified in the DBP degradation process, thus a new biochemical pathway of DBP degradation is proposed. Furthermore, LV-1 also degraded other phthalates with shorter ester chains (DMP, DEP, and PA).
Collapse
Affiliation(s)
- Yangyang Wang
- School of Resources and Environment, Hunan Agricultural University, Changsha, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
- Institute of Natural Resources and Environment, Henan University, Kaifeng, China
| | - Fangfang Li
- Institute of Natural Resources and Environment, Henan University, Kaifeng, China
| | - Xinling Ruan
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
- Institute of Natural Resources and Environment, Henan University, Kaifeng, China
| | - Jian Song
- Institute of Natural Resources and Environment, Henan University, Kaifeng, China
| | - Lv Lv
- Institute of Natural Resources and Environment, Henan University, Kaifeng, China
| | - Liyuan Chai
- School of Metallurgical & Environment, Central South University, Changsha, China
| | - Zhihui Yang
- School of Metallurgical & Environment, Central South University, Changsha, China
| | - Lin Luo
- School of Resources and Environment, Hunan Agricultural University, Changsha, China
- * E-mail:
| |
Collapse
|
17
|
Kumar V, Maitra SS. Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway. 3 Biotech 2016; 6:200. [PMID: 28330272 PMCID: PMC5031561 DOI: 10.1007/s13205-016-0524-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Methylobacillus are methanotrophs, a metabolic feature that is widespread in the phylum Proteobacteria. The study demonstrates the isolation and characterization of a newly isolated Methylobacillus sp. V29b. which grows on methanol, protocatechuate, monobutyl phthalate, dibutyl phthalate, diethyl phthalate, benzyl butyl phthalate, dioctyl phthalate and diisodecyl phthalate. Methylobacillus sp. V29b was characterized with scanning electron microscopy, transmission electron microscopy, Gram staining, antibiotics sensitivity tests and biochemical characterization. It degrades 70 % of the initial DBP in minimal salt medium and 65 % of the initial DBP in samples contaminated with DBP. DBP biodegradation kinetics was explained by the Monod growth inhibition model. Values for maximum specific growth rate (µmax) and half-velocity constant (Ks) are 0.07 h−1 and 998.2 mg/l, respectively. Stoichiometry for DBP degradation was calculated for Methylobacillus sp. V29b. Four metabolic intermediates, dibutyl phthalate (DBP), monobutyl phthalate, phthalic acid and pyrocatechol, were identified. Based on the metabolic intermediates identified, a chemical pathway for DBP degradation was proposed. Six genes for phthalic acid degradation were identified from the genome of Methylobacillus sp. V29b.
Collapse
Affiliation(s)
- Vinay Kumar
- Lab No. 117, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - S S Maitra
- Lab No. 117, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
18
|
Gao DW, Wen ZD. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:986-1001. [PMID: 26473701 DOI: 10.1016/j.scitotenv.2015.09.148] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 05/05/2023]
Abstract
Phthalate esters are one of the most frequently detected persistent organic pollutants in the environment. A better understanding of their occurrence and degradation in the environment and during wastewater treatment processes will facilitate the development of strategies to reduce these pollutants and to bioremediate contaminated freshwater and soil. Phthalate esters occur at measurable levels in different environments worldwide. For example, the concentrations of dimethyl phthalate (DMP) in atmospheric particulate matter, fresh water and sediments, soil, and landfills are N.D.-10.4 ng/m(3), N.D.-31.7 μg/L, N.D.-316 μg/kg dry weight, and N.D.-200 μg/kg dry weight, N.D.-43.27 μg/L, respectively. Bis(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) are primary phthalate ester pollutants. Urbanization has increased the discharge of phthalate esters to atmospheric and aquatic environments, and the use of agricultural plastics has exacerbated soil contamination by phthalate esters in rural areas. Aerobic biodegradation is the primary manner of phthalate ester mineralization in the environment, and this process has been widely studied. Phthalate esters can be removed during wastewater treatment processes. The combination of different wastewater treatment technologies showed greater efficiency in the removal of phthalate esters than individual treatment steps, such as the combination of anaerobic wastewater treatment with a membrane bioreactor would increase the efficiency of phthalate ester removal from 65%-71% to 95%-97%. This review provides a useful framework to identify future research objectives to achieve the mineralization and elimination of phthalate esters in the environment.
Collapse
Affiliation(s)
- Da-Wen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhi-Dan Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Benjamin S, Pradeep S, Josh MS, Kumar S, Masai E. A monograph on the remediation of hazardous phthalates. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:58-72. [PMID: 26004054 DOI: 10.1016/j.jhazmat.2015.05.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 05/25/2023]
Abstract
Phthalates or phthalic acid esters are a group of xenobiotic and hazardous compounds blended in plastics to enhance their plasticity and versatility. Enormous quantities of phthalates are produced globally for the production of plastic goods, whose disposal and leaching out into the surroundings cause serious concerns to the environment, biota and human health. Though in silico computational, in vitro mechanistic, pre-clinical animal and clinical human studies showed endocrine disruption, hepatotoxic, teratogenic and carcinogenic properties, usage of phthalates continues due to their cuteness, attractive chemical properties, low production cost and lack of suitable alternatives. Studies revealed that microbes isolated from phthalate-contaminated environmental niches efficiently bioremediate various phthalates. Based upon this background, this review addresses the enumeration of major phthalates used in industry, routes of environmental contamination, evidences for health hazards, routes for in situ and ex situ microbial degradation, bacterial pathways involved in the degradation, major enzymes involved in the degradation process, half-lives of phthalates in environments, etc. Briefly, this handy module would enable the readers, environmentalists and policy makers to understand the impact of phthalates on the environment and the biota, coupled with the concerted microbial efforts to alleviate the burden of ever increasing load posed by phthalates.
Collapse
Affiliation(s)
- Sailas Benjamin
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635, India.
| | - Selvanesan Pradeep
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635, India
| | - Moolakkariyil Sarath Josh
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635, India
| | - Sunil Kumar
- Solid and Hazardous Waste Management Division, CSIR-NEERI Nehru Marg, Nagpur 440 020, India
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137, Japan
| |
Collapse
|
20
|
Biodegradation of di-n-butyl phthalate by a newly isolated halotolerant Sphingobium sp. Int J Mol Sci 2013; 14:24046-54. [PMID: 24336064 PMCID: PMC3876093 DOI: 10.3390/ijms141224046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 11/17/2022] Open
Abstract
A Gram-negative strain (TJ) capable of growing aerobically on mixed phthalate esters (PAEs) as the sole carbon and energy source was isolated from the Haihe estuary, Tianjin, China. It was identified as belonging to the Sphingobium genus on the basis of morphological and physiological characteristics and 16S rRNA and gyrb gene sequencing. The batch tests for biodegradation of di-n-butyl phthalate (DBP) by the Sphingobium sp. TJ showed that the optimum conditions were 30 °C, pH 7.0, and the absence of NaCl. Stain TJ could tolerate up to 4% NaCl in minimal salt medium supplemented with DBP, although the DBP degradation rates slowed as NaCl concentration increased. In addition, substrate tests showed that strain TJ could utilize shorter side-chained PAEs, such as dimethyl phthalate and diethyl phthalate, but could not metabolize long-chained PAEs, such as di-n-octyl phthalate, diisooctyl phthalate, and di-(2-ethyl-hexyl) phthalate. To our knowledge, this is the first report on the biodegradation characteristics of DBP by a member of the Sphingobium genus.
Collapse
|