1
|
Tibon J, Gomez-Delgado AI, Agüera A, Strohmeier T, Silva MS, Lundebye AK, Larsen MM, Sloth JJ, Amlund H, Sele V. Arsenic speciation in low-trophic marine food chain - An arsenic exposure study on microalgae (Diacronema lutheri) and blue mussels (Mytilus edulis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122176. [PMID: 37437757 DOI: 10.1016/j.envpol.2023.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Microalgae and blue mussels are known to accumulate undesirable substances from the environment, including arsenic (As). Microalgae can biotransform inorganic As (iAs) to organoarsenic species, which can be transferred to blue mussels. Knowledge on As uptake, biotransformation, and trophic transfer is important with regards to feed and food safety since As species have varying toxicities. In the current work, experiments were conducted in two parts: (1) exposure of the microalgae Diacronema lutheri to 5 and 10 μg/L As(V) in seawater for 4 days, and (2) dietary As exposure where blue mussels (Mytilus edulis L.) were fed with D. lutheri exposed to 5 and 10 μg/L As(V), or by aquatic exposure to 5 μg/L As(V) in seawater, for a total of 25 days. The results showed that D. lutheri can take up As from seawater and transform it to methylated As species and arsenosugars (AsSug). However, exposure to 10 μg/L As(V) resulted in accumulation of iAs in D. lutheri and lower production of methylated As species, which may suggest that detoxification mechanisms were overwhelmed. Blue mussels exposed to As via the diet and seawater showed no accumulation of As. Use of linear mixed models revealed that the blue mussels were gradually losing As instead, which may be due to As concentration differences in the mussels' natural environment and the experimental setup. Both D. lutheri and blue mussels contained notable proportions of simple methylated As species and AsSug. Arsenobetaine (AB) was not detected in D. lutheri but present in minor fraction in mussels. The findings suggest that low-trophic marine organisms mainly contain methylated As species and AsSug. The use of low-trophic marine organisms as feed ingredients requires further studies since AsSug are regarded as potentially toxic, which may introduce new risks to feed and food safety.
Collapse
Affiliation(s)
- Jojo Tibon
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Ana I Gomez-Delgado
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Antonio Agüera
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Tore Strohmeier
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Marta S Silva
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | | | - Martin M Larsen
- Aarhus University, Institute of Ecoscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Jens J Sloth
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Heidi Amlund
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway.
| |
Collapse
|
2
|
Gomez-Delgado AI, Tibon J, Silva MS, Lundebye AK, Agüera A, Rasinger JD, Strohmeier T, Sele V. Seasonal variations in mercury, cadmium, lead and arsenic species in Norwegian blue mussels (Mytilus edulis L.) - Assessing the influence of biological and environmental factors. J Trace Elem Med Biol 2023; 76:127110. [PMID: 36495851 DOI: 10.1016/j.jtemb.2022.127110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Blue mussels (Mytilus edulis L.) can accumulate undesirable substances, including the potentially toxic elements (PTEs) cadmium (Cd), mercury, (Hg), lead (Pb), arsenic (As) and As species. In this study, the levels of PTEs and As species were determined in samples of blue mussels to assess the influence of environmental and biological factors, and evaluate the potential risk associated with blue mussels in terms of food and feed safety. METHODOLOGY Blue mussels were collected monthly from one location in Western Norway from February 2018 to December 2018, and from April 2019 to April 2020. Samples were analyzed for PTEs using inductively coupled plasma mass spectrometry (ICP-MS), and high-performance liquid chromatography (HPLC) coupled to ICP-MS. Temperature, salinity and fluorescence (chlorophyll a) were monitored in