1
|
Chen YH, Wei CF, Cheng YY, Mita C, Hoang CLD, Lin CK, Chang YT, Christiani DC. Urine cadmium and urolithiasis: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 252:118745. [PMID: 38527716 DOI: 10.1016/j.envres.2024.118745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Exposure to cadmium may increase risk of urolithiasis, but the results remain inconclusive. This systematic review and meta-analysis aimed to access the association between cadmium exposure and urolithiasis. We searched Medline/PubMed, Embase, Web of Science Core Collection, and Cochrane Central for studies. The primary outcome was the incidence of urolithiasis compared to reference groups. We used relative risk as the summary effect measure. This meta-analysis included eight observational studies and divided into 39 study populations. Among 63,051 subjects, 5018 (7.96%) individuals had urolithiasis. The results indicated that people with an increment of 0.1 μg/g creatinine in urinary cadmium had a 2% increased risk of urolithiasis (pooled relative risk [RR], 1.02; 95% confidence interval [CI], 1.01-1.03) and there is no difference in the risk of urolithiasis in high and low cadmium exposure levels. Meanwhile, people with an increment of 0.1 μg/L in urinary cadmium had a 4% increased risk of urolithiasis (pooled RR, 1.04; 95% CI, 1.02-1.07). Our findings also showed similar associations in both sex, different region (Sweden, China, and Thailand), general and occupational population. The results indicate that cadmium exposure was significantly associated with an elevated risk of urolithiasis. Therefore, it is imperative to take steps to minimize cadmium exposure.
Collapse
Affiliation(s)
- Yuan-Hsin Chen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Ya-Yun Cheng
- School of Medicine, College of Medicine, National Sun Yat-sen University, No.70 Lien-hai Road, Kaohsiung 804201, Taiwan; Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, No.70 Lien-hai Road, Kaohsiung 804201, Taiwan
| | - Carol Mita
- Countway Library, Harvard Medical School, 10 Shattuck St, Boston, MA 02115, United States
| | - Chinh Lu Duc Hoang
- Medical University Shing Mark Hospital, 1054 QL51, Long Bình Tân, Thành Phố Biên Hòa, Đồng Nai, Viet Nam
| | - Cheng-Kuan Lin
- International Health Program, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Beitou District, Taipei 112304, Taiwan; Medical University Shing Mark Hospital, 1054 QL51, Long Bình Tân, Thành Phố Biên Hòa, Đồng Nai, Viet Nam.
| | - Yu-Tzu Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shing-Li Rd., Tainan 70428, Taiwan
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| |
Collapse
|
2
|
Doccioli C, Sera F, Francavilla A, Cupisti A, Biggeri A. Association of cadmium environmental exposure with chronic kidney disease: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167165. [PMID: 37758140 DOI: 10.1016/j.scitotenv.2023.167165] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Several observational studies investigated the relationship between environmental cadmium exposure and risk of chronic kidney disease (CKD). However, results from epidemiological studies are conflicting and wide variabilities have been reported. OBJECTIVES We conducted a meta-analysis to evaluate the relationship between environmental cadmium exposure and CKD risk, as assessed by decreased estimated Glomerular Filtration Rate (eGFR) in adults. METHODS PubMed, Embase and the Cochrane library databases were searched for studies published up to July 2023. A random-effects model using the restricted maximum likelihood (REML) method was used to calculate the overall estimate to assess the association between cadmium exposure and eGFR. Subgroup analysis, funnel plot, Egger's test, and the trim-and-fill method were also conducted. RESULTS Thirty-one articles, 3 cohorts, 2 case-control and 26 cross-sectional studies, across 8 countries, involving 195.015 participants were included. The meta-analysis demonstrated an inverse association between high cadmium exposure and eGFR levels (standardized regression coefficient β = -0.09; 95 % CI = -0.15, -0.04). The subgroup analysis showed that the inverse association was significantly higher for blood cadmium exposure (β = -0.12; 95 % CI = -0.18, -0.06) than for urinary concentrations (β = -0.04; 95 % CI: -0.10, 0.03) or dietary exposure (β = -0.03; 95 % CI = -0.19, 0.14). Stratified analysis by different study design also showed an inverse association between cadmium exposure and eGFR, more evident in the cross-sectional studies (β = -0.11; 95 % CI = -0.18, -0.03) than in the cohort (β = -0.05; 95 % CI = -0.26, 0.17) and in the case-control studies (β = -0.05; 95 % CI = -0.32, 0.21). DISCUSSION Our meta-analysis indicated that environmental cadmium exposure is associated with increased risk of CKD, as assessed by decreased eGFR, and this association is more evident for blood cadmium concentrations than for urinary concentrations or dietary exposure. Nevertheless, additional high quality prospective studies are needed to confirm the association between cadmium exposure and risk of CKD.
