1
|
Savage G, Jones JJ, Muñoz-Pérez JP, Lewis C, Galloway TS. Assessing the chemical landscape of the Galápagos Marine Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176659. [PMID: 39369998 DOI: 10.1016/j.scitotenv.2024.176659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The Galápagos Archipelago is at the forefront of the Anthropocene, facing intensifying pressures from its growing human footprint and accelerated global connectivity. Despite this, little is currently known of its chemical landscape. This review critically examines the drivers, sources, distribution and fate of oil, plastics, pesticides, persistent organic pollutants and heavy metals in the Galápagos Marine Reserve, identifying pollutant hotspots and evaluating rapid assessment methods and sentinel species that could aid regional monitoring. The cumulative influence of the Galápagos' equatorial position amongst major (and seasonally variable) atmospheric and oceanic circulation patterns, along with its distinctive geophysical and environmental conditions, such as extreme UV radiation and precipitation, likely exacerbates the archipelagos susceptibility to chemicals from both local and continental inputs. Point and diffuse sources identified include wastewater/effluent discharge, agricultural run-off, mismanaged waste, recreational boating, commercial shipping and industrial fishing. Limited spatiotemporal monitoring has hindered the identification of pollution hotspots, except for harbours as aggregates for maritime activities and urban run-off, and eastern-facing coastlines exposed to the Humboldt Current as plastic accumulation zones. Furthermore, the remote nature and vital protected status of the Galápagos National Park has constrained comprehensive assessment of chemical toxicity and its impacts on marine species across the reserve, with studies primarily restricted to Galápagos pinnipeds. Thus, there is currently insufficient knowledge to determine the extent to which the widespread but sporadic presence of chemical contaminants threatens the resilience and adaptive capacity of Galápagos' complex ecosystems, unique biodiversity and interconnected environmental processes. Future efforts are recommended to strengthen environmental monitoring and chemical risk assessment through the utilisation of rapid assessment tools and regional sentinel species, enhancing fundamental understanding of the chemical landscape in this global conservation Hope Spot, as well as the wider implications of the Anthropocene on diverse, dynamic and remote island ecosystems.
Collapse
Affiliation(s)
- Georgie Savage
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Jen J Jones
- Galápagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, United Kingdom
| | - Juan Pablo Muñoz-Pérez
- Galápagos Science Center, Alsacio Northia Avenue, Puerto Baquerizo Moreno, Galápagos, Ecuador; Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Puerto Baquerizo Moreno, Galápagos, Ecuador; School of Science, Technology & Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Ceri Lewis
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Tamara S Galloway
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
2
|
Wei H, Xie D, Wang DZ, Wang M. A Meta-analysis Reveals Global Change Stressors Potentially Aggravate Mercury Toxicity in Marine Biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:219-230. [PMID: 38152998 DOI: 10.1021/acs.est.3c07294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Growing evidence demonstrates that global change can modulate mercury (Hg) toxicity in marine organisms; however, the consensus on such effect is lacking. Here, we conducted a meta-analysis to evaluate the effects of global change stressors on Hg biotoxicity according to the IPCC projections (RCP 8.5) for 2100, including ocean acidification (-0.4 units), warming (+4 °C), and their combination (acidification-warming). The results indicated an overall aggravating effect (ln RRΔ = -0.219) of global change on Hg toxicity in marine organisms, while the effect varied with different stressors; namely, acidification potentially alleviates Hg biotoxicity (ln RRΔ = 0.117) while warming and acidification-warming have an aggravating effect (ln RRΔ = -0.328 and -0.097, respectively). Moreover, warming increases Hg toxicity in different trophic levels, i.e., primary producers (ln RRΔ = -0.198) < herbivores (ln RRΔ = -0.320) < carnivores (ln RRΔ = -0.379), implying increasing trends of Hg biomagnification through the food web. Notably, ocean hypoxia appears to boost Hg biotoxicity, although it was not considered in our meta-analysis because of the small sample size. Given the persistent global change and combined effects of these stressors in marine environments, multigeneration and multistressor research is urgently needed to fully disclose the impacts of global change on Hg pollution and its risk.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Lin H, Li M, Zhu Y, Lan W, Feng Q, Ding S, Li T, Wang Y, Duan Y, Wei J, Li M. Development and validation of the DGT technique using the novel cryogel for measuring dissolved Hg(II) in the estuary. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105773. [PMID: 36283212 DOI: 10.1016/j.marenvres.2022.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The complex seawater matrix has significantly influenced the determination of estuarine dissolved Hg(II), hindering its monitoring and risk assessment in maricultural areas. In this work, SiO2-SH-DGT assembled by the sulfhydryl-modified silica cryogel (SiO2-SH cryogel) as the novel binding phase was developed to tackle this problem. The uniform dispersion of the cryogel into binding gel was advantageous for achieving remarkable and comparable capacity, which endowed the estimated diffusion coefficient (D) to be 1.39-3.08 times of the existing research. The SiO2-SH-DGT performance was independent of pH (3-9), ionic strength (10-800 mM), fulvic acid at low content, and seawater matrix (Na+, K+, Ca2+, Cl-), but the high content of Mg2+ did interfere with the Hg(II) accumulation, which manifested as competitive adsorption and diffusion. Therefore, the calibrated model was established by calibrating accumulated mass (M') and diffusion coefficient (D') based on the Mg2+ concentration, its high accuracy was further verified in the lab. Finally, SiO2-SH-DGT was deployed in the three typical aquaculture areas in Beibu Gulf, field trials achieved the actual Hg(II) level to be 1.52-5.38 ng/L with consideration of the diffusion boundary layer. The finding could provide new thought and technical support for metal pollution monitoring in estuary maricultural areas.
