1
|
Duan J, Liu X, Shu W, Tian S, Yang M, Ma M, Song A, Liu Q, Wang K, Yang F, Huang T, Jiang L, Hong Y, Han X, Ao Z, Bai L, Min Y, Hu W, He J. Low versus high positive end expiratory pressure in noninvasive ventilation for hypoxemic respiratory failure: a multicenter randomized controlled trial. Intensive Care Med 2025:10.1007/s00134-025-07902-4. [PMID: 40304742 DOI: 10.1007/s00134-025-07902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
PURPOSE To assess whether high positive end expiratory pressure (PEEP) reduces the rate of noninvasive ventilation (NIV) failure in hypoxemic patients. METHODS This multicenter, open-label, randomized controlled trial was conducted across seven ICUs in China. Hypoxemic patients who received NIV via oronasal or nasal mask were randomized 1:1 to either low PEEP (5 cmH2O) or high PEEP (10-15 cmH2O) groups, with inspiratory positive airway pressure (IPAP) set at 10-20 cmH2O and 15-20 cmH2O, respectively. The primary outcome was NIV failure, defined as intubation, death, or therapy withdrawal (refusal of intubation despite need). RESULTS Between January 11, 2022, and August 31, 2024, 380 patients (190 per group) were enrolled in an intention-to-treat analysis. NIV failure occurred in 43% (82/190) of the low PEEP group and 32% (61/190) of the high PEEP group (absolute difference: 11.1%, 95% CI 1.3-20.5%, p = 0.034). Within 72 h post-randomization, the low PEEP group exhibited lower PaO2/FiO2 ratios (mean difference: - 31 mmHg, 95% CI - 38 to - 24) and higher tidal volume (0.8 mL/kg predicted body weight, 95% CI 0.5-1.1) than the high PEEP group. However, the low PEEP group required higher support pressure (mean difference: 2.9 cmH2O, 95% CI 2.7-3.1). Adverse events did not differ between the groups. CONCLUSIONS High PEEP during NIV may reduce treatment failure in patients with acute hypoxemic respiratory failure, although this benefit may be partially confounded by higher tidal volume observed in the low PEEP group. However, the interpretation of this effect should be carried out with caution as the study has insufficient statistical power to detect a significant difference.
Collapse
Affiliation(s)
- Jun Duan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China.
| | - Xiaoyi Liu
- Department of Critical Care Medicine, Dazhou Central Hospital, Dazhou, Shichuan, China
| | - Weiwei Shu
- Department of Critical Care Medicine, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, China
| | - Shijing Tian
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Mengyi Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Anchao Song
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Qin Liu
- Department of Critical Care Medicine, Hunan University of Medicine General Hospital, Hunan, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Huang
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Yueling Hong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xiaoli Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Zhi Ao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Linfu Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Yiwei Min
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Wenhui Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jiao He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
2
|
Lu Y, Zhang J, Zhang W, Shi H, Wang K, Li Z, Sun L. Impact of initial ventilation strategies on in-hospital mortality in sepsis patients: insights from the MIMIC-IV database. BMC Pulm Med 2025; 25:147. [PMID: 40170136 PMCID: PMC11959717 DOI: 10.1186/s12890-025-03610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND This study evaluates the impact of different initial ventilation strategies on in-hospital mortality among sepsis patients. METHODS We included hospitalized sepsis patients who underwent mechanical ventilation from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and categorized them into groups based on their initial ventilation strategy: non-invasive ventilation (NIV) and invasive mechanical ventilation (IMV). The main endpoint analyzed was in-hospital mortality. A propensity score matching model was employed to address confounding factors, and Cox survival analysis was performed in the matched cohort. Subgroup analyses were conducted to evaluate population heterogeneity. RESULTS Among 19,796 patients who received mechanical ventilation, 10,073 (50.8%) initially received NIV. The analysis included 2935 matched pairs. Patients initially receiving NIV exhibited a higher survival rate (P = 0.009) and a 24% lower risk of in-hospital mortality compared to those initially receiving IMV (P < 0.001). Subgroup analysis indicated significant survival benefits with initial NIV for patients without malignant tumor (MT), or lower Sequential Organ Failure Assessment (SOFA) scores and higher PO2/FiO2. CONCLUSION Among sepsis patients, initial NIV is linked to increased in-hospital survival rates and reduced mortality risk, particularly in patients without concurrent MT, lower SOFA scores, and higher PO2/FiO2.
Collapse
Affiliation(s)
- Yuxin Lu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, 210000, China
| | - Jingtao Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, 210000, China
| | - Wanglin Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, 210000, China
| | - Hongwei Shi
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Kanlirong Wang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, 210000, China
| | - Ziang Li
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, 210000, China
| | - Liqun Sun
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
3
|
Lassola S, Giani M, Bellani G. Noninvasive Respiratory Support in Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:849-861. [PMID: 39443002 DOI: 10.1016/j.ccm.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Noninvasive respiratory supports have been successfully used as an alternative to endotracheal intubation especially in patients with a milder degree of hypoxemia. In patients with acute respiratory distress syndrome (ARDS), the main goals of noninvasive oxygenation strategies are to improve oxygenation, unload the respiratory muscles, and relieve dyspnea. On the other hand, recent studies have suggested that spontaneous breathing could represent an additional mechanism of lung injury, especially in the more severe forms. The aim of this review is to describe the role of different noninvasive respiratory supports in ARDS, to optimize its use in clinical practice.
Collapse
Affiliation(s)
- Sergio Lassola
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Largo Medaglie d'Oro 9, Trento 38122, Italy
| | - Marco Giani
- Department of Medicine and Surgery, University of Milano-Bicocca, Ateneo Nuovo Square, 1, Milan, Milan 20126, Italy; Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Via Giovanbattista Pergolesi 33, Monza, Lombardia 20900, Italy
| | - Giacomo Bellani
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Largo Medaglie d'Oro 9, Trento 38122, Italy; Interdepartmental Center for Medical Sciences (CISMED), University of Trento, Trento, Italy.
| |
Collapse
|
4
|
Mu H, Zhang Q. The Application of Diaphragm Ultrasound in Chronic Obstructive Pulmonary Disease: A Narrative Review. COPD 2024; 21:2331202. [PMID: 38634575 DOI: 10.1080/15412555.2024.2331202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a prevalent condition that poses a significant burden on individuals and society due to its high morbidity and mortality rates. The diaphragm is the main respiratory muscle, its function has a direct impact on the quality of life and prognosis of COPD patients. This article aims to review the structural measurement and functional evaluation methods through the use of diaphragmatic ultrasound and relevant research on its application in clinical practice for COPD patients. Thus, it serves to provide valuable insights for clinical monitoring of diaphragm function in COPD patients, facilitating early clinical intervention and aiding in the recovery of diaphragm function.
Collapse
Affiliation(s)
- Heng Mu
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- State Key Laboratory of Ultrasound in Medicine and Engineering of Chongqing Medical University, Chongqing, PR China
| | - Qunxia Zhang
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- State Key Laboratory of Ultrasound in Medicine and Engineering of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
5
|
Pintaudi G, Cutuli SL, Rosà T, Michi T, Cardu A, Bongiovanni F, Antonelli M, Grieco DL. High-Flow Nasal Oxygen in Patients with Acute Hypercapnic Respiratory Failure: A Narrative Review of the Physiological Rationale and Clinical Evidence. J Clin Med 2024; 13:6350. [PMID: 39518490 PMCID: PMC11546100 DOI: 10.3390/jcm13216350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Acute hypercapnic respiratory failure is a life-threatening condition caused by alveolar hypoventilation. It is mostly caused by an acute exacerbation of chronic obstructive pulmonary disease or conditions yielding muscle dysfunction. Noninvasive ventilation through a facemask is the cornerstone first-line strategy to support hypercapnic patients with acidemia, and current guidelines strongly recommend this intervention to improve survival and long-term clinical outcomes. Because of its benefits related to carbon dioxide washout from the upper airways and the enhanced comfort, high-flow nasal oxygen has been proposed as a respiratory support strategy in patients with hypercapnic respiratory failure, both as an alternative to and in combination with noninvasive ventilation. When compared to noninvasive ventilation as a first-line intervention, high-flow nasal oxygen shows a higher rate of failure. Hence, if not contraindicated, the use of noninvasive ventilation should be preferred. After the resolution of acidemia with noninvasive ventilation, high-flow nasal oxygen showed promising physiological effects compared to conventional oxygen. During weaning from mechanical ventilation in patients with or at risk of developing hypercapnia, high-flow nasal oxygen showed encouraging results, especially when applied alternating with sessions of noninvasive ventilation. Optimal settings of high-flow nasal oxygen in hypercapnic patients include the use of a smaller-size cannula, flows ranging between 30 and 40 L/min, and FiO2 adjusted to obtain SpO2 between 88% and 92%. Specific interfaces, such as asymmetric cannulas, may further enhance the benefits of a high flow in terms of carbon dioxide clearance. In this narrative review, we provide an updated overview of the physiological rationale and clinical evidence concerning the use of high-flow nasal oxygen in patients with acute hypercapnic respiratory failure.
Collapse
Affiliation(s)
- Gabriele Pintaudi
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Salvatore Lucio Cutuli
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Tommaso Rosà
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Teresa Michi
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Cardu
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Filippo Bongiovanni
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
6
|
Spinazzola G, Spadaro S, Ferrone G, Grasso S, Maggiore SM, Cinnella G, Cabrini L, Cammarota G, Maugeri JG, Simonte R, Patroniti N, Ball L, Conti G, De Luca D, Cortegiani A, Giarratano A, Gregoretti C. Management of analgosedation during noninvasive respiratory support: an expert Delphi consensus document developed by the Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI). JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:68. [PMID: 39350290 PMCID: PMC11441104 DOI: 10.1186/s44158-024-00203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Discomfort can be the cause of noninvasive respiratory support (NRS) failure in up to 50% of treated patients. Several studies have shown how analgosedation during NRS can reduce the rate of delirium, endotracheal intubation, and hospital length of stay in patients with acute respiratory failure. The purpose of this project was to explore consensus on which medications are currently available as analgosedatives during NRS, which types of patients may benefit from analgosedation while on NRS, and which clinical settings might be appropriate for the implementation of analgosedation during NRS. METHODS The Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI) selected a panel of experts and asked them to define key aspects of the use of analgesics and sedatives during NRS treatment. The methodology applied is in line with the principles of the modified Delphi and RAND-UCLA methods. The experts developed statements and supportive rationales which were then subjected to blind votes for consensus. RESULTS The use of an analgosedation strategy in adult patients with acute respiratory failure of different origins may be useful where there is a need to manage discomfort. This strategy should be considered after careful assessment of other potential factors associated with respiratory failure or inappropriate noninvasive respiratory support settings, which may, in turn, be responsible for NRS failure. Several drugs can be used, each of them specifically targeted to the main component of discomfort to treat. In addition, analgosedation during NRS treatment should always be combined with close cardiorespiratory monitoring in an appropriate clinical setting. CONCLUSIONS The use of analgosedation during NRS has been studied in several clinical trials. However, its successful application relies on a thorough understanding of the pharmacological aspects of the sedative drugs used, the clinical conditions for which NRS is applied, and a careful selection of the appropriate clinical setting.
Collapse
Affiliation(s)
- G Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - S Spadaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - G Ferrone
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - S Grasso
- Department of Emergency and Organ Transplantation (DETO), Section of Anesthesiology and Intensive Care, University of Bari "Aldo Moro'', Bari, Italy
| | - S M Maggiore
- Department of Anesthesia, Intensive Care and Emergency, SS Annunziata Chieti Hospital, G. D'Annunzio Chieti University Pescara, Pescara, Italy
| | - G Cinnella
- Department of Anesthesia and Intensive Care of University of Foggia, Foggia, Italy
| | - L Cabrini
- Department of Biotechnology and Life Sciences, University of Pennsylvania Studies of Insubria, Varese, Italy
| | - G Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - J G Maugeri
- Anesthesia and Intensive Care Unit, ARNAS Garibaldi Catania, PO "Garibaldi Centro, Catania, Italy
| | - R Simonte
- Department of Medicine and Surgery, Università Degli Studi Di Perugia, Perugia, Italy
| | - N Patroniti
- Anesthesia and Intensive Care San Martino Di Genova, Department of Surgical Sciences and Integrated Diagnosis, University of Genoa, Genoa, Italy
| | - L Ball
- Anesthesia and Intensive Care San Martino Di Genova, Department of Surgical Sciences and Integrated Diagnosis, University of Genoa, Genoa, Italy
| | - G Conti
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of Sacred Heart, Rome, Italy
| | - D De Luca
- Division of Paediatrics and Neonatal Critical Care, "A. Béclère" Hospital, APHP-Paris Saclay University, Paris, France
| | - A Cortegiani
- Department of Precision Medicine in Area Medical, Surgical and Critical Care. Anesthesia Unit, Resuscitation, and Intensive Care, AOU Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - A Giarratano
- Department of Precision Medicine in Area Medical, Surgical and Critical Care. Anesthesia Unit, Resuscitation, and Intensive Care, AOU Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - C Gregoretti
- Intensive Care Unit, Fondazione G. Giglio, Cefalù, Unicamillus International University, Roma, Cefalù, Italy
| |
Collapse
|
7
|
Mosier JM, Subbian V, Pungitore S, Prabhudesai D, Essay P, Bedrick EJ, Stocking JC, Fisher JM. Noninvasive vs invasive respiratory support for patients with acute hypoxemic respiratory failure. PLoS One 2024; 19:e0307849. [PMID: 39240793 PMCID: PMC11379309 DOI: 10.1371/journal.pone.0307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/12/2024] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND Noninvasive respiratory support modalities are common alternatives to mechanical ventilation in acute hypoxemic respiratory failure. However, studies historically compare noninvasive respiratory support to conventional oxygen rather than mechanical ventilation. In this study, we compared outcomes in patients with acute hypoxemic respiratory failure treated initially with noninvasive respiratory support to patients treated initially with invasive mechanical ventilation. METHODS This is a retrospective observational cohort study between January 1, 2018 and December 31, 2019 at a large healthcare network in the United States. We used a validated phenotyping algorithm to classify adult patients (≥18 years) with eligible International Classification of Diseases codes into two cohorts: those treated initially with noninvasive respiratory support or those treated invasive mechanical ventilation only. The primary outcome was time-to-in-hospital death analyzed using an inverse probability of treatment weighted Cox model adjusted for potential confounders. Secondary outcomes included time-to-hospital discharge alive. A secondary analysis was conducted to examine potential differences between noninvasive positive pressure ventilation and nasal high flow. RESULTS During the study period, 3177 patients met inclusion criteria (40% invasive mechanical ventilation, 60% noninvasive respiratory support). Initial noninvasive respiratory support was not associated with a decreased hazard of in-hospital death (HR: 0.65, 95% CI: 0.35-1.2), but was associated with an increased hazard of discharge alive (HR: 2.26, 95% CI: 1.92-2.67). In-hospital death varied between the nasal high flow (HR 3.27, 95% CI: 1.43-7.45) and noninvasive positive pressure ventilation (HR 0.52, 95% CI 0.25-1.07), but both were associated with increased likelihood of discharge alive (nasal high flow HR 2.12, 95 CI: 1.25-3.57; noninvasive positive pressure ventilation HR 2.29, 95% CI: 1.92-2.74). CONCLUSIONS These data show that noninvasive respiratory support is not associated with reduced hazards of in-hospital death but is associated with hospital discharge alive.
