1
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
2
|
Durankuş F, Albayrak Y, Erdoğan F, Albayrak N, Erdoğan MA, Erbaş O. Granulocyte Colony-Stimulating Factor Has a Sex-Dependent Positive Effect in the Maternal Immune Activation-Induced Autism Model. Int J Dev Neurosci 2022; 82:716-726. [PMID: 35904498 DOI: 10.1002/jdn.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The medical intervention for autism spectrum disorder (ASD) is restricted to ameliorating comorbid situations. Granulocyte colony-stimulating factor (G-CSF) is a growth factor that enhances the proliferation, differentiation and survival of hematopoietic progenitor cells. In the present study, we aimed to investigate the effects of G-CSF in a maternal immune activation-induced autism model. METHODS Sixteen female and 6 male Wistar adult rats were included in the study. After 21 days, forty-eight littermates (8 male controls, 8 female controls, 16 male lipopolysaccharide (LPS)-exposed rats and 16 female LPS-exposed rats) were divided into groups. Sixteen male LPS-exposed and 16 female LPS-exposed rats were divided into saline and G-CSF treatment groups. RESULTS In male rats, the LPS-exposed group was found to have significantly higher levels of TNF-α, IL-2, and IL-17 than the LPS-exposed G-CSF group. Levels of nerve growth factor, brain PSD-95 and brain GAD67 were higher in the LPS-exposed G-CSF group than in the LPS-exposed group in male rats. In female rats, brain NGF levels were similar between groups. There was no difference between groups in terms of brain GAD 67 levels. Brain PSD-95 levels were higher in the control group than in both the LPS-exposed and LPS-exposed G-CSF groups in female rats. Both neuronal CA1 and neuronal CA2 levels were lower, and the GFAP immunostaining index (CA1) and GFAP immunostaining index (CA3) were higher in the LPS-exposed group than in the LPS-exposed G-CSF group in male rats. However, neuronal count CA1 and Neuronal count CA3 values were found to be similar between groups in female rats. CONCLUSIONS The present research is the first to demonstrate the beneficial effects of G-CSF on core symptoms of ASD experimentally depending on male sex. G-CSF can be a good candidate for ameliorating the core symptoms of ASD without serious side effects in males.
Collapse
Affiliation(s)
- Ferit Durankuş
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | - Yakup Albayrak
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Fırat Erdoğan
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | | | - Mümin Alper Erdoğan
- Department of Physiology, Katip Çelebi University Medical School, İzmir, Turkey
| | - Oytun Erbaş
- Medical School, Department of Physiology, Demiroğlu Bilim University, İstanbul, Turkey
| |
Collapse
|
3
|
Niu X, Jiao Z, Wang Z, Jiang A, Zhang X, Zhang H, Xue F. MiR-17-5p protects neonatal mice from hypoxic-ischemic brain damage by targeting Casp2. Neurosci Lett 2022; 772:136475. [DOI: 10.1016/j.neulet.2022.136475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023]
|
4
|
Ahmadi F, Salmasi Z, Mojarad M, Eslahi A, Tayarani-Najaran Z. G-CSF augments the neuroprotective effect of conditioned medium of dental pulp stem cells against hypoxic neural injury in SH-SY5Y cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1743-1752. [PMID: 35432810 PMCID: PMC8976909 DOI: 10.22038/ijbms.2021.60217.13344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Objective(s): Dental pulp stem cells (DPSCs) can differentiate into functional neurons and have the potential for cell therapy in neurological diseases. Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein family shown neuroprotective effect in models of nerve damage. we evaluated the protective effects of G-CSF, conditioned media from DPSCs (DPSCs-CM) and conditioned media from transfected DPSCs with plasmid encoding G-CSF (DPSC-CMT) on SH-SY5Y exposed to CoCl2 as a model of hypoxia-induced neural damage. Materials and Methods: SH-SY5Y exposed to CoCl2 were treated with DPSCs-CM, G-CSF, simultaneous combination of DPSCs-CM and G-CSF and finally DPSC-CMT. Cell viability and apoptosis were determined by resazurin (or lactate dehydrogenase (LDH) assay alternatively) and propidium iodide (PI) staining. Western blot analysis was performed to detect changes in apoptotic protein levels. The interleukin-6 and interleukin-10 IL6/IL10 levels were measured with Enzyme-Linked Immunosorbent Assay (ELISA). Results: DPSCs-CM and G-CSF were able to significantly protect SH-SY5Y against neural cell damage caused by CoCl2 according to resazurin and LDH analysis. Also, the percentage of apoptotic cells decreased when SH-SY5Y were treated with DPSCs-CM and G-CSF simultaneously. After transfection of DPSCs with G-CSF plasmid, DPSC-CMT could significantly improve the protection. The amount of β-catenin, cleaved PARP and caspase-3 were significantly decreased and the expression of survivin was considerably increased when hypoxic SH-SY5Y treated with DPSCs-CM plus G-CSF according to Western blot. Decreased level of IL-6/IL-10, which exposed to CoCl2, after treatment with DPSCs-CM indicated the suppression of inflammatory mediators. Conclusion: Combination therapy of G-CSF and DPSCs-CM improved the protective activity.