Collapse
Affiliation(s)
- Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; Guangxi Universities Key Laboratory of Environmental Protection, Guangxi University, Nanning, China.
| | - Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yifan Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Wenlu Lan
- Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; Guangxi Universities Key Laboratory of Environmental Protection, Guangxi University, Nanning, China
| | - Shiming Ding
- Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Tianshen Li
- Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Mingen Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Muñoz-Abril L, Valle CA, Alava JJ, Janssen SE, Sunderland EM, Rubianes-Landázuri F, Emslie SD. Elevated Mercury Concentrations and Isotope Signatures (N, C, Hg) in Yellowfin Tuna (Thunnus albacares) from the Galápagos Marine Reserve and Waters off Ecuador. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2732-2744. [PMID: 35975428 DOI: 10.1002/etc.5458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/19/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We examined how dietary factors recorded by C and N influence Hg uptake in 347 individuals of yellowfin tuna (Thunnus albacares), an important subsistence resource from the Galápagos Marine Reserve (Ecuador) and the Ecuadorian mainland coast in 2015-2016. We found no differences in total Hg (THg) measured in red muscle between the two regions and no seasonal differences, likely due to the age of the fish and slow elimination rates of Hg. Our THg concentrations are comparable to those of other studies in the Pacific (0.20-9.60 mg/kg wet wt), but a subset of individuals exhibited the highest Hg concentrations yet reported in yellowfin tuna. Mercury isotope values differed between Δ199 Hg and δ202Hg in both regions (Δ199 Hg = 2.86 ± 0.04‰ vs. Δ199 Hg = 2.33 ± 0.07‰), likely related to shifting food webs and differing photochemical processing of Hg prior to entry into the food web. There were significantly lower values of both δ15 N and δ13 C in tuna from Galápagos Marine Reserve (δ15 N: 8.5-14.2‰, δ13 C: -18.5 to -16.1‰) compared with those from the Ecuadorian mainland coast (δ15 N: 8.3-14.4‰, δ13 C: -19.4 to -11.9‰), of which δ13 C values suggest spatially constrained movements of tuna. Results from the pooled analysis, without considering region, indicated that variations in δ13 C and δ15 N values tracked changes of Hg stable isotopes. Our data indicate that the individual tuna we used were resident fish of each region and were heavily influenced by upwellings related to the eastern Pacific oxygen minimum zone and the Humboldt Current System. The isotopes C, N, and Hg reflect foraging behavior mainly on epipelagic prey in shallow waters and that food web shifts drive Hg variations between these populations of tuna. Environ Toxicol Chem 2022;41:2732-2744. © 2022 SETAC.