Collapse
Affiliation(s)
- Jarrod M. Mosier
- Department of Emergency Medicine, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- Division of Pulmonary, Allergy, Critical Care, and Sleep, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Vignesh Subbian
- Department of Systems and Industrial Engineering, College of Engineering, The University of Arizona, Tucson, Arizona, United States of America
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
| | - Sarah Pungitore
- Program in Applied Mathematics, The University of Arizona, Tucson, Arizona, United States of America
| | - Devashri Prabhudesai
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Statistics Consulting Laboratory, The University of Arizona, Tucson, Arizona, United States of America
| | - Patrick Essay
- Department of Systems and Industrial Engineering, College of Engineering, The University of Arizona, Tucson, Arizona, United States of America
| | - Edward J. Bedrick
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Statistics Consulting Laboratory, The University of Arizona, Tucson, Arizona, United States of America
| | - Jacqueline C. Stocking
- Pulmonary, Critical Care, and Sleep, Department of Medicine, UC Davis, Sacramento, California, United States of America
| | - Julia M. Fisher
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Statistics Consulting Laboratory, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
8
|
Westhoff M, Neumann P, Geiseler J, Bickenbach J, Arzt M, Bachmann M, Braune S, Delis S, Dellweg D, Dreher M, Dubb R, Fuchs H, Hämäläinen N, Heppner H, Kluge S, Kochanek M, Lepper PM, Meyer FJ, Neumann B, Putensen C, Schimandl D, Schönhofer B, Schreiter D, Walterspacher S, Windisch W. [Non-invasive Mechanical Ventilation in Acute Respiratory Failure. Clinical Practice Guidelines - on behalf of the German Society of Pneumology and Ventilatory Medicine]. Pneumologie 2024; 78:453-514. [PMID: 37832578 DOI: 10.1055/a-2148-3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The guideline update outlines the advantages as well as the limitations of NIV in the treatment of acute respiratory failure in daily clinical practice and in different indications.Non-invasive ventilation (NIV) has a high value in therapy of hypercapnic acute respiratory failure, as it significantly reduces the length of ICU stay and hospitalization as well as mortality.Patients with cardiopulmonary edema and acute respiratory failure should be treated with continuous positive airway pressure (CPAP) and oxygen in addition to necessary cardiological interventions. This should be done already prehospital and in the emergency department.In case of other forms of acute hypoxaemic respiratory failure with only mild or moderately disturbed gas exchange (PaO2/FiO2 > 150 mmHg) there is no significant advantage or disadvantage compared to high flow nasal oxygen (HFNO). In severe forms of ARDS NIV is associated with high rates of treatment failure and mortality, especially in cases with NIV-failure and delayed intubation.NIV should be used for preoxygenation before intubation. In patients at risk, NIV is recommended to reduce extubation failure. In the weaning process from invasive ventilation NIV essentially reduces the risk of reintubation in hypercapnic patients. NIV is regarded useful within palliative care for reduction of dyspnea and improving quality of life, but here in concurrence to HFNO, which is regarded as more comfortable. Meanwhile NIV is also recommended in prehospital setting, especially in hypercapnic respiratory failure and pulmonary edema.With appropriate monitoring in an intensive care unit NIV can also be successfully applied in pediatric patients with acute respiratory insufficiency.
Collapse
Affiliation(s)
- Michael Westhoff
- Klinik für Pneumologie, Lungenklinik Hemer - Zentrum für Pneumologie und Thoraxchirurgie, Hemer
| | - Peter Neumann
- Abteilung für Klinische Anästhesiologie und Operative Intensivmedizin, Evangelisches Krankenhaus Göttingen-Weende gGmbH
| | - Jens Geiseler
- Medizinische Klinik IV - Pneumologie, Beatmungs- und Schlafmedizin, Paracelsus-Klinik Marl, Marl
| | - Johannes Bickenbach
- Klinik für Operative Intensivmedizin und Intermediate Care, Uniklinik RWTH Aachen, Aachen
| | - Michael Arzt
- Schlafmedizinisches Zentrum der Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg
| | - Martin Bachmann
- Klinik für Atemwegs-, Lungen- und Thoraxmedizin, Beatmungszentrum Hamburg-Harburg, Asklepios Klinikum Harburg, Hamburg
| | - Stephan Braune
- IV. Medizinische Klinik: Akut-, Notfall- und Intensivmedizin, St. Franziskus-Hospital, Münster
| | - Sandra Delis
- Klinik für Pneumologie, Palliativmedizin und Geriatrie, Helios Klinikum Emil von Behring GmbH, Berlin
| | - Dominic Dellweg
- Klinik für Innere Medizin, Pneumologie und Gastroenterologie, Pius-Hospital Oldenburg, Universitätsmedizin Oldenburg
| | - Michael Dreher
- Klinik für Pneumologie und Internistische Intensivmedizin, Uniklinik RWTH Aachen
| | - Rolf Dubb
- Akademie der Kreiskliniken Reutlingen GmbH, Reutlingen
| | - Hans Fuchs
- Zentrum für Kinder- und Jugendmedizin, Neonatologie und pädiatrische Intensivmedizin, Universitätsklinikum Freiburg
| | | | - Hans Heppner
- Klinik für Geriatrie und Geriatrische Tagesklinik Klinikum Bayreuth, Medizincampus Oberfranken Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth
| | - Stefan Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Matthias Kochanek
- Klinik I für Innere Medizin, Hämatologie und Onkologie, Universitätsklinikum Köln, Köln
| | - Philipp M Lepper
- Klinik für Innere Medizin V - Pneumologie, Allergologie und Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg
| | - F Joachim Meyer
- Lungenzentrum München - Bogenhausen-Harlaching) München Klinik gGmbH, München
| | - Bernhard Neumann
- Klinik für Neurologie, Donauisar Klinikum Deggendorf, und Klinik für Neurologie der Universitätsklinik Regensburg am BKH Regensburg, Regensburg
| | - Christian Putensen
- Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, Bonn
| | - Dorit Schimandl
- Klinik für Pneumologie, Beatmungszentrum, Zentralklinik Bad Berka GmbH, Bad Berka
| | - Bernd Schönhofer
- Klinik für Innere Medizin, Pneumologie und Intensivmedizin, Evangelisches Klinikum Bethel, Universitätsklinikum Ost Westphalen-Lippe, Bielefeld
| | | | - Stephan Walterspacher
- Medizinische Klinik - Sektion Pneumologie, Klinikum Konstanz und Lehrstuhl für Pneumologie, Universität Witten-Herdecke, Witten
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Lehrstuhl für Pneumologie Universität Witten/Herdecke, Köln
| |
Collapse
|
9
|
Bruni A, Battaglia C, Bosco V, Pelaia C, Neri G, Biamonte E, Manti F, Mollace A, Boscolo A, Morelli M, Navalesi P, Laganà D, Garofalo E, Longhini F, IMAGE Group. Complications during Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19 and Non-COVID-19 Patients with Acute Respiratory Distress Syndrome. J Clin Med 2024; 13:2871. [PMID: 38792413 PMCID: PMC11122218 DOI: 10.3390/jcm13102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) presents a significant challenge in critical care settings, characterized by compromised gas exchange, necessitating in the most severe cases interventions such as veno-venous extracorporeal membrane oxygenation (vv-ECMO) when conventional therapies fail. Critically ill ARDS patients on vv-ECMO may experience several complications. Limited data exist comparing complication rates between COVID-19 and non-COVID-19 ARDS patients undergoing vv-ECMO. This retrospective observational study aimed to assess and compare complications in these patient cohorts. Methods: We retrospectively analyzed the medical records of all patients receiving vv-ECMO for ARDS between March 2020 and March 2022. We recorded the baseline characteristics, the disease course and complication (barotrauma, bleeding, thrombosis) before and after ECMO cannulation, and clinical outcomes (mechanical ventilation and ECMO duration, intensive care unit, and hospital lengths of stay and mortalities). Data were compared between COVID-19 and non-COVID-19 patients. In addition, we compared survived and deceased patients. Results: Sixty-four patients were included. COVID-19 patients (n = 25) showed higher rates of pneumothorax (28% vs. 8%, p = 0.039) with subcutaneous emphysema (24% vs. 5%, p = 0.048) and longer non-invasive ventilation duration before vv-ECMO cannulation (2 [1; 4] vs. 0 [0; 1] days, p = <0.001), compared to non-COVID-19 patients (n = 39). However, complication rates and clinical outcomes post-vv-ECMO were similar between groups. Survival analysis revealed no significant differences in pre-vv-ECMO complications, but non-surviving patients had a trend toward higher complication rates and more pleural effusions post-vv-ECMO. Conclusions: COVID-19 patients on vv-ECMO exhibit higher pneumothorax rates with subcutaneous emphysema pre-cannulation; post-cannulation complications are comparable to non-COVID-19 patients.
Collapse
Affiliation(s)
- Andrea Bruni
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (A.B.); (V.B.); (C.P.); (G.N.); (D.L.); (F.L.)
| | - Caterina Battaglia
- Radiodiagnostic Institute, Dulbecco Hospital, 88100 Catanzaro, Italy; (C.B.); (F.M.); (A.M.)
| | - Vincenzo Bosco
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (A.B.); (V.B.); (C.P.); (G.N.); (D.L.); (F.L.)
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (A.B.); (V.B.); (C.P.); (G.N.); (D.L.); (F.L.)
| | - Giuseppe Neri
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (A.B.); (V.B.); (C.P.); (G.N.); (D.L.); (F.L.)
| | - Eugenio Biamonte
- Institute of Anesthesia and Intensive Care, Dulbecco Hospital, 88100 Catanzaro, Italy;
| | - Francesco Manti
- Radiodiagnostic Institute, Dulbecco Hospital, 88100 Catanzaro, Italy; (C.B.); (F.M.); (A.M.)
| | - Annachiara Mollace
- Radiodiagnostic Institute, Dulbecco Hospital, 88100 Catanzaro, Italy; (C.B.); (F.M.); (A.M.)
| | - Annalisa Boscolo
- Department of Medicine (DIMED), University of Padua, 35131 Padua, Italy; (A.B.); (P.N.)
- Institute of Anesthesia and Intensive Care, Padua University Hospital, 35122 Padova, Italy
- Thoracic Surgery and Lung Transplant Unit, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35122 Padova, Italy
| | - Michele Morelli
- Department of Obstetrics and Gynecology, “Annunziata” Hospital, 87100 Cosenza, Italy;
| | - Paolo Navalesi
- Department of Medicine (DIMED), University of Padua, 35131 Padua, Italy; (A.B.); (P.N.)
- Institute of Anesthesia and Intensive Care, Padua University Hospital, 35122 Padova, Italy
| | - Domenico Laganà
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (A.B.); (V.B.); (C.P.); (G.N.); (D.L.); (F.L.)
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (A.B.); (V.B.); (C.P.); (G.N.); (D.L.); (F.L.)
| | - Federico Longhini
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (A.B.); (V.B.); (C.P.); (G.N.); (D.L.); (F.L.)
| | | |
Collapse
|
10
|
Mellado-Artigas R, Borrat X, Ferreyro BL, Yarnell C, Hao S, Wanis KN, Barbeta E, Torres A, Ferrando C, Brochard L. Effect of immediate initiation of invasive ventilation on mortality in acute hypoxemic respiratory failure: a target trial emulation. Crit Care 2024; 28:157. [PMID: 38730306 PMCID: PMC11088053 DOI: 10.1186/s13054-024-04926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE Invasive ventilation is a fundamental treatment in intensive care but its precise timing is difficult to determine. This study aims at assessing the effect of initiating invasive ventilation versus waiting, in patients with hypoxemic respiratory failure without immediate reason for intubation on one-year mortality. METHODS Emulation of a target trial to estimate the benefit of immediately initiating invasive ventilation in hypoxemic respiratory failure, versus waiting, among patients within the first 48-h of hypoxemia. The eligible population included non-intubated patients with SpO2/FiO2 ≤ 200 and SpO2 ≤ 97%. The target trial was emulated using a single-center database (MIMIC-IV) which contains granular information about clinical status. The hourly probability to receive mechanical ventilation was continuously estimated. The hazard ratios for the primary outcome, one-year mortality, and the secondary outcome, 30-day mortality, were estimated using weighted Cox models with stabilized inverse probability weights used to adjust for measured confounding. RESULTS 2996 Patients fulfilled the inclusion criteria of whom 792 were intubated within 48 h. Among the non-invasive support devices, the use of oxygen through facemask was the most common (75%). Compared to patients with the same probability of intubation but who were not intubated, intubation decreased the hazard of dying for the first year after ICU admission HR 0.81 (95% CI 0.68-0.96, p = 0.018). Intubation was associated with a 30-day mortality HR of 0.80 (95% CI 0.64-0.99, p = 0.046). CONCLUSION The initiation of mechanical ventilation in patients with acute hypoxemic respiratory failure reduced the hazard of dying in this emulation of a target trial.