Collapse
Affiliation(s)
- Chiara Doccioli
- Department of Statistic, Computer Science and Applications "G.Parenti", University of Florence, Florence, Italy.
| | - Francesco Sera
- Department of Statistic, Computer Science and Applications "G.Parenti", University of Florence, Florence, Italy
| | - Andrea Francavilla
- Department of Cardio, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annibale Biggeri
- Department of Cardio, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Zhao H, Fang L, Chen Y, Ma Y, Xu S, Ni J, Chen X, Wang G, Pan F. Associations of exposure to heavy metal mixtures with kidney stone among U.S. adults: A cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96591-96603. [PMID: 37580472 DOI: 10.1007/s11356-023-29318-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Assessing the effects of heavy metals (HMs) on kidney stone is often limited to analyzing individual metal exposures, with studies on the effects of exposure to mixtures of HMs being scarce. To comprehensively evaluate the relationship between exposure to mixed HMs and kidney stones, we analyzed data from the National Health and Nutrition Examination Survey (NHANES) from 2007-2016, which included 7809 adults. We used multiple statistical methods, including multiple logistic regression models, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp) and bayesian kernel machine regression (BKMR), to assess the association between single HM and mixed exposure to HMs and kidney stones. Firstly, in single exposure analysis, urinary cadmium (Cd) and cobalt (Co) demonstrated a positive association with the risk of kidney stones. Secondly, various other approaches consistently revealed that mixed exposure to HMs exhibited a positive association with kidney stone risk, primarily driven by Cd, Co, and barium (Ba) in urine, with these associations being particularly notable among the elderly population. Finally, both BKMR and survey-weighted generalized linear models consistently demonstrated a significant synergistic effect between urinary Co and urinary uranium (Ur) in elevating the risk of kidney stones. Overall, this study provides new epidemiological evidence that mixed exposure to HMs is associated with an increased risk of kidney stones. Further prospectively designed studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuyang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Little BB, Vu GT, Walsh B. Cadmium exposure is associated with chronic kidney disease in a superfund site lead smelter community in Dallas, Texas. Ann Hum Biol 2023; 50:360-369. [PMID: 37615209 DOI: 10.1080/03014460.2023.2236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2023]
Abstract
Background: The study was conducted in a Dallas lead smelter community following an Environmental Protection Agency (EPA) Superfund Cleanup project. Lead smelters operated in the Dallas community since the mid-1930s.Aim: To test the hypothesis that cadmium (Cd) exposure is associated with chronic kidney disease (CKD) ≥ stage 3.Subjects and methods: Subjects were African American residents aged ≥19 to ≤ 89 years (n=835). CKD ≥ stage 3 was predicted by blood Cd concentration with covariates.Results: In logistic regression analysis, CKD ≥ stage 3 was predicted by age ≥ 50 years (OR = 4.41, p < 0.0001), Cd level (OR = 1.89, p < .05), hypertension (OR = 3.15, p < 0.03), decades living in the community (OR = 1.34, p < 0.003) and T2DM (OR = 2.51, p < 0.01). Meta-analysis of 11 studies of Cd and CKD ≥ stage 3 yielded an ORRANDOM of 1.40 (p < 0.0001). Chronic environmental Cd exposure is associated with CKD ≥ stage 3 in a Dallas lead smelter community controlling covariates.Conclusion: Public health implications include screening for heavy metals including Cd, cleanup efforts to remove Cd from the environment and treating CKD with newer renal-sparing medications (e.g., SGLT-2 inhibitors, GLP-1s).