Collapse
Affiliation(s)
- Farahnaz Ahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Eslahi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Zahra Tayarani-Najaran. Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Mashhad, Iran. Tel: +98-51-31801178;
| |
Collapse
|
5
|
Spiess DA, Campos RMP, Conde L, Didwischus N, Boltze J, Mendez-Otero R, Pimentel-Coelho PM. Subacute AMD3100 Treatment Is Not Efficient in Neonatal Hypoxic-Ischemic Rats. Stroke 2021; 53:586-594. [PMID: 34794335 DOI: 10.1161/strokeaha.120.033768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Despite the advances in treating neonatal hypoxic-ischemic encephalopathy (HIE) with induced hypothermia, the rates of severe disability are still high among survivors. Preclinical studies have indicated that cell therapies with hematopoietic stem/progenitor cells could improve neurological outcomes in HIE. In this study, we investigated whether the administration of AMD3100, a CXCR4 antagonist that mobilizes hematopoietic stem/progenitor cells into the circulation, has therapeutic effects in HIE. METHODS P10 Wistar rats of both sexes were subjected to right common carotid artery occlusion or sham procedure, and then were exposed to hypoxia for 120 minutes. Two subcutaneous injections of AMD3100 or vehicle were given on the third and fourth day after HIE. We first assessed the interindividual variability in brain atrophy after experimental HIE and vehicle treatment in a small cohort of rats. Based on this exploratory analysis, we designed and conducted an experiment to test the efficacy of AMD3100. Brain atrophy on day 21 after HIE was defined as the primary end point. Secondary efficacy end points were cognitive (T-water maze) and motor function (rotarod) on days 17 and 18 after HIE, respectively. RESULTS AMD3100 did not decrease the brain atrophy in animals of either sex. Cognitive impairments were not observed in the T-water maze, but male hypoxic-ischemic animals exhibited motor coordination deficits on the rotarod, which were not improved by AMD3100. A separate analysis combining data from animals of both sexes also revealed no evidence of the effectiveness of AMD3100 treatment. CONCLUSIONS These results indicate that the subacute treatment with AMD3100 does not improve structural and functional outcomes in a rat HIE model.
Collapse
Affiliation(s)
- Daiane Aparecida Spiess
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.).,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil (R.M.-O., P.M.P.-C.)
| | - Luciana Conde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, United Kingdom (N.D., J.B.)
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, United Kingdom (N.D., J.B.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.).,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil (R.M.-O., P.M.P.-C.)
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| |
Collapse
|
6
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
7
|
Tian H, Cheng Y, Zhang Y, Bai X, Jiang Y, Li J, Fan S, Ding H. 18β-Glycyrrhetinic acid alleviates demyelination by modulating the microglial M1/M2 phenotype in a mouse model of cuprizone-induced demyelination. Neurosci Lett 2021; 755:135871. [PMID: 33812928 DOI: 10.1016/j.neulet.2021.135871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
This research aimed to examine the nutritious supplementary function of 18β-Glycyrrhetinic acid (18β-GA) in moderating the myelin sheath destruction and behavioral impairments observed in the cuprizone model of demyelination. Mice were fed daily on food containing cuprizone (0.3 %) and given doses of 18β-GA (5 or 1 mg/kg) for a period of five weeks. The groups treated with 18β-GA exhibited improvements in exploratory behavior, locomotive activity, and weight. As assessed using luxol-fast blue and myelin basic protein (MBP) staining, which were used to detect demyelination in the brain, 18β-GA both reduced and prevented instances of cuprizone-induced demyelinating lesions; treatment with 18β-GA also caused the MBP level in the corpus callosum to increase. Furthermore, alongside these positive results following 18β-GA treatment, microglial polarisation was also observed to shift towards the beneficial M2 phenotype. The results of this research thus indicate the potential clinical application of 18β-GA for the prevention of myelin damage and behavioral dysfunction.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yuan Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jinjin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiqi Fan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
9
|
Han J, Yang S, Hao X, Zhang B, Zhang H, Xin C, Hao Y. Extracellular Vesicle-Derived microRNA-410 From Mesenchymal Stem Cells Protects Against Neonatal Hypoxia-Ischemia Brain Damage Through an HDAC1-Dependent EGR2/Bcl2 Axis. Front Cell Dev Biol 2021; 8:579236. [PMID: 33505958 PMCID: PMC7829500 DOI: 10.3389/fcell.2020.579236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia brain damage (HIBD) is a neurological disorder occring in neonates, which is exacerbated by neuronal apoptosis. Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for treating or preventing ischemia-related diseases. However, their mechanisms in HIBD remain unclear. Thus, we aimed to address the role of EV-derived microRNA (miR)-410 in HIBD. Neonatal HIBD mouse model was constructed using HI insult, from which neurons were isolated, followed by exposure to oxygen glucose deprivation (OGD). EVs were isolated from human umbilical cord (hUC)-derived MSCs. In silico analyses, dual-luciferase reporter gene and chromatin immunoprecipitation assays were adopted to determine relationships among miR-410, histone deacetylase 1 (HDAC1), early growth response protein 2 (EGR2), and B cell lymphoma/leukemia 2 (Bcl2). The functional roles of EV-derived miR-410 were determined using loss- and gain-of functions experiments, and by evaluating neuronal viability, cell-cycle distribution and neuronal apoptosis in vitro as well as modified neurological severity score (mNSS), edema formation, and cerebral infarction volume in vivo. hUC-MSCs-derived EVs protected against HIBD in vivo and inhibited the OGD-induced neuronal apoptosis in vitro. miR-410 was successfully delivered to neurons by hUC-MSCs-EVs and negatively targeted HDAC1, which inversely mediated the expression of EGR2/Bcl2. Upregulation of EV-derived miR-410 promoted the viability but inhibited apoptosis of neurons, which was reversed by HDAC1 overexpression. EV-derived miR-410 elevation reduced mNSS, edema formation, and cerebral infarction volume by increasing EGR2/Bcl2 expression through downregulating HDAC1 expression in vivo. In summary, EV-derived miR-410 impeded neuronal apoptosis by elevating the expression of EGR2/Bcl2 via HDAC1 downregulation, thereby providing a potential strategy for treating or preventing HIBD.