Collapse
Affiliation(s)
- Ricard Mellado-Artigas
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
| | - Xavier Borrat
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Bruno L Ferreyro
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
| | - Christopher Yarnell
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Department of Critical Care Medicine, Scarborough Health Network, Toronto, ON, Canada
| | - Sicheng Hao
- MIT IMES: Massachussetts Institute of Technology Institute for Medical Engineering and Science, Cambridge, USA
| | - Kerollos N Wanis
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enric Barbeta
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Antoni Torres
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carlos Ferrando
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Mayaux J, Decavele M, Dres M, Lecronier M, Demoule A. [Non-invasive ventilation in acute respiratory failure of oncology-hematology patients: What are its current benefits and limitations?]. Rev Mal Respir 2024; 41:382-389. [PMID: 38609766 DOI: 10.1016/j.rmr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/04/2023] [Indexed: 04/14/2024]
Abstract
Acute respiratory failure (ARF) is a leading cause, along with sepsis, of admission to the intensive care unit (ICU) of patients with active cancer. Presenting variable clinical severity, ARF in onco-hematological patients has differing etiologies, primarily represented by possibly opportunistic acute infectious pneumonia (de novo hypoxemic ARF), and decompensation in chronic cardiac or respiratory diseases (e.g., acute pulmonary edema or exacerbated chronic obstructive pulmonary disease). In these patients, orotracheal intubation is associated with a doubled risk of in-hospital mortality. Consequently, over the last three decades, numerous researchers have attempted to demonstrate and pinpoint the precise role of non-invasive ventilation (NIV) in the specific context of ARF in onco-hematological patients. While the benefits of NIV in the management of acute pulmonary edema or alveolar hypoventilation (hypercapnic ARF) are well-demonstrated, its positioning in de novo hypoxemic ARF is debatable, and has recently been called into question. In the early 2000s, based on randomized controlled trials, NIV was recommended as first-line treatment, one reason being that it allowed significantly reduced use of orotracheal intubation. In the latest randomized studies, however, the benefits of NIV in terms of survival orotracheal intubation have not been observed; as a result, it is no longer recommended in the management of de novo hypoxemic ARF in onco-haematological patients.
Collapse
Affiliation(s)
- J Mayaux
- Service de médecine intensive et réanimation, département R3S - DMU APPROCHES, hôpital universitaire Pitié-Salpêtrière - Sorbonne université médecine, Paris, France.
| | - M Decavele
- Service de médecine intensive et réanimation, département R3S - DMU APPROCHES, hôpital universitaire Pitié-Salpêtrière - Sorbonne université médecine, Paris, France
| | - M Dres
- Service de médecine intensive et réanimation, département R3S - DMU APPROCHES, hôpital universitaire Pitié-Salpêtrière - Sorbonne université médecine, Paris, France
| | - M Lecronier
- Service de médecine intensive et réanimation, département R3S - DMU APPROCHES, hôpital universitaire Pitié-Salpêtrière - Sorbonne université médecine, Paris, France
| | - A Demoule
- Service de médecine intensive et réanimation, département R3S - DMU APPROCHES, hôpital universitaire Pitié-Salpêtrière - Sorbonne université médecine, Paris, France
| |
Collapse
|
12
|
Mosier JM, Tidswell M, Wang HE. Noninvasive respiratory support in the emergency department: Controversies and state-of-the-art recommendations. J Am Coll Emerg Physicians Open 2024; 5:e13118. [PMID: 38464331 PMCID: PMC10920951 DOI: 10.1002/emp2.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Acute respiratory failure is a common reason for emergency department visits and hospital admissions. Diverse underlying physiologic abnormalities lead to unique aspects about the most common causes of acute respiratory failure: acute decompensated heart failure, acute exacerbation of chronic obstructive pulmonary disease, and acute de novo hypoxemic respiratory failure. Noninvasive respiratory support strategies are increasingly used methods to support work of breathing and improve gas exchange abnormalities to improve outcomes relative to conventional oxygen therapy or invasive mechanical ventilation. Noninvasive respiratory support includes noninvasive positive pressure ventilation and nasal high flow, each with unique physiologic mechanisms. This paper will review the physiology of respiratory failure and noninvasive respiratory support modalities and offer data and guideline-driven recommendations in the context of key clinical controversies.
Collapse
Affiliation(s)
- Jarrod M. Mosier
- Department of Emergency MedicineThe University of Arizona College of MedicineTucsonArizonaUSA
- Division of Pulmonary, Allergy, Critical Care, and Sleep, Department of MedicineThe University of Arizona College of MedicineTucsonArizonaUSA
| | - Mark Tidswell
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Massachusetts Chan Medical School – Baystate Medical CenterSpringfieldMassachusettsUSA
| | - Henry E. Wang
- Department of Emergency MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
13
|
Parrilla-Gómez FJ, Marin-Corral J, Castellví-Font A, Pérez-Terán P, Picazo L, Ravelo-Barba J, Campano-García M, Festa O, Restrepo M, Masclans JR. Switches in non-invasive respiratory support strategies during acute hypoxemic respiratory failure: Need to monitoring from a retrospective observational study. Med Intensiva 2024; 48:200-210. [PMID: 37985338 DOI: 10.1016/j.medine.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To explore combined non-invasive-respiratory-support (NIRS) patterns, reasons for NIRS switching, and their potential impact on clinical outcomes in acute-hypoxemic-respiratory-failure (AHRF) patients. DESIGN Retrospective, single-center observational study. SETTING Intensive Care Medicine. PATIENTS AHRF patients (cardiac origin and respiratory acidosis excluded) underwent combined NIRS therapies such as non-invasive-ventilation (NIV) and High-Flow-Nasal-Cannula (HFNC). INTERVENTIONS Patients were classified based on the first NIRS switch performed (HFNC-to-NIV or NIV-to-HFNC), and further specific NIRS switching strategies (NIV trial-like vs. Non-NIV trial-like and single vs. multiples switches) were independently evaluated. MAIN VARIABLES OF INTEREST Reasons for switching, NIRS failure and mortality rates. RESULTS A total of 63 patients with AHRF were included, receiving combined NIRS, 58.7% classified in the HFNC-to-NIV group and 41.3% in the NIV-to-HFNC group. Reason for switching from HFNC to NIV was AHRF worsening (100%), while from NIV to HFNC was respiratory improvement (76.9%). NIRS failure rates were higher in the HFNC-to-NIV than in NIV-to-HFNC group (81% vs. 35%, p < 0.001). Among HFNC-to-NIV patients, there was no difference in the failure rate between the NIV trial-like and non-NIV trial-like groups (86% vs. 78%, p = 0.575) but the mortality rate was significantly lower in NIV trial-like group (14% vs. 52%, p = 0.02). Among NIV to HFNC patients, NIV failure was lower in the single switch group compared to the multiple switches group (15% vs. 53%, p = 0.039), with a shorter length of stay (5 [2-8] vs. 12 [8-30] days, p = 0.001). CONCLUSIONS NIRS combination is used in real life and both switches' strategies, HFNC to NIV and NIV to HFNC, are common in AHRF management. Transitioning from HFNC to NIV is suggested as a therapeutic escalation and in this context performance of a NIV-trial could be beneficial. Conversely, switching from NIV to HFNC is suggested as a de-escalation strategy that is deemed safe if there is no NIRS failure.
Collapse
Affiliation(s)
- Francisco José Parrilla-Gómez
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM); Department of Medicine and Life Sciences (MELIS), UPF, Barcelona, Spain.
| | - Judith Marin-Corral
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM); Division of Pulmonary & Critical Care Medicine, University of Texas Health San Antonio, San Antonio, San Antonio, TX, USA
| | - Andrea Castellví-Font
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM)
| | - Purificación Pérez-Terán
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM); Department of Medicine and Life Sciences (MELIS), UPF, Barcelona, Spain
| | - Lucía Picazo
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM)
| | - Jorge Ravelo-Barba
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM)
| | - Marta Campano-García
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM)
| | - Olimpia Festa
- Anaesthesia and Reanimation Department, Hospital General de Sant Boi, Barcelona, Spain
| | - Marcos Restrepo
- Division of Pulmonary & Critical Care Medicine, University of Texas Health San Antonio, San Antonio, San Antonio, TX, USA; Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Joan Ramón Masclans
- Critical Care Department, Hospital del Mar de Barcelona. Critical illness research group (GREPAC), Hospital del Mar Research Institute (IMIM); Department of Medicine and Life Sciences (MELIS), UPF, Barcelona, Spain
| |
Collapse
|
14
|
Abi Abdallah G, Diop S, Jamme M, Legriel S, Ferré A. Respiratory Infection Triggering Severe Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:555-565. [PMID: 38440747 PMCID: PMC10909653 DOI: 10.2147/copd.s447162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Background Data are scarce on respiratory infections during severe acute exacerbation of chronic obstructive pulmonary disease (COPD). This study aimed to investigate respiratory infection patterns in the intensive care unit (ICU) and identify variables associated with infection type and patient outcome. Methods A retrospective, single-centre cohort study. All patients admitted (2015-2021) to our ICU for severe acute exacerbation of COPD were included. Logistic multivariable regression analysis was performed to predict factors associated with infection and assess the association between infection and outcome. Results We included 473 patients: 288 (60.9%) had respiratory infection and 139 (29.4%) required invasive mechanical ventilation. Eighty-nine (30.9%) had viral, 81 (28.1%) bacterial, 34 (11.8%) mixed, and 84 (29.2%) undocumented infections. Forty-seven (9.9%) patients died in the ICU and 67 (14.2%) in hospital. Factors associated with respiratory infection were temperature (odds ratio [+1°C]=1.43, P=0.008) and blood neutrophils (1.07, P=0.002). Male sex (2.21, P=0.02) and blood neutrophils were associated with bacterial infection (1.06, P=0.04). In a multivariable analysis, pneumonia (cause-specific hazard=1.75, P=0.005), respiratory rate (1.17, P=0.04), arterial partial pressure of carbon-dioxide (1.08, P=0.04), and lactate (1.14, P=0.02) were associated with the need for invasive MV. Age (1.03, P=0.03), immunodeficiency (1.96, P=0.02), and altered performance status (1.78, P=0.002) were associated with hospital mortality. Conclusions Respiratory infections, 39.9% of which were bacterial, were the main cause of severe acute exacerbation of COPD. Body temperature and blood neutrophils were single markers of infection. Pneumonia was associated with the need for invasive mechanical ventilation but not with hospital mortality, as opposed to age, immunodeficiency, and altered performance status.
Collapse
Affiliation(s)
| | - Sylvain Diop
- Cardiothoracic Intensive Care Unit, Department of Anesthesiology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Matthieu Jamme
- Service de Réanimation Polyvalente, Hôpital Privé de l’Ouest Parisien, Ramsay-Générale de Santé, Trappes, France
- CESP, INSERM U1018, Equipe Epidémiologie Clinique, Villejuif, France
| | - Stéphane Legriel
- Intensive Care Unit, Versailles Hospital, Le Chesnay, France
- University Paris-Saclay, UVSQ, INSERM, CESP, Team ”PsyDev”, Villejuif, France
| | - Alexis Ferré
- Intensive Care Unit, Versailles Hospital, Le Chesnay, France
| |
Collapse
|
15
|
Mosier JM, Subbian V, Pungitore S, Prabhudesai D, Essay P, Bedrick EJ, Stocking JC, Fisher JM. Noninvasive vs Invasive Respiratory Support for Patients with Acute Hypoxemic Respiratory Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.23.23300368. [PMID: 38234784 PMCID: PMC10793521 DOI: 10.1101/2023.12.23.23300368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Rationale Noninvasive respiratory support modalities are common alternatives to mechanical ventilation for patients with early acute hypoxemic respiratory failure. These modalities include noninvasive positive pressure ventilation, using either continuous or bilevel positive airway pressure, and nasal high flow using a high flow nasal cannula system. However, outcomes data historically compare noninvasive respiratory support to conventional oxygen rather than to mechanical ventilation. Objectives The goal of this study was to compare the outcomes of in-hospital death and alive discharge in patients with acute hypoxemic respiratory failure when treated initially with noninvasive respiratory support compared to patients treated initially with invasive mechanical ventilation. Methods We used a validated phenotyping algorithm to classify all patients with eligible International Classification of Diseases codes at a large healthcare network between January 1, 2018 and December 31, 2019 into noninvasive respiratory support and invasive mechanical ventilation cohorts. The primary outcome was time-to-in-hospital death analyzed using an inverse probability of treatment weighted Cox model adjusted for potential confounders, with estimated cumulative incidence curves. Secondary outcomes included time-to-hospital discharge alive. A secondary analysis was conducted to examine potential differences between noninvasive positive pressure ventilation and nasal high flow. Results During the study period, 3177 patients met inclusion criteria (40% invasive mechanical ventilation, 60% noninvasive respiratory support). Initial noninvasive respiratory support was not associated with a decreased hazard of in-hospital death (HR: 0.65, 95% CI: 0.35 - 1.2), but was associated with an increased hazard of discharge alive (HR: 2.26, 95% CI: 1.92 - 2.67). In-hospital death varied between the nasal high flow (HR 3.27, 95% CI: 1.43 - 7.45) and noninvasive positive pressure ventilation (HR 0.52, 95% CI 0.25 - 1.07), but both were associated with increased likelihood of discharge alive (nasal high flow HR 2.12, 95 CI: 1.25 - 3.57; noninvasive positive pressure ventilation HR 2.29, 95% CI: 1.92 - 2.74). Conclusion These observational data from a large healthcare network show that noninvasive respiratory support is not associated with reduced hazards of in-hospital death but is associated with hospital discharge alive. There are also potential differences between the noninvasive respiratory support modalities.