Collapse
Affiliation(s)
- Bert B Little
- Department of Health Management and Systems Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Giang T Vu
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Brad Walsh
- Parkland Hospital and Health System, Dallas, TX, USA
| |
Collapse
|
5
|
Huang JL, Mo ZY, Li ZY, Liang GY, Liu HL, Aschner M, Ou SY, Zhou B, Chen ZM, Jiang YM. Association of lead and cadmium exposure with kidney stone incidence: A study on the non-occupational population in Nandan of China. J Trace Elem Med Biol 2021; 68:126852. [PMID: 34508950 DOI: 10.1016/j.jtemb.2021.126852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Environmental lead (Pb) and cadmium (Cd) pollution has been considered a risk factor in the etiology of kidney stones. However, the association between Pb and Cd exposure and kidney stone incidence has yet to be determined. OBJECTIVES This study aimed to determine a possible the association between kidney stones with Pb and Cd exposure (alone or combined) in a non-occupational population. METHODS Pb and Cd contaminations in soil-plant system were determined by flame atomic absorption spectrophotometry. Health risk assessment of dietary Pb or Cd intake from rice and vegetables were calculated. Kidney stones were diagnosed with urinary tract ultrasonography. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. Multivariate logistic regression models were constructed. RESULTS The hazard indexes (HI) of Pb and Cd were 7.91 and 7.31. The odds ratio (OR) was 2.83 (95 %CI:1.38-5.77) in males with high BPb (BPb ≥ 100 μg/L), compared with those with low BPb (BPb<100 μg/L). Compared to those with low BPb and low UCd (BPb<100 μg/L and UCd<2 μg/g creatinine), the ORs were 2.58 (95 % CI:1.17-5.70) and 3.43 (95 % CI:1.21-9.16) in females and males with high BPb and high UCd (BPb ≥100 μg/L and UCd ≥2 μg/g creatinine), respectively. The OR was 3.16 (95 % CI:1.26-7.88) in males with high BPb and low UCd (BPb ≥ 100 μg/L and UCd <2 μg/g creatinine), compared to those with low BPb and low UCd. CONCLUSIONS Kidney stones incidence was increased by high Pb exposure in males, and by Pb and Cd co-exposure in males and females.
Collapse
Affiliation(s)
- Jiong-Li Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Zhao-Yu Mo
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhong-You Li
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Gui-Yun Liang
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Hui-Lin Liu
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhi-Ming Chen
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Jalili C, Kazemi M, Cheng H, Mohammadi H, Babaei A, Taheri E, Moradi S. Associations between exposure to heavy metals and the risk of chronic kidney disease: a systematic review and meta-analysis. Crit Rev Toxicol 2021; 51:165-182. [PMID: 33960873 DOI: 10.1080/10408444.2021.1891196] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We performed a systematic review and meta-analysis to examine the relationship between heavy metals (HMs) exposure and the risk of chronic kidney disease (CKD). Databases of Web of Science, Embase, MEDLINE, and Scopus were searched through June 2020 to identify studies assessing the relationships between exposure to HMs (i.e. cadmium, lead, arsenic, mercury) and the risk of CKD, evaluated by decreased estimated glomerular filtration rate (eGFR) and/or increased proteinuria risks in adults (≥18 years). Data were pooled by random-effects models and expressed as weighted mean differences and 95% confidence intervals. The risk of bias was assessed by the Newcastle-Ottawa scale (NOS). Twenty-eight eligible articles (n = 107,539 participants) were included. Unlike eGFR risk (p = 0.10), Cadmium exposure was associated with an increased proteinuria risk (OR = 1.35; 95% CI: 1.13, 1.61; p < 0.001; I2 = 79.7%). Lead exposure was associated with decreased eGFR (OR = 1.12; 95%CI: 1.03, 1.22; p = 0.008; I2 = 87.8%) and increased proteinuria (OR = 1.25; 95% CI: 1.04, 1.49; p = 0.02; I2 = 79.6) risks. Further, arsenic exposure was linked to a decreased eGFR risk (OR = 1.55; 95% CI: 1.05, 2.28; p = 0.03; I2 = 89.1%) in contrast to mercury exposure (p = 0.89). Only two studies reported the link between arsenic exposure and proteinuria risk, while no study reported the link between mercury exposure and proteinuria risk. Exposure to cadmium, lead, and arsenic may increase CKD risk in adults, albeit studies were heterogeneous, warranting further investigations. Our observations support the consideration of these associations for preventative, diagnostic, monitoring, and management practices of CKD.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, New York, USA