the seawater column by STD/CTD, to assess the potential influence of these environmental factors on the PTE levels in the mussels. RESULTS The results showed seasonal variations in the PTEs, with somewhat higher concentrations in spring and winter months. Unusually high levels of total As (101.2 mg kg-1 dw) and inorganic As (53.6 mg kg-1 dw) were observed for some of the time points. The organic As species arsenobetaine was generally the major As species (17-82% of total As) in the mussels, but also simple methylated As species and arsenosugars were detected. Principal components analysis (PCA) did not show a consistent relationship between the environmental factors and the PTE concentrations, showing contrary results for some elements for the periods studied. The condition index (CI) could explain variations in element concentration with significant correlations for Cd (r = -0.67, p = 0.009) and Pb (r = -0.62, p = 0.02 in 2019/20 and r = -0.52, p = 0.02 in 2018), whereas the correlation between As and CI was not significant (r = 0.12 in 2018, and r = -0.06 in 2019/20). Higher concentrations of iAs and arsenosugars coincided with increased signals of chlorophyll a, suggesting that phytoplankton blooms could be a source of As in the blue mussels. CONCLUSION To our knowledge, this is the first study of As species in blue mussels collected over a time period of two years, providing an insight into the natural variations of these chemical forms in mussels. In terms of mussel as food and future feed material, concentrations of Cd, Hg and Pb were below the maximum levels (MLs) established in the EU food and feed legislation. However, levels of As and iAs in mussels at some time points exceeded the MLs for As in the feed legislation, and the margin of exposure (MOE) was low if these mussels were for human consumption, highlighting the importance of determining the chemical forms of As in feed and food.
Collapse
Affiliation(s)
| | - Jojo Tibon
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Marta S Silva
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway
| | | | - Antonio Agüera
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway
| | | | - Tore Strohmeier
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway
| | - Veronika Sele
- Institute of Marine Research, Nordnes, NO-5817 Bergen, Norway.
| |
Collapse
|
3
|
Modestin E, Devault DA, Baylet A, Massat F, Dolique F. Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:553. [PMID: 35779140 DOI: 10.1007/s10661-022-10230-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Sargassum strandings in the coastal environment can introduce arsenic into food webs. In this context, we assessed the risk of exposure to arsenic for consumers of Caribbean bivalves. In 2019, specimens of Asaphis deflorata and Phacoides pectinatus were collected in an Atlantic coastal zone of Martinique (island) to monitor the presence of arsenic species by LC-ICP-MS. The total arsenic (tAs) concentrations were, on average, 34.4 ± 3.8 and 76.9 ± 22.3 µg.g-1 dry weight for P. pectinatus and A. deflorata, respectively. Seven compounds of arsenic were detected in bivalve soft bodies. In P. pectinatus, monomethylarsonic acid was present at a relatively significant concentration (≈ 29.6%). These results were coupled with survey data collected in 2013 and again in 2019, from the main consumers of bivalves. The tAs intake was up to 6 mg.day-1 for a 240 g (wet weight) meal of bivalves. In addition, we proposed toxicological reference doses also based on detected toxic forms of arsenic and tested their relevance. We concluded that monitoring of total arsenic would be sufficient to ensure the protection of bivalve consumers. Consumption patterns expose consumers to a potential health risk. However, due to a decrease in consumption frequency associated with the depletion of bivalve resources by decomposing Sargassum mats, arsenic exposure has decreased. In the French Caribbean, this is the first study on the risk of human arsenic contamination from the ingestion of bivalves. This study is a contribution to the monitoring of arsenic in the Caribbean coastal environment.