Collapse
Affiliation(s)
- Jun Han
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Si Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiaosheng Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Bo Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongbo Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Cuijuan Xin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunpeng Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Serelaxin activates eNOS, suppresses inflammation, attenuates developmental delay and improves cognitive functions of neonatal rats after germinal matrix hemorrhage. Sci Rep 2020; 10:8115. [PMID: 32415164 PMCID: PMC7229117 DOI: 10.1038/s41598-020-65144-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Germinal matrix hemorrhage (GMH) is a detrimental form of neonatal CNS injury. Following GMH-mediated eNOS inhibition, inflammation arises, contributing to GMH-induced brain injury. We investigated the beneficial effects of Serelaxin, a clinical tested recombinant Relaxin-2 protein, on brain injury after GMH in rats. We investigated whether effects of Serelaxin are mediated by its ability to activate the GMH-suppressed eNOS pathway resulting in attenuation of inflammatory marker overproduction. GMH was induced by intraparenchymal injection of bacterial collagenase (0.3U). Seven day old Sprague–Dawley rat pups (P7) were used (n = 63). GMH animals were divided in vehicle or serelaxin treated (3 µg once, 30 µg once, 30 µg multiple, i.p., starting 30 after GMH and then daily). Sham operated animals were used. We monitored the developmental profile working memory and spatial function (T-maze and open field test respectively). At day 28, all rats underwent MRI-scans for assessment of changes in cortical thickness and white matter loss. Effects of Serelaxin on eNOS pathway activation and post-GMH inflammation were evaluated. We demonstrated that Serelaxin dose-dependently attenuated GMH-induced developmental delay, protected brain and improved cognitive functions of rats after GMH. That was associated with the decreased post-GMH inflammation, mediated at least partly by amelioration of GMH-induced eNOS inhibition.
Collapse
|
11
|
Dumbuya JS, Chen L, Shu SY, Ma L, Luo W, Li F, Wu JY, Wang B. G-CSF attenuates neuroinflammation and neuronal apoptosis via the mTOR/p70SK6 signaling pathway in neonatal Hypoxia-Ischemia rat model. Brain Res 2020; 1739:146817. [PMID: 32246916 DOI: 10.1016/j.brainres.2020.146817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to the central nervous system, associated with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. Granulocyte-colony stimulating factor (G-CSF) has been shown to have neuroprotective activity in a variety of experimental brain injury models and G-CSF is a standard treatment in chemotherapeutic-induced neutropenia. The underlying mechanisms are still unclear. The mTOR (mammalian target of rapamycin) signaling pathway is a master regulator of cell growth and proliferation in the nervous system. However, the effects of G-CSF treatment on the mTOR signaling pathway have not been elucidated in neonates with hypoxic-ischemic (HI) brain injury. Our study investigated the neuroprotective effect of G-CSF on neonates with hypoxic-ischemic (HI) brain injury and the possible mechanism involving the mTOR/p70S6K pathway. METHODS Sprague-Dawley rat pups at postnatal day 7 (P7) were subjected to right unilateral carotid artery ligation followed by hypoxic (8% oxygen and balanced nitrogen) exposure for 2.5 h or sham surgery. Pups received normal saline, G-CSF, G-CSF combined with rapamycin or ethanol (vehicle for rapamycin) intraperitoneally. On postnatal day 9 (P9), TTC staining for infarct volume, and Nissl and TUNEL staining for neuronal cell injury were conducted. Activation of mTOR/p70S6K pathway, cleaved caspase-3 (CC3), Bax and Bcl-2 and cytokine expression levels were determined by western blotting. RESULTS The G-CSF treated group was associated with significantly reduced infarction volume and decreased TUNEL positive neuronal cells compared to the HI group treated with saline. The expression levels of TNF-α and IL-1ß were significantly decreased in the G-CSF treated group, while IL-10 expression level was increased. The relative immunoreactivity of p-mTOR and p-p70S6K was significantly reduced in the HI group compared to sham. The HI group treated with G-CSF showed significant upregulated protein expression for p-mTOR and p-p70S6K levels compared to the HI group treated with saline. Furthermore, G-CSF treatment increased Bcl-2 expression levels and decreased CC3 and Bax expression levels in the ipsilateral hemispheres of the HI brain. The effects induced by G-CSF were all reversed by rapamycin. CONCLUSION Treatment with G-CSF decreases inflammatory mediators and apoptotic factors, attenuating neuroinflammation and neuronal apoptosis via the mTOR/p70S6K signalling pathway, which represents a potential target for treating HI induced brain damage in neonatal HIE.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Si Yun Shu
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Lin Ma
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853 PR China
| | - Wei Luo
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Fei Li
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Jang-Yen Wu
- Department of Biochemical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States.
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China.
| |
Collapse
|
12
|
Christensen RD. Medicinal Uses of Hematopoietic Growth Factors in Neonatal Medicine. Handb Exp Pharmacol 2019; 261:257-283. [PMID: 31451971 DOI: 10.1007/164_2019_261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
This review focuses on certain hematopoietic growth factors that are used as medications in clinical neonatology. It is important to note at the chapter onset that although all of the pharmacological agents mentioned in this review have been approved by the US Food and Drug administration for use in humans, none have been granted a specific FDA indication for neonates. Thus, in a sense, all of the agents mentioned in this chapter could be considered experimental, when used in neonates. However, a great many of the pharmacological agents utilized routinely in neonatology practice do not have a specific FDA indication for this population of patients. Consequently, many of the agents reviewed in this chapter are considered by some practitioners to be nonexperimental and are used when they judge such use to be "best practice" for the disorders under treatment.The medicinal uses of the agents in this chapter vary considerably, between geographic locations, and sometimes even within an institutions. "Consistent approaches" aimed at using these agents in uniform ways in the practice of neonatology are encouraged. Indeed some healthcare systems, and some individual NICUs, have developed written guidelines for using these agents within the practice group. Some such guidelines are provided in this review. It should be noted that these guidelines, or "consistent approaches," must be viewed as dynamic and changing, requiring adjustment and refinement as additional evidence accrues.