Collapse
Affiliation(s)
- Laia Muñoz-Abril
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galápagos Science Center, Puerto Baquerizo Moreno, Ecuador
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
| | - Carlos A Valle
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galápagos Science Center, Puerto Baquerizo Moreno, Ecuador
| | - Juan José Alava
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah E Janssen
- Upper Midwest Water Science Center, US Geological Survey, Middleton, Wisconsin, USA
| | - Elsie M Sunderland
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
| | - Francisco Rubianes-Landázuri
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galápagos Science Center, Puerto Baquerizo Moreno, Ecuador
| | - Steven D Emslie
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| |
Collapse
|
5
|
Spanu D, Butti L, Boldrocchi G, Bettinetti R, Recchia S, Monticelli D. Selective organomercury determination by ICP-MS made easy. Anal Chim Acta 2022; 1206:339553. [DOI: 10.1016/j.aca.2022.339553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/01/2022]
|
6
|
Li C, Shen J, Zhang J, Lei P, Kong Y, Zhang J, Tang W, Chen T, Xiang X, Wang S, Zhang W, Zhong H. The silver linings of mercury: Reconsideration of its impacts on living organisms from a multi-timescale perspective. ENVIRONMENT INTERNATIONAL 2021; 155:106670. [PMID: 34090260 DOI: 10.1016/j.envint.2021.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Research on mercury (Hg), a naturally occurring element in Earth's lithosphere, has been extremely hot in the past few decades due to the outbreak of a series of disastrous poisoning incidents. However, such studies might provide us a biased view towards Hg if no thorough review about its long-term effects on living organisms from a multi-timescale perspective was performed. Hg might have played a mysterious role in critical intervals (e.g., mass extinction and oceanic anoxia events) in several geologic periods due to the elevated Hg levels induced by volcanism whereas it has long been used for various purposes in human history. Therefore, it is necessary to go through previous studies and historical records of different timescales (100 to 106 yr). In this work, we conducted a thorough review of Hg knowledge at three different timescales, i.e., geologic periods (106 yr), human history (103 yr), and contemporary history (100 yr), summarizing recent advances and indicated potential research gaps. By doing so, we demonstrated that it is possible to achieve safe and sustainable Hg applications despite the current Hg crisis. However, such silver linings depend on a better understanding of ecosystem dynamics. Besides, considering the possible dire consequences of erupted Hg levels as suggested in geological periods, swift actions to mitigate the impacts of anthropogenic activities on the Hg cycle will be another key point. Overall, this review presented a unique perspective of Hg combining different timescales, shedding light on the importance of a better understanding of the global ecosystem as a whole and maintaining the sustainability of planet Earth in the future.
Collapse
Affiliation(s)
- Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jun Shen
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yaqi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianyu Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xin Xiang
- School of Information Management, Nanjing University, Nanjing 210023, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
7
|
Kalinchuk VV, Lopatnikov EA, Astakhov AS, Ivanov MV, Hu L. Distribution of atmospheric gaseous elemental mercury (Hg(0)) from the Sea of Japan to the Arctic, and Hg(0) evasion fluxes in the Eastern Arctic Seas: Results from a joint Russian-Chinese cruise in fall 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142003. [PMID: 32890877 DOI: 10.1016/j.scitotenv.2020.142003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The Eastern Arctic Seas and the north-western Pacific are among the most poorly investigated areas as far as Hg cycling in marine systems is concerned. Continuous measurements of gaseous elemental mercury (Hg(0)) concentrations in the marine boundary layer and Hg(0) evasion fluxes from the sea surface were performed in these regions in fall 2018. Atmospheric Hg(0) concentrations of 1.02-2.50 ng/m3 were measured (average: 1.45 ± 0.12 ng/m3; N = 2518). Values in the Far Eastern Seas of Russia were lower compared to previous observations, presumably reflecting а global trend of decreasing atmospheric Hg(0). Concentration-weighted trajectory analysis highlighted three source regions influencing Hg(0) concentrations in the ambient air during the cruise: 1) the north-eastern China and the Yellow Sea region; 2) the Kuril-Kamchatka region of the Pacific Ocean and the region around the Commander and Aleutian Islands; and 3) the Arctic region. In the Arctic, sea-air Hg(0) evasion fluxes were at the same low levels as those observed earlier in the northern sea areas (0.28-1.35 ng/m2/h, average, 0.70 ± 0.26 ng/m2/h, N = 29). In the Eastern Arctic Seas, Hg(0) evasion fluxes were significantly dependent on river runoff. In the Arctic Ocean, they were negatively correlated with water temperature and positively correlated with salinity, suggesting a proximity to areas with contiguous ice and higher dissolved Hg(0) concentrations in the surface seawater. These findings are consistent with the hypothesis that the Arctic Ocean is a source of atmospheric Hg(0) during late summer and fall.
Collapse
Affiliation(s)
- Viktor V Kalinchuk
- V.I.Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Evgeny A Lopatnikov
- V.I.Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Anatoliy S Astakhov
- V.I.Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Maxim V Ivanov
- V.I.Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Limin Hu
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|