Collapse
Affiliation(s)
| | - Damien A Devault
- Centre Universitaire de Formation Et de Recherche de Mayotte, Département Des Sciences Et Technologies, 97660, Dembeni, France
| | | | - Félix Massat
- La Drôme Laboratoire, 26904, Valence Cedex, France
| | | |
Collapse
|
4
|
Guo C, Hu L, Jiang L, Feng H, Hu B, Zeng T, Song S, Zhang H. Toxic arsenic in marketed aquatic products from coastal cities in China: Occurrence, human dietary exposure risk, and coexposure risk with mercury and selenium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118683. [PMID: 34921940 DOI: 10.1016/j.envpol.2021.118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
To improve the accuracy of dietary risk assessment of arsenic (As) from aquatic products, toxic As species (As(III), As(V), monomethylarsonic acid [MMA], and dimethylarsinic acid [DMA]) and total As were analyzed in 124 marketed aquatic products from eight coastal cities in China. Distribution characteristics of Toxic As (the sum of the four toxic As species) in the samples and associated risk of human dietary exposure were emphatically investigated. The impact of cooccurrence of As and other chemical elements in the aquatic products was assessed based on our former results of mercury (Hg) and selenium (Se). Toxic As contents (maximum value 0.358 mg kg-1 wet weight) in the samples accounted for at most 14.1% of total As. DMA was the major component (mean proportion 50.8% for shellfish, 100% for fish) of Toxic As in aquatic products. Shellfish contained more Toxic As than fish did. Mean estimated daily intakes of Toxic As for the residents with aquatic product consumption rates of 46.1-235 g day-1 ranged from 0.034 to 0.290 μg kg-1 day-1. Potential health risk was indicated among those who greatly consumed aquatic products, as their target hazard quotient (THQ) and target cancer risk (TR) values exceeded safety thresholds (1 for THQ, 10-4 for TR). DMA and MMA exposure contributed to 3.42-7.72% of the THQToxic As. Positive correlations between concentrations of As and Hg (Fish: r = 0.47, p < 0.01; Shellfish: r = 0.60, p < 0.01), as well as between that of As and Se (Fish: r = 0.69, p < 0.01; Shellfish: r = 0.37, p < 0.01) were found in the samples. It requires attentions urgently that As and Hg coexposure through aquatic product consumption rose the sum THQ of Toxic As and methylmercury (MeHg) to approximately two to eight times as high as the THQToxic As.
Collapse
Affiliation(s)
- Chenqi Guo
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Linrui Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lei Jiang
- Lanxi Environmental Protection Monitoring Station, Lanxi, 321102, China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Zhang W, Xiong H, Zhang J, Wang WX. Transfer and bioavailability of inorganic and organic arsenic in sediment-water-biota microcosm. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105763. [PMID: 33535133 DOI: 10.1016/j.aquatox.2021.105763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination in the sediments has received increasing attention, but its transfer and bioavailability to benthic infauna remain much less well known. In the present study, we deployed the diffusive gradients in thin films (DGT) to quantify the different As speciation in the overlying water and porewater, and assessed the exposure pathway, transfer and bioavailability of different As species in an infaunal clam Sinonovacula constricta. We demonstrated a very dynamic transformation and exposure of As in the sediment-water-clam microcosm. In such microcosm, arsenite [As(III)] in the overlying water, pore water and sediments was almost oxidized to arsenate [As(V)]. Conversely, the accumulated As(V) in the clams was reduced to As(III), followed by methylation to dimethylarsinic acid (DMA), whereas the overall conversion of toxic inorganic As species to less-toxic arsenobetaine (AsB) was much poor in the clams. Moreover, biotransformation depended on the As accumulation level. As(III) was the predominant As species in the control and the Low As treatment clam, whereas DMA was the predominant As species in the High As treatment clam. Significant and positive correlations were found between As(V) concentrations in the clams and those in DGT-labile As in overlying water/pore water, as well as between the DMA and As(V) concentrations in the clams and those in the sediment. DMA and As(V) in the sediments was much more bioavailable to the clams than inorganic As [As(III)] and AsB. Moreover, As(III) and As(V) in the overlying water and pore water, as well as DMA and As(V) in the sediments displayed high migration ability. Coupled DGT technology and biotransformation study therefore suggested that metabolism of ingested As species as well as ingestion and retention of DMA resulted in high DMA bioaccumulation in clams.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haiyan Xiong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|