Collapse
Affiliation(s)
- Robert D Christensen
- Divisions of Neonatology and Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA. .,Intermountain Healthcare, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Fang H, Li HF, Yang M, Wang RR, Wang QY, Zheng PC, Zhang FX, Zhang JP. microRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1. Biomed Pharmacother 2019; 113:108671. [PMID: 30875657 DOI: 10.1016/j.biopha.2019.108671] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Hypoxic-ischemic brain damage (HIBD) is a major cause of acute mortality and chronic neurological morbidity in infants and children. Dexmedetomidine (DEX) is an effective choice in HIBD treatment. Recent findings have revealed that microRNA-128 (miR-128) is implicated in cerebral ischemia reperfusion. Hence, this study aimed to investigate the role of miR-128 in HIBD. METHODS HIBD models of neonatal mice were established. HIBD mice were treated with DEX, and injected with agomir (ago)-miR-128 or antagomir (anti)-miR-128 into the lateral ventricles to explore the influence of miR-128 on the neuroprotective effects of DEX on HIBD. Subsequently, the mice body weight, left/right (L/R) brain weight ratio, left-brain water content as well as learning and memory abilities were measured. Furthermore, the pathological changes of brain tissues and apoptosis rate of nerve cells were determined. The potential relationship between miR-128 and WNT1 was analyzed. RESULTS Over-expression of miR-128 caused an increase in mouse body weight, L/R brain weight ratio, and learning and memory abilities, while led to a decline in left-brain water content, brain tissue injury and apoptosis rate of nerve cells in DEX-treated HIBD mice. WNT1 was targeted and negatively regulated by miR-128. Silencing of WNT1 exerted the same effect as miR-128 on enhancing the neuroprotective effect of DEX on HIBD mice. CONCLUSION Collectively, miR-128 enhanced neuroprotective effect of DEX on HIBD neonatal mice by inhibiting WNT1.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 550002, PR China; Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, PR China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 550002, PR China; Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, PR China
| | - Ru-Rong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Quan-Yun Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Peng-Cheng Zheng
- Guizhou University Research Center for Analysis of Drugs and Metabolites, Guizhou University, Guiyang, 550025, PR China
| | - Fang-Xiang Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 550002, PR China; Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, PR China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 550002, PR China; Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, PR China.
| |
Collapse
|
14
|
Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis. Neurochem Res 2019; 44:1582-1592. [PMID: 30911982 DOI: 10.1007/s11064-019-02782-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of death and disability in neonatal or perinatal all over the world, seriously affecting children, families and society. Unfortunately, only few satisfactory therapeutic strategies have been developed. It has been demonstrated that Echinacoside (ECH), the major active component of Cistanches Herba, exerts many beneficial effects, including antioxidative, anti-apoptosis, and neuroprotective in the traditional medical practice in China. Previous research has demonstrated that ECH plays a protective effect on ischemic brain injury. This study aimed to investigate whether ECH provides neuroprotection against HIBD in neonatal rats. We subjected 120 seven-day-old Sprague-Dawley rats to cerebral hypoxia-ischemia (HI) and randomly divided into the following groups: sham group, HI group and ECH (40, 80 and 160 mg/kg, intraperitoneal) post-administration group. After 48 h of HI, 2,3,5-Triphenyltetrazolium chloride, Hematoxylin-Eosin and Nissl staining were conducted to evaluate the extent of brain damage. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) production were assessed to determine the antioxidant capacity of ECH. TUNEL staining and Western blot analysis was performed to respectively estimate the extent of brain cell apoptosis and the expression level of the apoptosis-related proteins caspase-3, Bax, and Bcl-2. Results showed that ECH remarkably reduced the brain infarct volume and ameliorated the histopathological damage to neurons. ECH post-administration helped recovering the antioxidant enzyme activities and decreasing the MDA production. Furthermore, ECH treatment suppressed neuronal apoptosis in the rats with HIBD was by reduced TUNEL-positive neurons, the caspase-3 levels and increased the Bcl-2/Bax ratio. These results suggested that ECH treatment was beneficial to reducing neuronal damage by attenuating oxidative stress and apoptosis in the brain under HIBD.
Collapse
|
15
|
Short-, Mid-, and Long-Term Effect of Granulocyte Colony-Stimulating Factor/Stem Cell Factor and Fms-Related Tyrosine Kinase 3 Ligand Evaluated in an In Vivo Model of Hypoxic-Hyperoxic Ischemic Neonatal Brain Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5935279. [PMID: 31001556 PMCID: PMC6436372 DOI: 10.1155/2019/5935279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 01/01/2023]
Abstract
Hematopoietic growth factors are considered to bear neuroprotective potential. We have previously shown that delayed treatment with granulocyte colony-stimulating factor (G-CSF)/stem cell factor (SCF) and Fms-related tyrosine kinase 3 ligand (FL) ameliorates excitotoxic neonatal brain injury. The effect of these substances in combined-stressor neonatal brain injury models more closely mimicking clinical conditions has not been investigated. The aim of this study was to assess the short-, mid-, and long-term neuroprotective potential of G-CSF/SCF and FL in a neonatal model of hypoxic-hyperoxic ischemic brain injury. Five-day-old (P5) CD-1 mice were subjected to unilateral common carotid artery ligation and subsequent alternating periods of hypoxia and hyperoxia for 65 minutes. Sixty hours after injury, pups were randomly assigned to intraperitoneal treatment with (i) G-CSF (200 μg/kg)/SCF (50 μg/kg), (ii) FL (100 μg/kg), or (iii) vehicle every 24 hours for three or five consecutive days. Histopathological and functional outcomes were evaluated on P10, P18, and P90. Baseline outcome parameters were established in sham-treated and healthy control animals. Gross brain injury did not significantly differ between treatment groups at any time point. On P10, caspase-3 activation and caspase-independent apoptosis were similar between treatment groups; cell proliferation and the number of BrdU-positive vessels did not differ on P18 or P90. Neurobehavioral assessment did not reveal significant differences between treatment groups in accelerod performance, open field behavior, or novel object recognition capacity on P90. Turning behavior was more frequently observed in G-CSF/SCF- and FL-treated animals. No sex-specific differences were detected in any outcome parameter evaluated. In hypoxic-hyperoxic ischemic neonatal brain injury, G-CSF/SCF and FL treatment does not convey neuroprotection. Prior to potential clinical use, meticulous assessment of these hematopoietic growth factors is mandated.