Collapse
|
16
|
Chiappero C, Misseri G, Mattei A, Ippolito M, Albera C, Pivetta E, Cortegiani A, Gregoretti C. Effectiveness and safety of a new helmet CPAP configuration allowing tidal volume monitoring in patients with COVID-19. Pulmonology 2023; 29 Suppl 4:S9-S17. [PMID: 34326019 PMCID: PMC8266523 DOI: 10.1016/j.pulmoe.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND High generated tidal volumes (Vt) have been correlated with higher risk of self-induced lung injury and worse clinical outcome. This study aimed to evaluate the effectiveness and safety of a new helmet continuous positive airway pressure delivered (h-CPAP) configuration allowing Vt monitoring in patients affected by COVID-19. METHODS This prospective observational study was performed in the respiratory intermediate care unit of University Hospital in Turin, Italy, between March 24th, and June 15th, 2020. Included patients were treated with CPAP via a single-limb intentional leak configuration by a turbine-driven ventilator, provided with a dedicated patch. Effectiveness and safety of the configuration and healthcare workers safety were the outcomes of the study. MAIN FINDINGS Thirty-five patients were included in this study. Median age was 67 years (IQR 57-76 years), and 30 patients (85.7%) were men. Median value of overall leaks (intentional plus unintentional) was 68 L/min (IQR 63-75). Reliability of Vt measurements was 100%. An out of scale of Vt (above 50% compared to the previous values) was never recorded. Six patients (17.1%) needed more than two helmet replacements, due to leak test >10 l/min. Arm oedema and skin breakdowns were reported in sixteen (45.7%) and seven (20%) patients respectively. Among the 63 healthcare workers involved in the care of COVID-19 patients during the study only one was positive at RT-PCR nasopharyngeal swab testing. CONCLUSIONS The use of h-CPAP for treating COVID-19 in this configuration allowed for reliable Vt monitoring. Further studies evaluating this configuration in larger patients' cohorts are needed.
Collapse
Affiliation(s)
- C Chiappero
- Pneumology, Cardiovascular and Thoracic Department, AOU Città della Salute e della Scienza di Torino - Molinette hospital, Turin, Italy
| | | | - A Mattei
- Pneumology, Cardiovascular and Thoracic Department, AOU Città della Salute e della Scienza di Torino - Molinette hospital, Turin, Italy
| | - M Ippolito
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). University of Palermo, Italy
| | - C Albera
- Pneumology, Cardiovascular and Thoracic Department, AOU Città della Salute e della Scienza di Torino - Molinette hospital, Turin, Italy; University of Turin, School of Medicine, Department of Medical Sciences, Italy
| | - E Pivetta
- Division of Emergency Medicine and High Dependency Unit, Department of General and Specialized Medicine, AOU Città della Salute e della Scienza di Torino - Molinette hospital, Turin, Italy
| | - A Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). University of Palermo, Italy; Department of Anaesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy.
| | - C Gregoretti
- Fondazione "Giglio", Cefalù, Italy; Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). University of Palermo, Italy
| |
Collapse
|
17
|
Kheir M, Dong V, Roselli V, Mina B. The role of ultrasound in predicting non-invasive ventilation outcomes: a systematic review. Front Med (Lausanne) 2023; 10:1233518. [PMID: 38020158 PMCID: PMC10644356 DOI: 10.3389/fmed.2023.1233518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose To systematically review and compare ultrasonographic methods and their utility in predicting non-invasive ventilation (NIV) outcomes. Methods A systematic review was performed using the PubMed, Medline, Embase, and Cochrane databases from January 2015 to March 2023. The search terms included the following: ultrasound, diaphragm, lung, prediction, non-invasive, ventilation, and outcomes. The inclusion criteria were prospective cohort studies on adult patients requiring non-invasive ventilation in the emergency department or inpatient setting. Results Fifteen studies were analyzed, which comprised of 1,307 patients (n = 942 for lung ultrasound score studies; n = 365 patients for diaphragm dysfunction studies). Lung ultrasound scores (LUS) greater than 18 were associated with NIV failure with a sensitivity 62-90.5% and specificity 60-91.9%. Similarly, a diaphragm thickening fraction (DTF) of less than 20% was also associated with NIV failure with a sensitivity 80-84.6% and specificity 76.3-91.5%. Conclusion Predicting NIV failure can be difficult by routine initial clinical impression and diagnostic work up. This systematic review emphasizes the importance of using lung and diaphragm ultrasound, in particular the lung ultrasound score and diaphragm thickening fraction respectively, to accurately predict NIV failure, including the need for ICU-level of care, requiring invasive mechanical ventilation, and resulting in higher rates of mortality.
Collapse
Affiliation(s)
- Matthew Kheir
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Lenox Hill Hospital - Northwell Health, New York, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent Dong
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Medicine, Lenox Hill Hospital - Northwell Health, New York, NY, United States
| | - Victoria Roselli
- Office of Clinical Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Bushra Mina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Lenox Hill Hospital - Northwell Health, New York, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
18
|
Emeriaud G, Pons-Òdena M, Bhalla AK, Shein SL, Killien EY, Alapont VMI, Rowan C, Baudin F, Lin JC, Grégoire G, Napolitano N, Mayordomo-Colunga J, Diaz F, Cruces P, Medina A, Smith L, Khemani RG, Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology (PARDIE) Investigators, Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology (PARDIE) Investigators, Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Noninvasive Ventilation for Pediatric Acute Respiratory Distress Syndrome: Experience From the 2016/2017 Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology Prospective Cohort Study. Pediatr Crit Care Med 2023; 24:715-726. [PMID: 37255352 PMCID: PMC10524424 DOI: 10.1097/pcc.0000000000003281] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVES The worldwide practice and impact of noninvasive ventilation (NIV) in pediatric acute respiratory distress syndrome (PARDS) is unknown. We sought to describe NIV use and associated clinical outcomes in PARDS. DESIGN Planned ancillary study to the 2016/2017 prospective Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology study. SETTING One hundred five international PICUs. PATIENTS Patients with newly diagnosed PARDS admitted during 10 study weeks. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Children were categorized by their respiratory support at PARDS diagnosis into NIV or invasive mechanical ventilation (IMV) groups. Of 708 subjects with PARDS, 160 patients (23%) received NIV at PARDS diagnosis (NIV group). NIV failure rate (defined as tracheal intubation or death) was 84 of 160 patients (53%). Higher nonrespiratory pediatric logistic organ dysfunction (PELOD-2) score, Pa o2 /F io2 was less than 100 at PARDS diagnosis, immunosuppression, and male sex were independently associated with NIV failure. NIV failure was 100% among patients with nonrespiratory PELOD-2 score greater than 2, Pa o2 /F io2 less than 100, and immunosuppression all present. Among patients with Pa o2 /F io2 greater than 100, children in the NIV group had shorter total duration of NIV and IMV, than the IMV at initial diagnosis group. We failed to identify associations between NIV use and PICU survival in a multivariable Cox regression analysis (hazard ratio 1.04 [95% CI, 0.61-1.80]) or mortality in a propensity score matched analysis ( p = 0.369). CONCLUSIONS Use of NIV at PARDS diagnosis was associated with shorter exposure to IMV in children with mild to moderate hypoxemia. Even though risk of NIV failure was high in some children, we failed to identify greater hazard of mortality in these patients.
Collapse
Affiliation(s)
- Guillaume Emeriaud
- Department of Pediatrics, Pediatric Intensive Care Unit, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Marti Pons-Òdena
- Inmune and Respiratory dysfunction in the child research group. Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Intensive Care and Intermediate care Department, Sant Joan de Déu University Hospital, Universitat de Barcelona, Esplugues de Llobregat, Spain
| | - Anoopindar K Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, USA
| | - Steven L Shein
- Rainbow Babies and Children’s Hospital, Division of Pediatric Critical Care Medicine, Cleveland Ohio USA
| | - Elizabeth Y Killien
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, USA
| | | | - Courtney Rowan
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN, USA
| | - Florent Baudin
- Réanimation Pédiatrique, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Lyon, France
| | - John C Lin
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, USA
| | - Gabrielle Grégoire
- Applied Clinical Research Unit, CHU Sainte-Justine, Montreal, QC, Canada
| | - Natalie Napolitano
- Respiratory Therapy Department, Children’s Hospital of Philadelphia, USA
| | - Juan Mayordomo-Colunga
- Pediatric Intensive Care Unit. Hospital Universitario Central de Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - Franco Diaz
- Instituto de Ciencias e innovación en medicina (ICIM), Universidad del Desarrollo, Santiago de Chile
- Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago de Chile
| | - Pablo Cruces
- Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago de Chile
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alberto Medina
- Pediatric Intensive Care Unit. Hospital Universitario Central de Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Lincoln Smith
- Department of Pediatrics, University of Washington, Seattle Children’s Hospital, USA
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, USA
| | | | | |
Collapse
|
19
|
Grieco DL, Delle Cese L, Menga LS, Rosà T, Michi T, Lombardi G, Cesarano M, Giammatteo V, Bello G, Carelli S, Cutuli SL, Sandroni C, De Pascale G, Pesenti A, Maggiore SM, Antonelli M. Physiological effects of awake prone position in acute hypoxemic respiratory failure. Crit Care 2023; 27:315. [PMID: 37592288 PMCID: PMC10433569 DOI: 10.1186/s13054-023-04600-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Luca S. Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Gianmarco Lombardi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Simone Carelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Salvatore L. Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Claudio Sandroni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Salvatore M. Maggiore
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
- University Department of Innovative Technologies in Medicine and Dentistry, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| |
Collapse
|
20
|
Santus P, Radovanovic D, Saad M, Zilianti C, Coppola S, Chiumello DA, Pecchiari M. Acute dyspnea in the emergency department: a clinical review. Intern Emerg Med 2023; 18:1491-1507. [PMID: 37266791 PMCID: PMC10235852 DOI: 10.1007/s11739-023-03322-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Acute dyspnea represents one of the most frequent symptoms leading to emergency room evaluation. Its significant prognostic value warrants a careful evaluation. The differential diagnosis of dyspnea is complex due to the lack of specificity and the loose association between its intensity and the severity of the underlying pathological condition. The initial assessment of dyspnea calls for prompt diagnostic evaluation and identification of optimal monitoring strategy and provides information useful to allocate the patient to the most appropriate setting of care. In recent years, accumulating evidence indicated that lung ultrasound, along with echocardiography, represents the first rapid and non-invasive line of assessment that accurately differentiates heart, lung or extra-pulmonary involvement in patients with dyspnea. Moreover, non-invasive respiratory support modalities such as high-flow nasal oxygen and continuous positive airway pressure have aroused major clinical interest, in light of their efficacy and practicality to treat patients with dyspnea requiring ventilatory support, without using invasive mechanical ventilation. This clinical review is focused on the pathophysiology of acute dyspnea, on its clinical presentation and evaluation, including ultrasound-based diagnostic workup, and on available non-invasive modalities of respiratory support that may be required in patients with acute dyspnea secondary or associated with respiratory failure.
Collapse
Affiliation(s)
- Pierachille Santus
- Division of Respiratory Diseases, Ospedale Luigi Sacco, Polo Universitario, ASST Fatebenefratelli-Sacco, Via G.B. Grassi 74, 20157, Milan, Italy.
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi Di Milano, Milan, Italy.
| | - Dejan Radovanovic
- Division of Respiratory Diseases, Ospedale Luigi Sacco, Polo Universitario, ASST Fatebenefratelli-Sacco, Via G.B. Grassi 74, 20157, Milan, Italy
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi Di Milano, Milan, Italy
| | - Marina Saad
- Division of Respiratory Diseases, Ospedale Luigi Sacco, Polo Universitario, ASST Fatebenefratelli-Sacco, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Camilla Zilianti
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo E Carlo, Ospedale Universitario San Paolo, Milan, Italy
| | - Davide Alberto Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo E Carlo, Ospedale Universitario San Paolo, Milan, Italy
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
- Coordinated Research Center On Respiratory Failure, Università Degli Studi Di Milano, Milan, Italy
| | - Matteo Pecchiari
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
21
|
Feng X, Wang D, Pan Q, Yan M, Liu X, Shen Y, Fang L, Cai G, Ning G. Reinforcement Learning Model for Managing Noninvasive Ventilation Switching Policy. IEEE J Biomed Health Inform 2023; 27:4120-4130. [PMID: 37159312 DOI: 10.1109/jbhi.2023.3274568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Noninvasive ventilation (NIV) has been recognized as a first-line treatment for respiratory failure in patients with chronic obstructive pulmonary disease (COPD) and hypercapnia respiratory failure, which can reduce mortality and burden of intubation. However, during the long-term NIV process, failure to respond to NIV may cause overtreatment or delayed intubation, which is associated with increased mortality or costs. Optimal strategies for switching regime in the course of NIV treatment remain to be explored.For the goal of reducing 28-day mortality of the patients undergoing NIV, Double Dueling Deep Q Network (D3QN) of offline-reinforcement learning algorithm was adopted to develop an optimal regime model for making treatment decisions of discontinuing ventilation, continuing NIV, or intubation. The model was trained and tested using the data from Multi-Parameter Intelligent Monitoring in Intensive Care III (MIMIC-III) and evaluated by the practical strategies. Furthermore, the applicability of the model in majority disease subgroups (Catalogued by International Classification of Diseases, ICD) was investigated. Compared with physician's strategies, the proposed model achieved a higher expected return score (4.25 vs. 2.68) and its recommended treatments reduced the expected mortality from 27.82% to 25.44% in all NIV cases. In particular, for these patients finally received intubation in practice, if the model also supported the regime, it would warn of switching to intubation 13.36 hours earlier than clinicians (8.64 vs. 22 hours after the NIV treatment), granting a 21.7% reduction in estimated mortality. In addition, the model was applicable across various disease groups with distinguished achievement in dealing with respiratory disorders. The proposed model is promising to dynamically provide personalized optimal NIV switching regime for patients undergoing NIV with the potential of improving treatment outcomes.