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Babaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ensiyeh Taheri
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajjad Moradi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
7
|
Guo ZL, Wang JY, Gong LL, Gan S, Gu CM, Wang SS. Association between cadmium exposure and urolithiasis risk: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e9460. [PMID: 29505519 PMCID: PMC5943130 DOI: 10.1097/md.0000000000009460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We performed a meta-analysis to determine whether a consistent relationship exists between cadmium exposure and urolithiasis in humans. Accordingly, we summarized and reviewed previously published quantitative studies. METHODS Eligible studies with reference lists published before June 1, 2017 were obtained from searching several databases. Random effects models were used to summary the overall estimate of the multivariate adjusted odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Six observational studies involving 88,045 participants were identified and stratified into the following categories according to cadmium assessment results: occupational (n = 4) and dietary (n = 2). The findings of the meta-analysis suggested that the risk of urolithiasis increases significantly by 1.32 times at higher cadmium exposure (OR = 1.32; 95% CI = 1.08-1.62; for highest vs lowest category urinary cadmium values). The summary OR in occupational exposure (OR = 1.56; 95% CI = 1.13-2.14) increased at the same condition. Meanwhile, no association was observed between cadmium exposure and urolithiasis risk in dietary exposure (OR = 1.13; 95% CI = 0.87-1.47). A significant association remained consistent, as indicated by subgroup analyses and sensitivity analyses. CONCLUSIONS The meta-analysis indicated that increased risk of urolithiasis is associated with high cadmium exposure, and this association is higher in occupational exposure than in dietary exposure. Nevertheless, well-designed observational studies with different ethnic populations are still needed.
Collapse
Affiliation(s)
- Zhen-Lang Guo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou
| | - Jun-Yue Wang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou
| | - Lei-Liang Gong
- Department of Mechanical Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Shu Gan
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chi-Ming Gu
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shu-Sheng Wang
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Saengwilai P, Meeinkuirt W, Pichtel J, Koedrith P. Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15756-15767. [PMID: 28528502 DOI: 10.1007/s11356-017-9157-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Cadmium is a toxic metallic element that poses serious human health risks via consumption of contaminated agricultural products. The effect of mixtures of dicalcium phosphate and organic amendments, namely cow manure (MD) and leonardite (LD), on Cd and Zn uptake of three rice cultivars (KDML105, KD53, and PSL2) was examined in mesocosm experiments. Plant growth, Cd and Zn accumulation, and physicochemical properties of the test soils were investigated before and after plant harvest. Amendment application was found to improve soil physicochemical properties; in particular, soil organic matter content and nutrient (N, P, K, Ca, and Mg) concentrations increased significantly. The MD treatment was optimal in terms of increasing plant growth; the MD and LD treatments decreased soil Cd concentration by 3.3-fold and 1.6-fold, respectively. For all treatments, all rice cultivars accumulated greater quantities of Cd and Zn in roots compared with panicles and shoots. Among the three cultivars, RD53 accumulated the lowest quantity of Cd. Translocation factors (<0.28) and bioconcentration coefficients of roots (>1) indicate that the three rice cultivars are Cd excluders. Our results suggest that a mixture of organic and inorganic amendments can be used to enhance rice growth while reducing accumulation of heavy metals when grown in contaminated soil.