Collapse
|
16
|
Sun L, Xia L, Wang M, Zhu D, Wang Y, Bi D, Song J, Ma C, Gao C, Zhang X, Sun Y, Wang X, Zhu C, Xing Q. Variants of the OLIG2 Gene are Associated with Cerebral Palsy in Chinese Han Infants with Hypoxic-Ischemic Encephalopathy. Neuromolecular Med 2018; 21:75-84. [PMID: 30178266 DOI: 10.1007/s12017-018-8510-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Cerebral palsy (CP) is a leading cause of neurological disability among young children. Congenial and adverse perinatal clinical conditions, such as genetic factors, perinatal infection, and asphyxia, are risk factors for CP. Oligodendrocyte transcription factor (OLIG2) is a protein that is expressed in brain oligodendrocyte cells and is involved in neuron repair after brain injury. In this study, we employed a Chinese Han cohort of 763 CP infants and 738 healthy controls to study the association of OLIG2 gene polymorphisms with CP. We found marginal association of the SNP rs6517135 with CP (p = 0.044) at the genotype level, and the association was greatly strengthened when we focused on the subgroup of CP infants who suffered from hypoxic-ischemic encephalopathy (HIE) after birth, with p = 0.003 (OR = 0.558) at the allele level and p = 0.007 at the genotype level, indicating a risk-associated role of the T allele of the SNP rs6517135 under HIE conditions. The haplotype CTTG for rs6517135-rs1005573-rs6517137-rs9653711 in OLIG2 was also significantly associated with the occurrence of CP in infants with HIE (p = 0.01, OR = 0.521). Our results indicate that in the Han Chinese population, the polymorphisms of OLIG2 were associated with CP, especially in patients who had suffered HIE injury. This finding could be used to develop personalized care for infants with high susceptibility to CP.
Collapse
MESH Headings
- Alleles
- Asian People/genetics
- Asphyxia Neonatorum/complications
- Case-Control Studies
- Cerebral Palsy/etiology
- Cerebral Palsy/genetics
- Child
- Child, Preschool
- Female
- Fetal Growth Retardation/epidemiology
- Genetic Predisposition to Disease
- Genotype
- Haplotypes/genetics
- Humans
- Hypoxia-Ischemia, Brain/complications
- Infant
- Infant, Low Birth Weight
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/epidemiology
- Infant, Premature, Diseases/genetics
- Male
- Oligodendrocyte Transcription Factor 2/deficiency
- Oligodendrocyte Transcription Factor 2/genetics
- Oligodendrocyte Transcription Factor 2/physiology
- Oligodendroglia/metabolism
- Polymorphism, Single Nucleotide
- Pregnancy
- Pregnancy Complications/epidemiology
- Risk
Collapse
Affiliation(s)
- Liya Sun
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 201102, China
- Shanghai Center for Women and Children's Health, Shanghai, 200062, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingtai Wang
- Nursing School, Sias International University, Zhengzhou, 451150, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Child Rehabilitation Center, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Dan Bi
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Caiyun Ma
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, 450053, China
| | - Chao Gao
- Department of Pediatrics, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, 450053, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Sun
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.
- Henan Key Laboratory of Child Brain Injury, Zhengzhou University, Kangfuqian Street 7, Zhengzhou, 450052, China.
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 201102, China.
- Shanghai Center for Women and Children's Health, Shanghai, 200062, China.
| |
Collapse
|
17
|
Chen D, Dixon BJ, Doycheva DM, Li B, Zhang Y, Hu Q, He Y, Guo Z, Nowrangi D, Flores J, Filippov V, Zhang JH, Tang J. IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation 2018; 15:32. [PMID: 29394934 PMCID: PMC5797348 DOI: 10.1186/s12974-018-1077-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background The endoplasmic reticulum (ER) is responsible for the control of correct protein folding and protein function which is crucial for cell survival. However, under pathological conditions, such as hypoxia–ischemia (HI), there is an accumulation of unfolded proteins thereby triggering the unfolded protein response (UPR) and causing ER stress which is associated with activation of several stress sensor signaling pathways, one of them being the inositol requiring enzyme-1 alpha (IRE1α) signaling pathway. The UPR is regarded as a potential contributor to neuronal cell death and inflammation after HI. In the present study, we sought to investigate whether microRNA-17 (miR-17), a potential IRE1α ribonuclease (RNase) substrate, arbitrates downregulation of thioredoxin-interacting protein (TXNIP) and consequent NLRP3 inflammasome activation in the immature brain after HI injury and whether inhibition of IRE1α may attenuate inflammation via miR-17/TXNIP regulation. Methods Postnatal day 10 rat pups (n = 287) were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2). STF-083010, an IRE1α RNase inhibitor, was intranasally delivered at 1 h post-HI or followed by an additional one administration per day for 2 days. MiR-17-5p mimic or anti-miR-17-5p inhibitor was injected intracerebroventricularly at 48 h before HI. Infarct volume and body weight were used to evaluate the short-term effects while brain weight, gross and microscopic brain tissue morphologies, and neurobehavioral tests were conducted for the long-term evaluation. Western blots, immunofluorescence staining, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and co-immunoprecipitation (Co-IP) were used for mechanism studies. Results Endogenous phosphorylated IRE1α expression was significantly increased after HI. Intranasal administration of STF-083010 alleviated brain injury and improved neurological behavior. MiR-17-5p expression was reduced after HI, and this decrease was attenuated by STF-083010 treatment. MiR-17-5p mimic administration ameliorated TXNIP expression, NLRP3 inflammasome activation, caspase-1 cleavage, and IL-1β production, as well as brain infarct volume. Conversely, anti-miR-17-5p inhibitor reversed IRE1α inhibition-induced decrease in TXNIP expression and inflammasome activation, as well as exacerbated brain injury after HI. Conclusions IRE1a-induced UPR pathway may contribute to inflammatory activation and brain injury following neonatal HI. IRE1a activation, through decay of miR-17-5p, elevated TXNIP expression to activate NLRP3 inflammasome and aggravated brain damage. Electronic supplementary material The online version of this article (10.1186/s12974-018-1077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Brandon J Dixon
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Desislava M Doycheva
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Bo Li
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Yang Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Qin Hu
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Yue He
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Zongduo Guo
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Derek Nowrangi
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jerry Flores
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Valery Filippov
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
18
|
Teo JD, Morris MJ, Jones NM. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun 2017; 63:186-196. [PMID: 27746186 DOI: 10.1016/j.bbi.2016.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. METHODS Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. RESULTS Before mating, HFD mothers were 11% heavier than Chow mothers (p<0.05, t-test). Righting reflex was delayed in offspring from HFD-fed mothers compared to the Chow mothers. The Chow-HI pups showed a loss in ipsilateral brain tissue, while the HFD-HI group had significantly greater loss. No significant difference was detected in brain volume between the HFD-C and Chow-C pups. When analysed on a per litter basis, the size of the injury was significantly correlated with maternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. CONCLUSIONS Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in offspring of obese mothers, these factors including gliosis and microglial infiltration are likely to contribute to enhanced brain injury.