Collapse
|
22
|
Tinoco HA, Perdomo-Hurtado L, Henao-Cruz JA, Escobar-Serna JF, Jaramillo-Robledo O, Aguirre-Ospina OD, Hurtado-Hernández M, Lopez-Guzman J. Evaluation and Performance of a Positive Airway Pressure Device (CPAP-AirFlife™): A Randomized Crossover Non-Inferiority Clinical Study in Normal Subjects. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1372. [PMID: 37629662 PMCID: PMC10456951 DOI: 10.3390/medicina59081372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: During the COVID-19, the demand for non-invasive ventilatory support equipment significantly increased. In response, a novel non-invasive ventilatory support model called CPAP-AirFlife™ was developed utilizing existing technologies. This model offers technological advantages, including an aerosol-controlled helmet suitable for high-risk environments such as ambulances. Additionally, it is cost-effective and does not require medical air, making it accessible for implementation in low-level hospitals, particularly in rural areas. This study aimed to assess the efficacy of CPAP-AirFlife™ by conducting a non-inferiority comparison with conventional ventilation equipment used in the Intensive Care Unit. Materials and Methods: A clinical study was conducted on normal subjects in a randomized and sequential manner. Parameters such as hemoglobin oxygen saturation by pulse oximetry, exhaled PCO2 levels, vital signs, and individual tolerance were compared between the CPAP-AirFlife™ and conventional equipment. The study population was described in terms of demographic characteristics and included in the analysis. Results: It was shown that the CPAP-AirFlife™ was not inferior to conventional equipment in terms of efficacy or tolerability. Hemoglobin oxygen saturation levels, exhaled PCO2 levels, vital signs, and individual tolerance did not significantly differ between the two models. Conclusions: The findings suggest that CPAP-AirFlife™ is a practical and cost-effective alternative for non-invasive ventilatory support. Its technological advantages, including the aerosol-controlled helmet, make it suitable for high-risk environments. The device's accessibility and affordability make it a promising solution for implementation in low-level hospitals, particularly in rural areas. This study supports using CPAP-AirFlife™ as a practical option for non-invasive ventilatory support, providing a valuable contribution to respiratory care during the COVID-19 pandemic and beyond.
Collapse
Affiliation(s)
- Héctor A. Tinoco
- Experimental and Computational Mechanics Laboratory, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Edificio Fundadores, Manizales-Caldas 170001, Colombia
| | - Luis Perdomo-Hurtado
- Experimental and Computational Mechanics Laboratory, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Edificio Fundadores, Manizales-Caldas 170001, Colombia
| | | | | | | | | | - Mateo Hurtado-Hernández
- Experimental and Computational Mechanics Laboratory, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Edificio Fundadores, Manizales-Caldas 170001, Colombia
| | - Juliana Lopez-Guzman
- Experimental and Computational Mechanics Laboratory, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Edificio Fundadores, Manizales-Caldas 170001, Colombia
| |
Collapse
|
23
|
Cutuli SL, Grieco DL, Michi T, Cesarano M, Rosà T, Pintaudi G, Menga LS, Ruggiero E, Giammatteo V, Bello G, De Pascale G, Antonelli M. Personalized Respiratory Support in ARDS: A Physiology-to-Bedside Review. J Clin Med 2023; 12:4176. [PMID: 37445211 PMCID: PMC10342961 DOI: 10.3390/jcm12134176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a leading cause of disability and mortality worldwide, and while no specific etiologic interventions have been shown to improve outcomes, noninvasive and invasive respiratory support strategies are life-saving interventions that allow time for lung recovery. However, the inappropriate management of these strategies, which neglects the unique features of respiratory, lung, and chest wall mechanics may result in disease progression, such as patient self-inflicted lung injury during spontaneous breathing or by ventilator-induced lung injury during invasive mechanical ventilation. ARDS characteristics are highly heterogeneous; therefore, a physiology-based approach is strongly advocated to titrate the delivery and management of respiratory support strategies to match patient characteristics and needs to limit ARDS progression. Several tools have been implemented in clinical practice to aid the clinician in identifying the ARDS sub-phenotypes based on physiological peculiarities (inspiratory effort, respiratory mechanics, and recruitability), thus allowing for the appropriate application of personalized supportive care. In this narrative review, we provide an overview of noninvasive and invasive respiratory support strategies, as well as discuss how identifying ARDS sub-phenotypes in daily practice can help clinicians to deliver personalized respiratory support and potentially improve patient outcomes.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Pintaudi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Salvatore Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
24
|
Carrié C, Rieu B, Benard A, Trin K, Petit L, Massri A, Jurcison I, Rousseau G, Tran Van D, Reynaud Salard M, Bourenne J, Levrat A, Muller L, Marie D, Dahyot-Fizelier C, Pottecher J, David JS, Godet T, Biais M. Early non-invasive ventilation and high-flow nasal oxygen therapy for preventing endotracheal intubation in hypoxemic blunt chest trauma patients: the OptiTHO randomized trial. Crit Care 2023; 27:163. [PMID: 37101272 PMCID: PMC10131545 DOI: 10.1186/s13054-023-04429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The benefit-risk ratio of prophylactic non-invasive ventilation (NIV) and high-flow nasal oxygen therapy (HFNC-O2) during the early stage of blunt chest trauma remains controversial because of limited data. The main objective of this study was to compare the rate of endotracheal intubation between two NIV strategies in high-risk blunt chest trauma patients. METHODS The OptiTHO trial was a randomized, open-label, multicenter trial over a two-year period. Every adult patients admitted in intensive care unit within 48 h after a high-risk blunt chest trauma (Thoracic Trauma Severity Score ≥ 8), an estimated PaO2/FiO2 ratio < 300 and no evidence of acute respiratory failure were eligible for study enrollment (Clinical Trial Registration: NCT03943914). The primary objective was to compare the rate of endotracheal intubation for delayed respiratory failure between two NIV strategies: i) a prompt association of HFNC-O2 and "early" NIV in every patient for at least 48 h with vs. ii) the standard of care associating COT and "late" NIV, indicated in patients with respiratory deterioration and/or PaO2/FiO2 ratio ≤ 200 mmHg. Secondary outcomes were the occurrence of chest trauma-related complications (pulmonary infection, delayed hemothorax or moderate-to-severe ARDS). RESULTS Study enrollment was stopped for futility after a 2-year study period and randomization of 141 patients. Overall, 11 patients (7.8%) required endotracheal intubation for delayed respiratory failure. The rate of endotracheal intubation was not significantly lower in patients treated with the experimental strategy (7% [5/71]) when compared to the control group (8.6% [6/70]), with an adjusted OR = 0.72 (95%IC: 0.20-2.43), p = 0.60. The occurrence of pulmonary infection, delayed hemothorax or delayed ARDS was not significantly lower in patients treated by the experimental strategy (adjusted OR = 1.99 [95%IC: 0.73-5.89], p = 0.18, 0.85 [95%IC: 0.33-2.20], p = 0.74 and 2.14 [95%IC: 0.36-20.77], p = 0.41, respectively). CONCLUSION A prompt association of HFNC-O2 with preventive NIV did not reduce the rate of endotracheal intubation or secondary respiratory complications when compared to COT and late NIV in high-risk blunt chest trauma patients with non-severe hypoxemia and no sign of acute respiratory failure. CLINICAL TRIAL REGISTRATION NCT03943914, Registered 7 May 2019.
Collapse
Affiliation(s)
- Cédric Carrié
- Surgical and Trauma Intensive Care Unit, Anesthesiology and Critical Care Department, Hôpital Pellegrin, CHU Bordeaux, Bordeaux University Hospital, Place Amélie Raba Léon, 33076, Bordeaux Cedex, France.
| | - Benjamin Rieu
- Anesthesiology and Critical Care Department, Clermont - Ferrand University Hospital, Clermont - Ferrand, France
| | - Antoine Benard
- Pôle de Santé Publique, Service d'information Médicale, Clinical Epidemiology Unit (USMR), CHU Bordeaux, Bordeaux, France
| | - Kilian Trin
- Pôle de Santé Publique, Service d'information Médicale, Clinical Epidemiology Unit (USMR), CHU Bordeaux, Bordeaux, France
| | - Laurent Petit
- Surgical and Trauma Intensive Care Unit, Anesthesiology and Critical Care Department, Hôpital Pellegrin, CHU Bordeaux, Bordeaux University Hospital, Place Amélie Raba Léon, 33076, Bordeaux Cedex, France
| | - Alexandre Massri
- Anesthesiology and Critical Care Department, Pau Hospital, Pau, France
| | - Igor Jurcison
- Anesthesiology and Critical Care Department, Beaujon University Hospital, Paris, France
| | - Guillaume Rousseau
- Anesthesiology and Critical Care Department, Beaujon University Hospital, Paris, France
| | - David Tran Van
- Anesthesiology and Critical Care Department, Robert Picqué Hospital, Bordeaux, France
| | - Marie Reynaud Salard
- Anesthesiology and Critical Care Department, Saint Etienne University Hospital, Saint Etienne, France
| | - Jeremy Bourenne
- Emergency and Critical Care Department, Hôpital de La Timone, Marseille University Hospital, Marseille, France
| | - Albrice Levrat
- Anesthesiology and Critical Care Department, Annecy Hospital, Annecy, France
| | - Laurent Muller
- Anesthesiology and Critical Care Department, Nimes University Hospital, Nimes, France
| | - Damien Marie
- Anesthesiology and Critical Care Department, Poitiers University Hospital, Poitiers, France
| | - Claire Dahyot-Fizelier
- Anesthesiology and Critical Care Department, Poitiers University Hospital, Poitiers, France
| | - Julien Pottecher
- Anesthesiology and Critical Care Department, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Stéphane David
- Department of Anesthesia and Intensive Care, Groupe Hospitalier Sud, Hospices Civils de Lyon (HCL), Lyon, France
- Research On Healthcare Performance (RESHAPE), INSERM U1290, University Claude Bernard Lyon 1, Lyon, France
| | - Thomas Godet
- Anesthesiology and Critical Care Department, Clermont - Ferrand University Hospital, Clermont - Ferrand, France
| | - Matthieu Biais
- Surgical and Trauma Intensive Care Unit, Anesthesiology and Critical Care Department, Hôpital Pellegrin, CHU Bordeaux, Bordeaux University Hospital, Place Amélie Raba Léon, 33076, Bordeaux Cedex, France
- INSERM U1034, Biology of Cardiovascular Diseases, Bordeaux University, Pessac, France
| |
Collapse
|
25
|
Yu PT, Chen CH, Wang CJ, Kuo KC, Wu JC, Chung HP, Chen YT, Tang YH, Chang WK, Lin CY, Wu CL. Predicting the successful application of high-flow nasal oxygen cannula in patients with COVID-19 respiratory failure: a retrospective analysis. Expert Rev Respir Med 2023; 17:319-328. [PMID: 37002880 DOI: 10.1080/17476348.2023.2199157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
BACKGROUND The right time of high-flow nasal cannulas (HFNCs) application in COVID-19 patients with acute respiratory failure remains uncertain. RESEARCH DESIGN AND METHODS In this retrospective study, COVID-19-infected adult patients with hypoxemic respiratory failure were enrolled. Their baseline epidemiological data and respiratory failure related parameters, including the Ventilation in COVID-19 Estimation (VICE), and the ratio of oxygen saturation (ROX index), were recorded. The primary outcome measured was the 28-day mortality. RESULTS A total of 69 patients were enrolled. Fifty-four (78%) patients who intubated and received invasive mechanical ventilatory (MV) support on day 1 were enrolled in the MV group. The remaining fifteen (22%) patients received HFNC initially (HFNC group), in which, ten (66%) patients were not intubated during hospitalization were belong to HFNC-success group and five (33%) of these patients were intubated later due to disease progression were attributed to HFNC-failure group. Compared with those in the MV group, those in the HFNC group had a lower mortality rate (6.7% vs. 40.7%, p = 0.0138). There were no differences in baseline characteristics among the two groups; however, the HFNC group had a lower VICE score (0.105 [0.049-0.269] vs. 0.260 [0.126-0.693], p = 0.0092) and higher ROX index (5.3 [5.1-10.7] vs. 4.3 [3.9-4.9], p = 0.0007) than the MV group. The ROX index was higher in the HFNC success group immediately before (p = 0.0136) and up to 12 hours of HFNC therapy than in the HFNC failure group. CONCLUSIONS Early intubation may be considered in patients with a higher VICE score or a lower ROX index. The ROX score during HFNCs use can provide an early warning sign of treatment failure. Further investigations are warranted to confirm these results.