Collapse
Affiliation(s)
- Patompong Saengwilai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN, USA
| | - Preeyaporn Koedrith
- Faculty of Environment and Resource Studies, Mahidol University, Phuttamonthon District, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
9
|
Hara A, Yang WY, Petit T, Zhang ZY, Gu YM, Wei FF, Jacobs L, Odili AN, Thijs L, Nawrot TS, Staessen JA. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study. ENVIRONMENTAL RESEARCH 2016; 145:1-8. [PMID: 26613344 DOI: 10.1016/j.envres.2015.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Whether environmental exposure to nephrotoxic agents that potentially interfere with calcium homeostasis, such as lead and cadmium, contribute to the incidence of nephrolithiasis needs further clarification. We investigated the relation between nephrolithiasis incidence and environmental lead and cadmium exposure in a general population. In 1302 participants randomly recruited from a Flemish population (50.9% women; mean age, 47.9 years), we obtained baseline measurements (1985-2005) of blood lead (BPb), blood cadmium (BCd), 24-h urinary cadmium (UCd) and covariables. We monitored the incidence of kidney stones until October 6, 2014. We used Cox regression to calculate multivariable-adjusted hazard ratios for nephrolithiasis. At baseline, geometric mean BPb, BCd and UCd was 0.29µmol/L, 9.0nmol/L, and 8.5nmol per 24h, respectively. Over 11.5 years (median), nephrolithiasis occurred in 40 people. Contrasting the low and top tertiles of the distributions, the sex- and age-standardized rates of nephrolithiasis expressed as events per 1000 person-years were 0.68 vs. 3.36 (p=0.0016) for BPb, 1.80 vs. 3.28 (p=0.11) for BCd, and 1.65 vs. 2.95 (p=0.28) for UCd. In continuous analysis, with adjustments applied for sex, age, serum magnesium, and 24-h urinary volume and calcium, the hazard ratios expressing the risk associated with a doubling of the exposure biomarkers were 1.35 (p=0.015) for BPb, 1.13 (p=0.22) for BCd, and 1.23 (p=0.070) for UCd. In conclusion, our results suggest that environmental lead exposure is a risk factor for nephrolithiasis in the general population.
Collapse
Affiliation(s)
- Azusa Hara
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thibault Petit
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Yu-Mei Gu
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Fang-Fei Wei
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lotte Jacobs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Augustine N Odili
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences University of Abuja, Nigeria
| | - Lutgarde Thijs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, University of Hasselt, Belgium
| | - Jan A Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; R&D Group VitaK, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Mortada WI, Hassanien MM, Donia AF, Shokeir AA. Application of Cloud Point Extraction for Cadmium in Biological Samples of Occupationally Exposed Workers: Relation Between Cadmium Exposure and Renal Lesion. Biol Trace Elem Res 2015; 168:303-10. [PMID: 25998796 DOI: 10.1007/s12011-015-0365-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Cadmium (Cd) level in blood and urine of soldering iron workers (n=49) and 41 matched healthy controls has been assessed. Cloud point extraction was employed for preconcentration of Cd. The Cd ions formed hydrophobic complex with 9,10-phenanthraquinone monoethyl thiosemicarbazone that was extracted by surfactant-rich phases in the nonionic surfactant Triton X-114. The surfactant-rich phase was diluted with 1 M HNO3 in methanol prior to its analysis by graphite furnace atomic absorption spectrometry. The parameters affecting the extraction efficiency of the proposed method, such as solution pH, amount of complexing agent, surfactant concentration, temperature, and incubation time, were optimized. Under the optimum experimental conditions, the detection limit and the enrichment factor were 0.04 μg L(-1) and 61, respectively. Relative standard deviation of 10 μg L(-1) Cd was less than 3.0%. The accuracy of the method was examined by analysis of certified reference materials. It was observed that soldering iron workers are liable to Cd overload as indicated by higher levels of Cd in blood and urine when compared with the controls. This exposure may lead to kidney damage indicated by elevation of urinary excretion of both N-acetyl-β-D-glucosaminidase and β2-microglobulin.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed M Hassanien
- Chemistry Department, Industrial Education College, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed F Donia
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Shokeir
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
11
|
Khaokaew S, Landrot G. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants. CHEMOSPHERE 2015; 138:883-887. [PMID: 25454203 DOI: 10.1016/j.chemosphere.2014.09.108] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/01/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
The cadmium (Cd) phytoremediation capabilities of Gynura pseudochina, Chromolaena odorata, Conyza sumatrensis, Crassocephalum crepidioides and Nicotiana tabacum were determined by conducting in-situ experiments in a highly Cd-contaminated agricultural field at Mae Sot District, Tak Province, Thailand. Most of these five plant species, which are commonly found in Thailand, previously demonstrated Cd-hyperaccumulating capacities under greenhouse conditions. This study represented an important initial step in determining if any of these plants could, under field-conditions, effectively remove Cd from the Mae Sot contaminated fields, which represent a health threat to thousands of local villagers. All plant species had at least a 95% survival rate on the final harvest day. Additionally, all plant species, except C. odorata, could hyperaccumulate the extractable Cd amounts present in the soil, based on their associated Bioaccumulation Factor (BAF), Translocation Factor (TF), and background Vegetation Factor (VF). Therefore, the four Cd-hyperaccumulating plant species identified in this study may successfully treat a majority of contaminated fields at Mae Sot, as it was previously reported that Cd amounts present in a number of these soils were mostly available.