Collapse
Affiliation(s)
- Jonathan D Teo
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia.
| |
Collapse
|
19
|
Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior, BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF. Brain Res 2017; 1667:55-67. [DOI: 10.1016/j.brainres.2017.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|
20
|
Dixon BJ, Chen D, Zhang Y, Flores J, Malaguit J, Nowrangi D, Zhang JH, Tang J. Intranasal Administration of Interferon Beta Attenuates Neuronal Apoptosis via the JAK1/STAT3/BCL-2 Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. ASN Neuro 2016; 8:1759091416670492. [PMID: 27683877 PMCID: PMC5043595 DOI: 10.1177/1759091416670492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an injury that often leads to detrimental neurological deficits. Currently, there are no established therapies for HIE and it is critical to develop treatments that provide protection after HIE. The objective of this study was to investigate the ability of interferon beta (IFNβ) to provide neuroprotection and reduce apoptosis after HIE. Postnatal Day 10 rat pups were subjected to unilateral carotid artery ligation followed by 2.5 hr of exposure to hypoxia (8% O2). Intranasal administration of human recombinant IFNβ occurred 2 hr after HIE and infarct volume, body weight, neurobehavioral tests, histology, immunohistochemistry, brain water content, blood-brain barrier permeability, enzyme-linked immunosorbent assay, and Western blot were all used to evaluate various parameters. The results showed that both IFNβ and the Type 1 interferon receptor expression decreases after HIE. Intranasal administration of human recombinant IFNβ was able to be detected in the central nervous system and was able to reduce brain infarction volumes and improve neurological behavior tests 24 hr after HIE. Western blot analysis also revealed that human recombinant IFNβ treatment stimulated Stat3 and Bcl-2 expression leading to a decrease in cleaved caspase-3 expression after HIE. Positive Fluoro-Jade C staining also demonstrated that IFNβ treatment was able to decrease neuronal apoptosis. Furthermore, the beneficial effects of IFNβ treatment were reversed when a Stat3 inhibitor was applied. Also an intraperitoneal administration of human recombinant IFNβ into the systemic compartment was unable to confer the same protective effects as intranasal IFNβ treatment.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Di Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Yang Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Derek Nowrangi
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA Department of Neurosurgery, Loma Linda University School of Medicine, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| |
Collapse
|
21
|
Graham EM, Burd I, Everett AD, Northington FJ. Blood Biomarkers for Evaluation of Perinatal Encephalopathy. Front Pharmacol 2016; 7:196. [PMID: 27468268 PMCID: PMC4942457 DOI: 10.3389/fphar.2016.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Recent research in identification of brain injury after trauma shows many possible blood biomarkers that may help identify the fetus and neonate with encephalopathy. Traumatic brain injury shares many common features with perinatal hypoxic-ischemic encephalopathy. Trauma has a hypoxic component, and one of the 1st physiologic consequences of moderate-severe traumatic brain injury is apnea. Trauma and hypoxia-ischemia initiate an excitotoxic cascade and free radical injury followed by the inflammatory cascade, producing injury in neurons, glial cells and white matter. Increased excitatory amino acids, lipid peroxidation products, and alteration in microRNAs and inflammatory markers are common to both traumatic brain injury and perinatal encephalopathy. The blood-brain barrier is disrupted in both leading to egress of substances normally only found in the central nervous system. Brain exosomes may represent ideal biomarker containers, as RNA and protein transported within the vesicles are protected from enzymatic degradation. Evaluation of fetal or neonatal brain derived exosomes that cross the blood-brain barrier and circulate peripherally has been referred to as the "liquid brain biopsy." A multiplex of serum biomarkers could improve upon the current imprecise methods of identifying fetal and neonatal brain injury such as fetal heart rate abnormalities, meconium, cord gases at delivery, and Apgar scores. Quantitative biomarker measurements of perinatal brain injury and recovery could lead to operative delivery only in the presence of significant fetal risk, triage to appropriate therapy after birth and measure the effectiveness of treatment.
Collapse
Affiliation(s)
- Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Irina Burd
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Allen D. Everett
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
22
|
Osteopontin-Rac1 on Blood-Brain Barrier Stability Following Rodent Neonatal Hypoxia-Ischemia. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:263-7. [PMID: 26463959 DOI: 10.1007/978-3-319-18497-5_46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteopontin (OPN) is a neuroprotective molecule that is upregulated following rodent neonatal hypoxic-ischemic (nHI) brain injury. Because Rac1 is a regulator of blood-brain barrier (BBB) stability, we hypothesized a role for this in OPN signaling. nHI was induced by unilateral ligation of the right carotid artery followed by hypoxia (8 % oxygen for 2 h) in P10 Sprague-Dawley rat pups. Intranasal (iN) OPN was administered at 1 h post-nHI. Groups consisted of: (1) Sham, (2) Vehicle, (3) OPN, and (4) OPN + Rac1 inhibitor (NSC23766). Evans blue dye extravasation (BBB permeability) was quantified 24 h post-nHI, and brain edema at 48 h. Increased BBB permeability and brain edema following nHI was ameliorated in the OPN treatment group. However, those rat pups receiving OPN co-treatment with the Rac1 inhibitor experienced no improvement compared with vehicle. OPN protects the BBB following nHI, and this was reversed by Rac1 inhibitor (NSC23766).