Collapse
Affiliation(s)
- Ping-Tsung Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chao-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Kuan-Chih Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Jou-Chun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hsin-Pei Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yen-Ting Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Kuei Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chien-Liang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Roshdy A. Respiratory Monitoring During Mechanical Ventilation: The Present and the Future. J Intensive Care Med 2023; 38:407-417. [PMID: 36734248 DOI: 10.1177/08850666231153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increased application of mechanical ventilation, the recognition of its harms and the interest in individualization raised the need for an effective monitoring. An increasing number of monitoring tools and modalities were introduced over the past 2 decades with growing insight into asynchrony, lung and chest wall mechanics, respiratory effort and drive. They should be used in a complementary rather than a standalone way. A sound strategy can guide a reduction in adverse effects like ventilator-induced lung injury, ventilator-induced diaphragm dysfunction, patient-ventilator asynchrony and helps early weaning from the ventilator. However, the diversity, complexity, lack of expertise, and associated cost make formulating the appropriate monitoring strategy a challenge for clinicians. Most often, a big amount of data is fed to the clinicians making interpretation difficult. Therefore, it is fundamental for intensivists to be aware of the principle, advantages, and limits of each tool. This analytic review includes a simplified narrative of the commonly used basic and advanced respiratory monitors along with their limits and future prospective.
Collapse
Affiliation(s)
- Ashraf Roshdy
- Critical Care Medicine Department, Faculty of Medicine, 54562Alexandria University, Alexandria, Egypt.,Critical Care Unit, North Middlesex University Hospital, London, UK
| |
Collapse
|
27
|
Bustos-Gajardo FD, Luarte-Martínez SI, Dubo Araya SA, Adasme Jeria RS. Clinical outcomes according to timing to invasive ventilation due to noninvasive ventilation failure in children. Med Intensiva 2023; 47:65-72. [PMID: 36089512 DOI: 10.1016/j.medine.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Noninvasive ventilation (NIV) failure it has been associated to worst clinical outcomes due to a delay in intubation and initiation of invasive mechanical ventilation (IMV). There is a lack of evidence in pediatric patients regarding this topic. The objective was to deter-mine the association between duration of IMV and length of stay, with duration of NIV prior tointubation/IMV in pediatric patients. DESIGN A prospective cohort study since January 2015 to October 2019. SETTING A pediatric intensive care unit. PATIENTS Children under 15 years with acute respiratory failure who failed to noninvasive ventilation. INTERVENTIONS None. MAIN VARIABLES OF INTEREST Demographic variables, pediatric index of mortality (PIM2), pediatric acute respiratory distress syndrome (PARDS) diagnosis, IMV and NIV duration, PICU LOS were registered and intrahospital mortality. RESULTS A total of 109 patients with a median (IQR) age of 7 (3-14) months were included. The main diagnosis was pneumonia (89.9%). PARDS was diagnosed in 37.6% of the sample. No association was found between NIV duration and duration of IMV after Kaplan-Meier analysis (Log rank P = .479). There was no significant difference between PICU LOS (P = .253) or hospital LOS (P = 0.669), when categorized by NIV duration before intubation. PARDS diagnosis was associated to an increased length of invasive ventilation (HR: 0.64 [95% IC: 0.42-0.99]). CONCLUSIONS No association was found between NIV duration prior to intubation and duration of invasive ventilation in critical pediatric patients with acute respiratory failure.
Collapse
Affiliation(s)
- F D Bustos-Gajardo
- Unidad de Paciente Crítico Pediátrico, Hospital Dr. Víctor Ríos Ruiz, Los Ángeles, Chile.
| | - S I Luarte-Martínez
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - S A Dubo Araya
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - R S Adasme Jeria
- Hospital Clínico Universidad Católica; Escuela de Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
28
|
Mellado-Artigas R, Ferrando C, Martino F, Delbove A, Ferreyro BL, Darreau C, Jacquier S, Brochard L, Lerolle N. Early intubation and patient-centered outcomes in septic shock: a secondary analysis of a prospective multicenter study. Crit Care 2022; 26:163. [PMID: 35672860 PMCID: PMC9171484 DOI: 10.1186/s13054-022-04029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Despite the benefits of mechanical ventilation, its use in critically ill patients is associated with complications and had led to the growth of noninvasive techniques. We assessed the effect of early intubation (first 8 h after vasopressor start) in septic shock patients, as compared to non-early intubated subjects (unexposed), regarding in-hospital mortality, intensive care and hospital length of stay.
Methods
This study involves secondary analysis of a multicenter prospective study. To adjust for baseline differences in potential confounders, propensity score matching was carried out. In-hospital mortality was analyzed in a time-to-event fashion, while length of stay was assessed as a median difference using bootstrapping.
Results
A total of 735 patients (137 intubated in the first 8 h) were evaluated. Propensity score matching identified 78 pairs with similar severity and characteristics on admission. Intubation was used in all patients in the early intubation group and in 27 (35%) subjects beyond 8 h in the unexposed group. Mortality occurred in 35 (45%) and in 26 (33%) subjects in the early intubation and unexposed groups (hazard ratio 1.44 95% CI 0.86–2.39, p = 0.16). ICU and hospital length of stay were not different among groups [9 vs. 5 (95% CI 1 to 7) and 14 vs. 16 (95% CI − 7 to 8) days]. All sensitivity analyses confirmed the robustness of our findings.
Conclusions
An early approach to invasive mechanical ventilation did not improve outcomes in this matched cohort of patients. The limited number of patients included in these analyses out the total number included in the study may limit generalizability of these findings.
Trial registration NCT02780466. Registered on May 19, 2016.
Collapse
|
29
|
Munshi L, Mancebo J, Brochard LJ. Noninvasive Respiratory Support for Adults with Acute Respiratory Failure. N Engl J Med 2022; 387:1688-1698. [PMID: 36322846 DOI: 10.1056/nejmra2204556] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Laveena Munshi
- From the Interdepartmental Division of Critical Care, University of Toronto (L.M., L.J.B.), the Critical Care Department Sinai Health System (L.M.), and Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto (L.J.B.) - all in Toronto; and the Intensive Care Department, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona (J.M.)
| | - Jordi Mancebo
- From the Interdepartmental Division of Critical Care, University of Toronto (L.M., L.J.B.), the Critical Care Department Sinai Health System (L.M.), and Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto (L.J.B.) - all in Toronto; and the Intensive Care Department, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona (J.M.)
| | - Laurent J Brochard
- From the Interdepartmental Division of Critical Care, University of Toronto (L.M., L.J.B.), the Critical Care Department Sinai Health System (L.M.), and Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto (L.J.B.) - all in Toronto; and the Intensive Care Department, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona (J.M.)
| |
Collapse
|
30
|
Cesarano M, Grieco DL, Michi T, Munshi L, Menga LS, Delle Cese L, Ruggiero E, Rosà T, Natalini D, Sklar MC, Cutuli SL, Bongiovanni F, De Pascale G, Ferreyro BL, Goligher EC, Antonelli M. Helmet noninvasive support for acute hypoxemic respiratory failure: rationale, mechanism of action and bedside application. Ann Intensive Care 2022; 12:94. [PMID: 36241926 PMCID: PMC9568634 DOI: 10.1186/s13613-022-01069-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. Main results In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet; alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10–15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. Conclusions Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.
Collapse
Affiliation(s)
- Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy.
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Daniele Natalini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Michael C Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Salvatore L Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Gennaro De Pascale
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Bruno L Ferreyro
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| |
Collapse
|
31
|
Veenstra P, Veeger NJGM, Koppers RJH, Duiverman ML, van Geffen WH. High-flow nasal cannula oxygen therapy for admitted COPD-patients. A retrospective cohort study. PLoS One 2022; 17:e0272372. [PMID: 36197917 PMCID: PMC9534431 DOI: 10.1371/journal.pone.0272372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The use of High-flow nasal cannula (HFNC) is increasing in admitted COPD-patients and could provide a step in between non-invasive ventilation (NIV) and standard oxygen supply. Recent studies demonstrated that HFNC is capable of facilitating secretion removal and reduce the work of breathing. Therefore, it might be of advantage in the treatment of acute exacerbations of COPD (AECOPD). No randomized trials have assessed this for admitted COPD-patients on a regular ward and only limited data from non-randomized studies is available. OBJECTIVES The aim of our study was to identify the reasons to initiate treatment with HFNC in a group of COPD-patients during an exacerbation, further identify those most likely to benefit from HFNC treatment and to find factors associated with treatment success on the pulmonary ward. MATERIAL AND METHODS This retrospective study included COPD-patients admitted to the pulmonary ward and treated with HFNC from April 2016 until April 2019. Only patients admitted with severe acute exacerbations were included. Patients who had an indication for NIV-treatment where treated with NIV and were included only if they subsequently needed HFNC, e.g. when they did not tolerate NIV. Known asthma patients were excluded. RESULTS A total of 173 patients were included. Stasis of sputum was the indication most reported to initiate HFNC-treatment. Treatment was well tolerated in 83% of the patients. Cardiac and vascular co-morbidities were significantly associated with a smaller chance of successful treatment (Respectively OR = 0.435; p = 0.013 and OR = 0.493;p = 0.035). Clinical assessment judged HFNC-treatment to be successful in 61% of the patients. Furthermore, in-hospital treatment with NIV was associated with a higher chance of HFNC failure afterwards (OR = 0.439; p = 0.045). CONCLUSION This large retrospective study showed that HFNC-treatment in patients with an AECOPD was initiated most often for sputum stasis as primary reason. Factors associated with improved outcomes of HFNC-treatment was the absence of vascular and/or cardiac co-morbidities and no need for in-hospital NIV-treatment.
Collapse
Affiliation(s)
- Pieter Veenstra
- Department of Respiratory Medicine, Medical Center Leeuwarden, Leeuwarden, Netherlands
| | - Nic J. G. M. Veeger
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ralph J. H. Koppers
- Department of Respiratory Medicine, Medical Center Leeuwarden, Leeuwarden, Netherlands
| | - Marieke L. Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wouter H. van Geffen
- Department of Respiratory Medicine, Medical Center Leeuwarden, Leeuwarden, Netherlands
- * E-mail:
| |
Collapse
|
32
|
NIV-NAVA versus NCPAP immediately after birth in premature infants: A randomized controlled trial. Respir Physiol Neurobiol 2022; 302:103916. [PMID: 35500883 DOI: 10.1016/j.resp.2022.103916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate whether noninvasive-neurally adjusted ventilatory assist (NIV-NAVA) decrease respiratory efforts compared to nasal continuous positive airway pressure (NCPAP) during the first hours of life. METHODS Twenty infants born between 28+0 and 31+6 weeks were randomized to NIV-NAVA or NCPAP. Positive end-expiratory pressure was constantly kept at 6 cmH2O for both groups and the NAVA level was 1.0 cmH2O/µV for NIV-NAVA group. The electrical activity of diaphragm (Edi) were recorded for the first two hours. RESULTS Peak and minimum Edi decreased similarly in both groups (P = 0.98 and P = 0.59, respectively). Leakages were higher in the NIV-NAVA group than in the NCPAP group (P < 0.001). The neural apnea defined as a flat Edi for ≥ 5 s were less frequent in NIV-NAVA group than in NCPAP group (P = 0.046). CONCLUSIONS Immediately applied NIV-NAVA in premature infants did not reduce breathing effort, measured as peak Edi. However, NIV-NAVA decreased neural apneic episodes compared to NCPAP.
Collapse
|
33
|
Weaver L, Saffaran S, Chikhani M, Laffey JG, Scott TE, Camporota L, Hardman JG, Bates DG. Why Reduced Inspiratory Pressure Could Determine Success of Non-Invasive Ventilation in Acute Hypoxic Respiratory Failure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3265-3268. [PMID: 36085857 DOI: 10.1109/embc48229.2022.9871901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The magnitude of inspiratory effort relief within the first 2 hours of non-invasive ventilation for hypoxic respiratory failure was shown in a recent exploratory clinical study to be an early and accurate predictor of outcome at 24 hours. We simulated the application of non-invasive ventilation to three patients whose physiological and clinical characteristics match the data in that study. Reductions in inspiratory effort corresponding to reductions of esophageal pressure swing greater than 10 cmH2O more than halved the values of total lung stress, driving pressure, power and transpulmonary pressure swing. In the absence of significant reductions in inspiratory pressure, multiple indicators of lung injury increased after application of non-invasive ventilation. Clinical Relevance- We show using computer simulation that reduced inspiratory pressure after application of noninvasive ventilation translates directly into large reductions in multiple well-established indicators of lung injury, providing a potential physiological explanation for recent clinical findings.
Collapse
|
34
|
SCARAMUZZO G, OTTAVIANI I, VOLTA CA, SPADARO S. Mechanical ventilation and COPD: from pathophysiology to ventilatory management. Minerva Med 2022; 113:460-470. [DOI: 10.23736/s0026-4806.22.07974-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Mannarino MR, Bianconi V, Cosentini E, Figorilli F, Natali C, Cellini G, Colangelo C, Giglioni F, Braca M, Pirro M. The HACOR Score Predicts Worse in-Hospital Prognosis in Patients Hospitalized with COVID-19. J Clin Med 2022; 11:jcm11123509. [PMID: 35743579 PMCID: PMC9225644 DOI: 10.3390/jcm11123509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Non-invasive respiratory support (NIRS) is widely used in COVID-19 patients, although high rates of NIRS failure are reported. Early detection of NIRS failure and promptly defining the need for intubation are crucial for the management of patients with acute respiratory failure (ARF). We tested the ability of the HACOR score¸ a scale based on clinical and laboratory parameters, to predict adverse outcomes in hospitalized COVID-19 patients with ARF. Four hundred patients were categorized according to high (>5) or low (≤5) HACOR scores measured at baseline and 1 h after the start of NIRS treatment. The association between a high HACOR score and either in-hospital death or the need for intubation was evaluated. NIRS was employed in 161 patients. Forty patients (10%) underwent intubation and 98 (25%) patients died. A baseline HACOR score > 5 was associated with the need for intubation or in-hospital death in the whole population (HR 4.3; p < 0.001), in the subgroup of patients who underwent NIRS (HR 5.2; p < 0.001) and in no-NIRS subgroup (HR 7.9; p < 0.001). In the NIRS subgroup, along with the baseline HACOR score, also 1-h HACOR score predicted NIRS failure (HR 2.6; p = 0.039). In conclusion, the HACOR score is a significant predictor of adverse clinical outcomes in patients with COVID-19-related ARF.