Collapse
Affiliation(s)
- Saengdao Khaokaew
- Soil Science Department, Faculty of Agriculture, Kasetsart University, 50 Ngamwongwan Road, Jatujak, Bangkok 10900, Thailand.
| | - Gautier Landrot
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Road, Jatujak, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Abstract
Urolithiasis affects around 10% of the US population with an increasing rate of prevalence, recurrence and penetrance. The causes for the formation of most urinary calculi remain poorly understood, but obtaining the chemical composition of these stones might help identify key aspects of this process and new targets for treatment. The majority of urinary stones are composed of calcium that is complexed in a crystalline matrix with organic and inorganic components. Surprisingly, mitigation of urolithiasis risk by altering calcium homeostasis has not been very effective. Thus, studies to identify other therapeutic stone-specific targets, using proteomics, metabolomics and microscopy techniques, have been conducted, revealing a high level of complexity. The data suggest that numerous metals other than calcium and many nonmetals are present within calculi at measurable levels and several have distinct distribution patterns. Manipulation of the levels of some of these elemental components of calcium-based stones has resulted in clinically beneficial changes in stone chemistry and rate of stone formation. The elementome--the full spectrum of elemental content--of calcium-based urinary calculi is emerging as a new concept in stone research that continues to provide important insights for improved understanding and prevention of urinary stone disease.
Collapse
|
13
|
Hu H, Chen W, Ding J, Jia M, Yin J, Guo Z. Fasudil prevents calcium oxalate crystal deposit and renal fibrogenesis in glyoxylate-induced nephrolithic mice. Exp Mol Pathol 2015; 98:277-85. [PMID: 25697583 DOI: 10.1016/j.yexmp.2015.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/30/2023]
Abstract
Nephrolithiasis is a common kidney disease and one of the major causes of chronic renal insufficiency. We develop and utilize a glyoxylate induced mouse model of kidney calcium oxalate crystal deposition for studying the pharmacological effects of fasudil, a Rho associated protein kinase (ROCK) specific inhibitor, on the kidney injury and fibrosis caused by calcium oxalate crystallization and deposition. Glyoxylate was administrated intraperitoneally to C57BL/6J mice for five consecutive days to establish a mouse model of kidney calcium oxalate crystal formation and deposition. The results showed that the protein expression levels of E-cad and Pan-ck were lower, and the protein expression levels of α-SMA and Vim were higher, in the kidney tissue of the glyoxylate induced model mice compared with the control mice. The changes in protein expression were weakened when the animals were pretreated with fasudil before glyoxylate administration. Expression of ROCK, PAI-1, and p-Smad proteins in the kidney tissue increased in response to glyoxylate treatment, and the increase was eased when the animals were pretreated with fasudil. Expression of Smad2 and Smad3 in the kidney tissue remained unchanged after glyoxylate administration. Cell apoptosis and proliferation in the kidney cortex and medulla were enhanced in response to the glyoxylate induced calcium oxalate crystal formation and deposition, and fasudil pre-treatment was able to attenuate the enhancement. The results suggest that Fasudil reduces the glyoxylate induced kidney calcium crystal formation and deposition and slows down the kidney fibrogenesis caused by calcium crystal deposition. The possible mechanism may be related the regulatory effects on Rho/ROCK signal transduction and epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Haiyan Hu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Meng Jia
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jingjing Yin
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|