Collapse
|
23
|
Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J. G-CSF attenuates neuroinflammation and stabilizes the blood-brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 2015; 272:135-44. [PMID: 25585014 PMCID: PMC4499024 DOI: 10.1016/j.expneurol.2014.12.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Neonatal hypoxia occurs in approximately 60% of premature births and is associated with a multitude of neurological disorders. While various treatments have been developed, translating them from bench to bedside has been limited. We previously showed G-CSF administration was neuroprotective in a neonatal hypoxia-ischemia rat pup model, leading us to hypothesize that G-CSF inactivation of GSK-3β via the PI3K/Akt pathway may attenuate neuroinflammation and stabilize the blood-brain barrier (BBB). METHODS P10 Sprague-Dawley rat pups were subjected to unilateral carotid artery ligation followed by hypoxia for 2.5h. We assessed inflammation by measuring expression levels of IKKβ, NF-κB, TNF-α, IL-1β, IL-10, and IL-12 as well as neutrophil infiltration. BBB stabilization was evaluated by measuring Evans blue extravasation, and Western blot analysis of Claudin-3, Claudin-5, ICAM-1, and VCAM-1. MEASUREMENTS AND MAIN RESULTS First, the time course study showed that p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels peaked at 48h post-HI. The knockdown of GSK-3β with siRNA prevented the HI-induced increase of p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels 48h after HI. G-CSF treatment reduced brain water content and neuroinflammation by downregulating IKKβ, NF-κB, TNF-α, IL-1β, and IL-12 and upregulating IL-10, thereby reducing neutrophil infiltration. Additionally, G-CSF stabilizes the BBB by downregulating VCAM-1 and ICAM-1, as well as upregulating Claudins 3 and 5 in endothelial cells. G-CSFR knockdown by siRNA and Akt inhibition by Wortmannin reversed G-CSF's neuroprotective effects. CONCLUSIONS We demonstrate G-CSF plays a pivotal role in attenuating neuroinflammation and BBB disruption following HI by inactivating GSK-3β through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li Li
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Devin W McBride
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Brandon J Dixon
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Paul R Krafft
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
24
|
Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2015; 16:22368-401. [PMID: 26389893 PMCID: PMC4613313 DOI: 10.3390/ijms160922368] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Medical University Innsbruck, Tyrol 6020, Austria.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
25
|
Charles MS, Drunalini Perera PN, Doycheva DM, Tang J. Granulocyte-colony stimulating factor activates JAK2/PI3K/PDE3B pathway to inhibit corticosterone synthesis in a neonatal hypoxic-ischemic brain injury rat model. Exp Neurol 2015; 272:152-9. [PMID: 25816736 DOI: 10.1016/j.expneurol.2015.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Our previous study demonstrated that granulocyte-colony stimulating factor (G-CSF)-induced neuroprotection is accompanied by an inhibition of corticosterone production in a neonatal hypoxic-ischemic (HI) rat model. The present study investigates how G-CSF inhibits corticosterone production, using adrenal cortical cells and HI rat pups. METHODS Cholera toxin was used to induce corticosterone synthesis in a rodent Y1 adrenal cortical cell line by increasing cyclic adenosine monophosphate (cAMP). Both corticosterone and cAMP were quantitatively measured using a commercial enzyme-linked immunosorbent assay (ELISA). The downstream signaling components of the G-CSF receptor, including Janus Kinase 2 (JAK2)/Phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt) and Phosphodiesterase 3B (PDE3B), were detected by western blot. Sprague-Dawley rat pups at the age of 10days (P10) were subjected to unilateral carotid artery ligation followed by hypoxia for 2.5hours. Brain infarction volumes were determined using 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining. RESULTS G-CSF at 30ng/ml inhibited corticosterone synthesis but lost its inhibitory effect at higher doses. The inhibitory effect of G-CSF was conferred by interfering with cAMP signaling via the activation of the JAK2/PI3K/PDE3B signaling pathway. The degradation of cAMP by G-CSF signaling reduced corticosterone production. This mechanism was further verified in the neonatal HI brain injury rat model, in which inhibition of PDE3B reversed the protective effects of G-CSF. CONCLUSION Our data suggest that the neuroprotective G-CSF reduces corticosterone synthesis at the adrenal level by degrading intracellular cAMP via activation of the JAK2/PI3K/PDE3B pathway.
Collapse
Affiliation(s)
- Mélissa S Charles
- Department of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA
| | - Pradilka N Drunalini Perera
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354 USA.
| |
Collapse
|
26
|
Li L, Klebe D, Doycheva D, McBride DW, Krafft PR, Flores J, Zhou C, Zhang JH, Tang J. G-CSF ameliorates neuronal apoptosis through GSK-3β inhibition in neonatal hypoxia-ischemia in rats. Exp Neurol 2014; 263:141-9. [PMID: 25448005 DOI: 10.1016/j.expneurol.2014.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/26/2014] [Accepted: 10/10/2014] [Indexed: 12/25/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF), a growth factor, has known neuroprotective effects in a variety of experimental brain injury models. Herein we show that G-CSF administration attenuates neuronal apoptosis after neonatal hypoxia-ischemia (HI) via glycogen synthase kinase-3β (GSK-3β) inhibition. Ten day old Sprague-Dawley rat pups (n=157) were subjected to unilateral carotid artery ligation followed by 2.5h of hypoxia or sham surgery. HI animals received control siRNA, GSK-3β siRNA (4 μL/pup), G-CSF (50 μg/kg), G-CSF combined with 0.1 or 0.4 nM G-CSF receptor (G-CSFR) siRNA, phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin (86 ng/pup), or DMSO (vehicle for Wortmannin). Pups were euthanized 48 h post-HI to quantify brain infarct volume. G-CSFR, activated Akt (p-Akt), activated GSK-3β (p-GSK-3β), Cleaved Caspase-3 (CC3), Bcl-2, and Bax were quantified using Western blot analysis and the localizations of each was visualized via immunofluorescence staining. Neuronal cell death was determined using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Our results showed p-GSK-3β increased after HI until its peak at 48 h post-ictus, and both GSK-3β siRNA and G-CSF administration reduced p-GSK-3β expression, as well as infarct volume. p-GSK-3β and CC3 were generally co-localized in neurons. Furthermore, G-CSF increased p-Akt expression and the Bcl-2/Bax ratio and also decreased p-GSK-3β and CC3 expression levels in the ipsilateral hemisphere, which were all reversed by G-CSFR siRNA, Wortmannin, and GSK-3β siRNA. In conclusion, G-CSF attenuated caspase activation and reduced brain injury by inhibiting GSK-3β activity after experimental HI in rat pups. This neuroprotective effect was abolished by both G-CSFR siRNA and Wortmannin.