Collapse
|
36
|
Alibrahim O, Rehder KJ, Miller AG, Rotta AT. Mechanical Ventilation and Respiratory Support in the Pediatric Intensive Care Unit. Pediatr Clin North Am 2022; 69:587-605. [PMID: 35667763 DOI: 10.1016/j.pcl.2022.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Children admitted to the pediatric intensive care unit often require respiratory support for the treatment of respiratory distress and failure. Respiratory support comprises both noninvasive modalities (ie, heated humidified high-flow nasal cannula, continuous positive airway pressure, bilevel positive airway pressure, negative pressure ventilation) and invasive mechanical ventilation. In this article, we review the various essential elements and considerations involved in the planning and application of respiratory support in the treatment of the critically ill children.
Collapse
Affiliation(s)
- Omar Alibrahim
- Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kyle J Rehder
- Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Andrew G Miller
- Respiratory Care Services, Duke University Medical Center, Durham, NC, USA
| | - Alexandre T Rotta
- Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
37
|
Frat JP, Le Pape S, Coudroy R, Thille AW. Noninvasive Oxygenation in Patients with Acute Respiratory Failure: Current Perspectives. Int J Gen Med 2022; 15:3121-3132. [PMID: 35418775 PMCID: PMC9000535 DOI: 10.2147/ijgm.s294906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 01/16/2023] Open
Abstract
Purpose of Review High-flow nasal oxygen and noninvasive ventilation are two alternative strategies to standard oxygen in the management of acute respiratory failure. Discussion Although high-flow nasal oxygen has gained major popularity in ICUs due to its simplicity of application, good comfort for patients, efficiency in improving oxygenation and promising results in patients with acute hypoxemic respiratory failure, further large clinical trials are needed to confirm its superiority over standard oxygen. Non-invasive ventilation may have deleterious effects, especially in patients exerting strong inspiratory efforts, and no current recommendations support its use in this setting. Protective non-invasive ventilation using higher levels of positive-end expiratory pressure, more prolonged sessions and other interfaces such as the helmet may have beneficial physiological effects leading to it being proposed as alternative to high-flow nasal oxygen in acute hypoxemic respiratory failure. By contrast, non-invasive ventilation is the first-line strategy of oxygenation in patients with acute exacerbation of chronic lung disease, while high-flow nasal oxygen could be an alternative to non-invasive ventilation after partial reversal of respiratory acidosis. Questions remain about the target populations and non-invasive oxygen strategy representing the best alternative to standard oxygen in acute hypoxemic respiratory failure. As concerns acute on-chronic-respiratory failure, the place of high-flow nasal oxygen remains to be evaluated.
Collapse
Affiliation(s)
- Jean-Pierre Frat
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers, France
- Centre d’Investigation Clinique 1402 ALIVE, INSERM, Université de Poitiers, Poitiers, France
| | - Sylvain Le Pape
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers, France
| | - Rémi Coudroy
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers, France
- Centre d’Investigation Clinique 1402 ALIVE, INSERM, Université de Poitiers, Poitiers, France
| | - Arnaud W Thille
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers, France
- Centre d’Investigation Clinique 1402 ALIVE, INSERM, Université de Poitiers, Poitiers, France
| |
Collapse
|
38
|
Pearson SD, Koyner JL, Patel BK. Management of Respiratory Failure: Ventilator Management 101 and Noninvasive Ventilation. Clin J Am Soc Nephrol 2022; 17:572-580. [PMID: 35273008 PMCID: PMC8993478 DOI: 10.2215/cjn.13091021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mechanical ventilation is a lifesaving therapy for critically ill patients with respiratory failure, but like all treatments, it has the potential to cause harm if not administered appropriately. This review aims to give an overview of the basic principles of invasive and noninvasive mechanical ventilation. Topics covered include modes of mechanical ventilation, respiratory mechanics and ventilator waveform interpretation, strategies for initial ventilator settings, indications and contraindications for noninvasive ventilation, and the effect of the ventilator on kidney function.
Collapse
Affiliation(s)
- Steven D. Pearson
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Jay L. Koyner
- Department of Medicine, Section of Nephrology, University of Chicago, Chicago, Illinois
| | - Bhakti K. Patel
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
39
|
Cammarota G, Simonte R, De Robertis E. Comfort During Non-invasive Ventilation. Front Med (Lausanne) 2022; 9:874250. [PMID: 35402465 PMCID: PMC8988041 DOI: 10.3389/fmed.2022.874250] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/03/2023] Open
Abstract
Non-invasive ventilation (NIV) has been shown to be effective in avoiding intubation and improving survival in patients with acute hypoxemic respiratory failure (ARF) when compared to conventional oxygen therapy. However, NIV is associated with high failure rates due, in most cases, to patient discomfort. Therefore, increasing attention has been paid to all those interventions aimed at enhancing patient's tolerance to NIV. Several practical aspects have been considered to improve patient adaptation. In particular, the choice of the interface and the ventilatory setting adopted for NIV play a key role in the success of respiratory assistance. Among the different NIV interfaces, tolerance is poorest for the nasal and oronasal masks, while helmet appears to be better tolerated, resulting in longer use and lower NIV failure rates. The choice of fixing system also significantly affects patient comfort due to pain and possible pressure ulcers related to the device. The ventilatory setting adopted for NIV is associated with varying degrees of patient comfort: patients are more comfortable with pressure-support ventilation (PSV) than controlled ventilation. Furthermore, the use of electrical activity of the diaphragm (EADi)-driven ventilation has been demonstrated to improve patient comfort when compared to PSV, while reducing neural drive and effort. If non-pharmacological remedies fail, sedation can be employed to improve patient's tolerance to NIV. Sedation facilitates ventilation, reduces anxiety, promotes sleep, and modulates physiological responses to stress. Judicious use of sedation may be an option to increase the chances of success in some patients at risk for intubation because of NIV intolerance consequent to pain, discomfort, claustrophobia, or agitation. During the Coronavirus Disease-19 (COVID-19) pandemic, NIV has been extensively employed to face off the massive request for ventilatory assistance. Prone positioning in non-intubated awake COVID-19 patients may improve oxygenation, reduce work of breathing, and, possibly, prevent intubation. Despite these advantages, maintaining prone position can be particularly challenging because poor comfort has been described as the main cause of prone position discontinuation. In conclusion, comfort is one of the major determinants of NIV success. All the strategies aimed to increase comfort during NIV should be pursued.
Collapse
|
40
|
Bai L, Ding F, Xiong W, Shu W, Jiang L, Liu Y, Duan J. Early assessment of the efficacy of noninvasive ventilation tested by HACOR score to avoid delayed intubation in patients with moderate to severe ARDS. Ther Adv Respir Dis 2022; 16:17534666221081042. [PMID: 35199609 PMCID: PMC8883367 DOI: 10.1177/17534666221081042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Use of noninvasive ventilation (NIV) in patients with moderate to severe ARDS is controversial. We aimed to use HACOR (combination of heart rate, acidosis, consciousness, oxygenation and respiratory rate) score to comprehensively assess the efficacy of NIV in ARDS patients with PaO2/FiO2 ⩽ 150 mmHg. Methods: Secondary analysis was performed using the data collected from two databases. We screened the ARDS patients who used NIV as a first-line therapy. Patients with PaO2/FiO2 ⩽ 150 mmHg were enrolled. NIV failure was defined as requirement of intubation. Results: A total of 224 moderate to severe ARDS patients who used NIV as a first-line therapy were enrolled. Of them, 125 patients (56%) experienced NIV failure and received intubation. Among the intubated patients, the survivor had shorter time from initiation of NIV to intubation than nonsurvivors (median 10 vs 22 h, p < 0.01). The median differences of HACOR score before and 1–2 h of NIV were 1 point (interquartile range: 0–3). We defined the patients with △HACOR >1 as responders (n = 102) and the rest to non-responders (n = 122). Compared to non-responders, the responders had higher HACOR score before NIV. However, the HACOR score was lower in the responders than non-responders after 1–2 h, 12 h, and 24 h of NIV. The responders also had lower NIV failure rate (36% vs 72%, p < 0.01) and lower 28-day mortality (32% vs 47%, p = 0.04) than non-responders. Conclusions: NIV failure was high among patients with moderate to severe ARDS. Delayed intubation is associated with increased mortality. The reduction of HACOR score after 1–2 h of NIV can identify the patients who respond well to NIV.
Collapse
Affiliation(s)
- Linfu Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Ding
- Department of Respiratory and Critical Care Medicine, The Bishan Hospital of Chongqing, Chongqing, China
| | - Weiming Xiong
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Weiwei Shu
- Department of Critical Care Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuliang Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Duan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Yuzhong District, Chongqing 400016, Sichuan, P.R. China
| |
Collapse
|
41
|
Leszek A, Wozniak H, Giudicelli-Bailly A, Suh N, Boroli F, Pugin J, Grosgurin O, Marti C, Le Terrier C, Quintard H. Early Measurement of ROX Index in Intermediary Care Unit Is Associated with Mortality in Intubated COVID-19 Patients: A Retrospective Study. J Clin Med 2022; 11:jcm11020365. [PMID: 35054058 PMCID: PMC8779507 DOI: 10.3390/jcm11020365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
COVID-19 patients often present with rapidly progressing acute hypoxemic respiratory failure, requiring orotracheal intubation with different prognostic issues. However, ICU specialists lack predictive tools to stratify these patients. We conducted a single-center cross-sectional retrospective study to evaluate if the ROX index, measured under non-invasive oxygenation support, can predict ICU mortality in a COVID-19 intubated patient cohort. This study took place in the division of intensive care at the Geneva University Hospitals (Geneva, Switzerland). We included all consecutive adult patients treated by non-invasive oxygenation support and requiring intubation for acute respiratory failure due to COVID-19 between 9 September 2020 and 30 March 2021, corresponding to the second local surge of COVID-19 cases. Baseline demographic data, comorbidities, median ROX between H0 and H8, and clinical outcomes were collected. Overall, 82 patients were intubated after failing a non-invasive oxygenation procedure. Women represented 25.6% of the whole cohort. Median age and median BMI were 70 (60–75) years and 28 (25–33), respectively. Before intubation, the median ROX between H0 and H8 was 6.3 (5.0–8.2). In a multivariate analysis, the median ROX H0–H8 was associated with ICU mortality as a protective factor with an odds ratio (95% CI) = 0.77 (0.60–0.99); p < 0.05. In intubated COVID-19 patients treated initially by non-invasive oxygenation support for acute respiratory failure, the median ROX H0–H8 could be an interesting predictive factor associated with ICU mortality.
Collapse
Affiliation(s)
- Alexandre Leszek
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (A.L.); (O.G.); (C.M.)
| | - Hannah Wozniak
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Amélie Giudicelli-Bailly
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Noémie Suh
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Filippo Boroli
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Jérôme Pugin
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Olivier Grosgurin
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (A.L.); (O.G.); (C.M.)
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Christophe Marti
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (A.L.); (O.G.); (C.M.)
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Christophe Le Terrier
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
| | - Hervé Quintard
- Department of Acute Medicine, Intensive Care Unit, Geneva University Hospitals, 1205 Geneva, Switzerland; (H.W.); (A.G.-B.); (N.S.); (F.B.); (J.P.); (C.L.T.)
- Correspondence:
| |
Collapse
|
42
|
da Silva Costa WN, Miguel JP, Dos Santos Prado F, de Mello Lula LHS, Junqueira Amarante GA, Righetti RF, Yamaguti WP. Noninvasive ventilation and high-flow nasal cannula in patients with acute hypoxemic respiratory failure by covid-19: a retrospective study of the feasebility, safety and outcomes. Respir Physiol Neurobiol 2022; 298:103842. [PMID: 35026479 PMCID: PMC8744300 DOI: 10.1016/j.resp.2022.103842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/02/2021] [Accepted: 01/08/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Noninvasive ventilation (NIV) and High-flow nasal cannula (HFNC) are the main forms of treatment for acute respiratory failure. This study aimed to evaluate the effect, safety, and applicability of the NIV and HFNC in patients with acute hypoxemic respiratory failure (AHRF) caused by COVID-19. METHODS In this retrospective study, we monitored the effect of NIV and HFNC on the SpO2 and respiratory rate before, during, and after treatment, length of stay, rates of endotracheal intubation, and mortality in patients with AHRF caused by COVID-19. Additionally, data regarding RT-PCR from physiotherapists who were directly involved in assisting COVID-19 patients and non-COVID-19. RESULTS 62.2% of patients were treated with HFNC. ROX index increased during and after NIV and HFNC treatment (P < 0.05). SpO2 increased during NIV treatment (P < 0.05), but was not maintained after treatment (P = 0.17). In addition, there was no difference in the respiratory rate during or after the NIV (P = 0.95) or HFNC (P = 0.60) treatment. The mortality rate was 35.7% for NIV vs 21.4% for HFNC (P = 0.45), while the total endotracheal intubation rate was 57.1% for NIV vs 69.6% for HFNC (P = 0.49). Two adverse events occurred during treatment with NIV and eight occurred during treatment with HFNC. There was no difference in the physiotherapists who tested positive for SARS-CoV-2 directly involved in assisting COVID-19 patients and non-COVID-19 ones (P = 0.81). CONCLUSION The application of NIV and HFNC in the critical care unit is feasible and associated with favorable outcomes. In addition, there was no increase in the infection of physiotherapists with SARS-CoV-2.
Collapse
|
43
|
Xing D, Chen L, Wang L, Jin J, Liu D, Liu H, Dong S. An analysis of the treatment effect of two modes of oxygenation on patients with radiation pneumonia complicated by respiratory failure. Technol Health Care 2022; 30:869-880. [PMID: 35001901 DOI: 10.3233/thc-213597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stereotactic radiotherapy (SBRT) is widely used in the treatment of thoracic cancer. OBJECTIVE To evaluate the efficacy of a non-rebreather mask (NRBM) and high-flow nasal cannula (HFNC) in patients with radiation pneumonia complicated with respiratory failure. METHODS This was a single-center randomized controlled study. Patients admitted to the EICU of the Fourth Hospital of Hebei Medical University were selected and divided into NRBM and HFNC group. Arterial blood gas analysis, tidal volume, respiratory rates and the cases of patients receiving invasive assisted ventilation were collected at 0, 4, 8, 12, 24, 48, and 72 h after admission. RESULTS (1) The PaO2/FiO2, respiratory rates, and tidal volume between the two groups at 0, 4, 8, 12, 24, 48, and 72 h were different, with F values of 258.177, 294.121, and 134.372, all P< 0.01. These indicators were different under two modes of oxygenation, with F values of 40.671, 168.742, and 55.353, all P< 0.01, also varied with time, with an F value of 7.480, 9.115, and 12.165, all P< 0.01. (2) The incidence of trachea intubation within 72 h between HFNC and NRBM groups (23 [37.1%] vs. 34 [54.0%], P< 0.05). The transition time to mechanical ventilation in the HFNC and NRBM groups (55.3 ± 3.2 h vs. 45.9 ± 3.6 h, P< 0.05). (3) The risk of intubation in patients with an APACHE-II score > 23 was 2.557 times than score ⩽ 23, and the risk of intubation in the NRBM group was 1.948 times more than the HFNC group (P< 0.05). CONCLUSION Compared with the NRBM, HFNC can improve the oxygenation state of patients with radiation pneumonia complicated with respiratory failure in a short time, and reduce the incidence of trachea intubation within 72 h.
Collapse
Affiliation(s)
- Dong Xing
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li Chen
- Department of General practice, The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lantao Wang
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Jin
- Department of Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dong Liu
- Department of Anesthesiology, Baoding No. 1 Hospital, Baoding, Hebei, China
| | - Huan Liu
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shimin Dong
- Department of Emergency, The Third Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
44
|
Benefits and risks of noninvasive oxygenation strategy in COVID-19: a multicenter, prospective cohort study (COVID-ICU) in 137 hospitals. Crit Care 2021; 25:421. [PMID: 34879857 PMCID: PMC8653629 DOI: 10.1186/s13054-021-03784-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 12/05/2022] Open
Abstract
Rational To evaluate the respective impact of standard oxygen, high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) on oxygenation failure rate and mortality in COVID-19 patients admitted to intensive care units (ICUs). Methods Multicenter, prospective cohort study (COVID-ICU) in 137 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, oxygenation failure, and survival data were collected. Oxygenation failure was defined as either intubation or death in the ICU without intubation. Variables independently associated with oxygenation failure and Day-90 mortality were assessed using multivariate logistic regression. Results From February 25 to May 4, 2020, 4754 patients were admitted in ICU. Of these, 1491 patients were not intubated on the day of ICU admission and received standard oxygen therapy (51%), HFNC (38%), or NIV (11%) (P < 0.001). Oxygenation failure occurred in 739 (50%) patients (678 intubation and 61 death). For standard oxygen, HFNC, and NIV, oxygenation failure rate was 49%, 48%, and 60% (P < 0.001). By multivariate analysis, HFNC (odds ratio [OR] 0.60, 95% confidence interval [CI] 0.36–0.99, P = 0.013) but not NIV (OR 1.57, 95% CI 0.78–3.21) was associated with a reduction in oxygenation failure). Overall 90-day mortality was 21%. By multivariable analysis, HFNC was not associated with a change in mortality (OR 0.90, 95% CI 0.61–1.33), while NIV was associated with increased mortality (OR 2.75, 95% CI 1.79–4.21, P < 0.001). Conclusion In patients with COVID-19, HFNC was associated with a reduction in oxygenation failure without improvement in 90-day mortality, whereas NIV was associated with a higher mortality in these patients. Randomized controlled trials are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03784-2.
Collapse
|
45
|
Bustos-Gajardo F, Luarte-Martínez S, Dubo Araya S, Adasme Jeria R. Resultados clínicos según el tiempo de inicio de la ventilación invasiva en niños con fracaso de la ventilación no invasiva. Med Intensiva 2021. [DOI: 10.1016/j.medin.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Cena T, Cammarota G, Azzolina D, Barini M, Bazzano S, Zagaria D, Negroni D, Castello L, Carriero A, Corte FD, Vaschetto R. Predictors of intubation and mortality in COVID-19 patients: a retrospective study. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2021. [PMCID: PMC8626752 DOI: 10.1186/s44158-021-00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Estimating the risk of intubation and mortality among COVID-19 patients can help clinicians triage these patients and allocate resources more efficiently. Thus, here we sought to identify the risk factors associated with intubation and intra-hospital mortality in a cohort of COVID-19 patients hospitalized due to hypoxemic acute respiratory failure (ARF). Results We included retrospectively a total of 187 patients admitted to the subintensive and intensive care units of the University Hospital “Maggiore della Carità” of Novara between March 1st and April 30th, 2020. Based on these patients’ demographic characteristics, early clinical and laboratory variables, and quantitative chest computerized tomography (CT) findings, we developed two random forest (RF) models able to predict intubation and intra-hospital mortality. Variables independently associated with intubation were C-reactive protein (p < 0.001), lactate dehydrogenase level (p = 0.018) and white blood cell count (p = 0.026), while variables independently associated with mortality were age (p < 0.001), other cardiovascular diseases (p = 0.029), C-reactive protein (p = 0.002), lactate dehydrogenase level (p = 0.018), and invasive mechanical ventilation (p = 0.001). On quantitative chest CT analysis, ground glass opacity, consolidation, and fibrosis resulted significantly associated with patient intubation and mortality. The major predictors for both models were the ratio between partial pressure of arterial oxygen and fraction of inspired oxygen, age, lactate dehydrogenase, C-reactive protein, glycemia, CT quantitative parameters, lymphocyte count, and symptom onset. Conclusions Altogether, our findings confirm previously reported demographic, clinical, hemato-chemical, and radiologic predictors of adverse outcome among COVID-19-associated hypoxemic ARF patients. The two newly developed RF models herein described show an overall good level of accuracy in predicting intra-hospital mortality and intubation in our study population. Thus, their future development and implementation may help not only identify patients at higher risk of deterioration more effectively but also rebalance the disproportion between resources and demand. Supplementary Information The online version contains supplementary material available at 10.1186/s44158-021-00016-5.
Collapse
|
47
|
Feasibility and Clinical Outcomes of a Step Up Noninvasive Respiratory Support Strategy in Patients with Severe COVID-19 Pneumonia. J Clin Med 2021; 10:jcm10225444. [PMID: 34830728 PMCID: PMC8620799 DOI: 10.3390/jcm10225444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
The best noninvasive respiratory strategy in patients with Coronavirus Disease 2019 (COVID-19) pneumonia is still discussed. We aimed at assessing the rate of endotracheal intubation (ETI) in patients treated with continuous positive airway pressure (CPAP) and noninvasive ventilation (NIV) if CPAP failed. Secondary outcomes were in-hospital mortality and in-hospital length of stay (LOS). A retrospective, observational, multicenter study was conducted in intermediate-high dependency respiratory units of two Italian university hospitals. Consecutive patients with COVID-19 treated with CPAP were enrolled. Thoraco-abdominal asynchrony or hemodynamic instability led to ETI. Patients showing SpO2 ≤ 94%, respiratory rate ≥ 30 bpm or accessory muscle activation on CPAP received NIV. Respiratory distress and desaturation despite NIV eventually led to ETI. 156 patients were included. The overall rate of ETI was 30%, mortality 18% and median LOS 24 (17–32) days. Among patients that failed CPAP (n = 63), 28% were intubated, while the remaining 72% received NIV, of which 65% were intubated. Patients intubated after CPAP showed lower baseline PaO2/FiO2, lower lymphocyte counts and higher D-dimer values compared with patients intubated after CPAP + NIV. Mortality was 22% with CPAP + ETI, and 20% with CPAP + NIV + ETI. In the case of CPAP failure, a NIV trial appears feasible, does not deteriorate respiratory status and may reduce the need for ETI in COVID-19 patients.
Collapse
|
48
|
Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med 2021; 49:e1063-e1143. [PMID: 34605781 DOI: 10.1097/ccm.0000000000005337] [Citation(s) in RCA: 1271] [Impact Index Per Article: 317.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Lemiale V, Yvin E, Kouatchet A, Mokart D, Demoule A, Dumas G, Grrr-OH Research Group. Oxygenation strategy during acute respiratory failure in immunocompromised patients. JOURNAL OF INTENSIVE MEDICINE 2021; 1:81-89. [PMID: 36788802 PMCID: PMC9923978 DOI: 10.1016/j.jointm.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Acute respiratory failure (ARF) in immunocompromised patients remains challenging to treat. A large number of case require admission to intensive care unit (ICU) where mortality remains high. Oxygenation without intubation is important in this setting. This review summarizes recent studies assessing oxygenation devices for immunocompromised patients. Previous studies showed that non-invasive ventilation (NIV) has been associated with lower intubation and mortality rates. Indeed, in recent years, the outcomes of immunocompromised patients admitted to the ICU have improved. In the most recent randomized controlled trials, including immunocompromised patients admitted to the ICU with ARF, neither NIV nor high-flow nasal oxygen (HFNO) could reduce the mortality rate. In this setting, other strategies need to be tested to decrease the mortality rate. Early admission strategy and avoiding late failure of oxygenation strategy have been assessed in retrospective studies. However, objective criteria are still lacking to clearly discriminate time to admission or time to intubation. Also, diagnosis strategy may have an impact on intubation or mortality rates. On the other hand, lack of diagnosis has been associated with a higher mortality rate. In conclusion, improving outcomes in immunocompromised patients with ARF may include strategies other than the oxygenation strategy alone. This review discusses other unresolved questions to decrease mortality after ICU admission in such patients.
Collapse
Affiliation(s)
- Virginie Lemiale
- Service de Médecine Intensive et Réanimation, APHP Hopital Saint Louis, 1 Avenue Claude Vellefaux, Paris 75010, France,Corresponding author: Virginie Lemiale, Service de Médecine Intensive et Réanimation, APHP Hopital Saint Louis, 1 Avenue Claude Vellefaux, Paris 75010, France.
| | - Elise Yvin
- Service de Médecine Intensive et Réanimation, APHP Hopital Saint Louis, 1 Avenue Claude Vellefaux, Paris 75010, France
| | - Achille Kouatchet
- Service de Réanimation Médicale et Médecine Hyperbare, Angers 49100, France
| | - Djamel Mokart
- Institut Paoli-Calmettes, Réanimation Medico-Chirurgicale, Marseille 13009, France
| | - Alexandre Demoule
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation (Département R3S), and Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris 75013, France
| | - Guillaume Dumas
- Service de Médecine Intensive et Réanimation, APHP Hopital Saint Louis, 1 Avenue Claude Vellefaux, Paris 75010, France
| | | |
Collapse
|
50
|
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Møller MH, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 2021; 47:1181-1247. [PMID: 34599691 PMCID: PMC8486643 DOI: 10.1007/s00134-021-06506-y] [Citation(s) in RCA: 2135] [Impact Index Per Article: 533.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Laura Evans
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.
| | - Andrew Rhodes
- Adult Critical Care, St George's University Hospitals NHS Foundation Trust & St George's University of London, London, UK
| | - Waleed Alhazzani
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Flávia R Machado
- Anesthesiology, Pain and Intensive Care Department, Federal University of São Paulo, Hospital of São Paulo, São Paulo, Brazil
| | | | | | - Hallie C Prescott
- University of Michigan and VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | | | - Steven Simpson
- University of Kansas Medical Center, Kansas City, KS, USA
| | - W Joost Wiersinga
- ESCMID Study Group for Bloodstream Infections, Endocarditis and Sepsis, Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fayez Alshamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, Emirates University, Al Ain, United Arab Emirates
| | - Derek C Angus
- University of Pittsburgh Critical Care Medicine CRISMA Laboratory, Pittsburgh, PA, USA
| | - Yaseen Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Luciano Azevedo
- School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | | | | | - Lisa Burry
- Mount Sinai Hospital & University of Toronto (Leslie Dan Faculty of Pharmacy), Toronto, ON, Canada
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University Pieve Emanuele, Milan, Italy.,Department of Anaesthesia and Intensive Care, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - John Centofanti
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Angel Coz Yataco
- Lexington Veterans Affairs Medical Center/University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | - Kent Doi
- The University of Tokyo, Tokyo, Japan
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, Beijing, China
| | - Elisa Estenssoro
- Hospital Interzonal de Agudos San Martin de La Plata, Buenos Aires, Argentina
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | | | - Carol Hodgson
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Morten Hylander Møller
- Department of Intensive Care 4131, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Shevin Jacob
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Michael Klompas
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Population Medicine, Harvard Medical School, and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Younsuck Koh
- ASAN Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Anand Kumar
- University of Manitoba, Winnipeg, MB, Canada
| | - Arthur Kwizera
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Suzana Lobo
- Intensive Care Division, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Henry Masur
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | | | | | - Yatin Mehta
- Medanta the Medicity, Gurugram, Haryana, India
| | - Mervyn Mer
- Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Nunnally
- New York University School of Medicine, New York, NY, USA
| | - Simon Oczkowski
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Tiffany Osborn
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Michael Puskarich
- University of Minnesota/Hennepin County Medical Center, Minneapolis, MN, USA
| | - Jason Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | | | | | | - Charles L Sprung
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tobias Welte
- Medizinische Hochschule Hannover and German Center of Lung Research (DZL), Hannover, Germany
| | - Janice Zimmerman
- World Federation of Intensive and Critical Care, Brussels, Belgium
| | - Mitchell Levy
- Warren Alpert School of Medicine at Brown University, Providence, Rhode Island & Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|