Collapse
Affiliation(s)
- Li Li
- Department of Anatomy & Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Desislava Doycheva
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Paul R Krafft
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jerry Flores
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Changman Zhou
- Department of Anatomy & Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Departments of Anesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
27
|
Liu S, Zhu S, Zou Y, Wang T, Fu X. Knockdown of IL-1β improves hypoxia-ischemia brain associated with IL-6 up-regulation in cell and animal models. Mol Neurobiol 2014; 51:743-52. [PMID: 24965599 PMCID: PMC4359286 DOI: 10.1007/s12035-014-8764-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
A study was conducted to investigate the effect of interleukin-1β (IL-1β) on hypoxia ischemia (HI) of cultured astrocyte and neonatal rat models and to explore the underlying molecular regulation mechanism. Primary rat astrocyte was exposed to hypoxia (2 % O2, 98 % N2) and cultured in serum-free medium for 6, 12, and 18 h to establish cell model of HI. Morphologic changes of astrocyte were monitored and gene expression change of IL-1β evaluated by real-time polymerase chain reaction (PCR). To establish the HI animal model, 3 days old postnatal Sprague-Dawley (SD) rats were treated with the right carotid artery ligation and were exposed to 8 % oxygen for 8, 16 and 24 h, respectively. Longa score scale, hematoxylin and eosin (HE) staining and water content were examined to assess neurologic function and morphology changes. IL-1β siRNA lentivirus (IL-1β-RNAi-LV) was injected into cerebral cortex motor area 2 days before HI and the interference efficiency examined by real-time PCR and Western blotting, respectively. Immunofluorescence staining of GFAP and IL-1β was performed to identify the location and interference effect of IL-1β, respectively. To further explore the potential mechanisms, the expression of inflammatory factors, including IL-6, IL-10 and tumor necrosis factor-alpha (TNF-α), was examined following IL-1β down-regulation. The size of soma astrocyte was increased greatly after 12 and 18 h of HI with IL-1β up-regulation. IL-1β knockdown by siRNA in vitro or by lentivirus in vivo can reverse cell swelling, brain edema and neurologic function deficiencies induced by HI. Lastly, interference of IL-1β remarkably increased IL-6 expression but not IL-10 and TNF-α. Therefore, down-regulation of IL-1β improves the deficiencies of neurologic function and morphology induced by HI, maybe closely associating with IL-6 regulation.
Collapse
Affiliation(s)
- Sujuan Liu
- Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | | | | | | | | |
Collapse
|
28
|
Doycheva DM, Hadley T, Li L, Applegate RL, Zhang JH, Tang J. Anti-neutrophil antibody enhances the neuroprotective effects of G-CSF by decreasing number of neutrophils in hypoxic ischemic neonatal rat model. Neurobiol Dis 2014; 69:192-9. [PMID: 24874543 DOI: 10.1016/j.nbd.2014.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/09/2014] [Accepted: 05/17/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Neonatal hypoxia ischemia (HI) is an injury that can lead to neurological impairments such as behavioral and learning disabilities. Granulocyte-colony stimulating factor (G-CSF) has been demonstrated to be neuroprotective in ischemic stroke however it has also been shown to induce neutrophilia, ultimately exacerbating neuronal injury. Our hypothesis is that coadministration of anti-neutrophil antibody (Ab) with G-CSF will decrease blood neutrophil counts thereby reducing infarct volume and improving neurological function post HI brain injury. METHODS Rat pups were subjected to unilateral carotid artery ligation followed by 2.5h of hypoxia. Animals were randomly assigned to five groups: Sham (n=15), vehicle (HI, n=15), HI with G-CSF treatment (n=15), HI with G-CSF+Ab treatment (n=15), and HI with Ab treatment (n=15). Ab (325μg/kg) was administered intraperitoneally while G-CSF (50μg/kg) was administered subcutaneously 1h post HI followed by daily injections for 3 consecutive days. Animals were euthanized at 96h post HI for blood neutrophil counts and brain infarct volume measurements as well as at 5weeks for neurological function testing and brain weight measurements. Lung and spleen weights at both time points were further analyzed. RESULTS The G-CSF treatment group showed tendencies to reduce infarct volume and improve neurological function while significantly increasing neutrophil counts. On the other hand, the G-CSF+Ab group significantly reduced infarct volume, improved neurological function and decreased neutrophil counts. The Ab alone group showed reversal of the neuroprotective effects of the G-CSF+Ab group. No significant differences were found in peripheral organ weights between groups. CONCLUSION Our data suggest that coadministration of G-CSF with Ab not only prevented brain atrophy but also significantly improved neurological function by decreasing blood neutrophil counts. Hence the neuroprotective effects of G-CSF may be further enhanced if neutrophilia is avoided.
Collapse
Affiliation(s)
- Desislava M Doycheva
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Tiffany Hadley
- Department of Anaesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Li Li
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Richard L Applegate
- Department of Anaesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
29
|
Abstract
This article explains the mechanisms underlying choices of pharmacotherapy for hypoxic-ischemic insults of both preterm and term babies. Some preclinical data are strong enough that clinical trials are now underway. Challenges remain in deciding the best combination therapies for each age and insult.
Collapse
Affiliation(s)
- Sandra E. Juul
- University of Washington, Department of Pediatrics, 1959 NE Pacific St, Box 356320, Seattle, Washington 98195, Telephone: (206) 221-6814; Fax: (206) 543-8926
| | - Donna M. Ferriero
- Neonatal Brain Disorders Laboratory, University of California, San Francisco, 675 Nelson Rising Lane, Room 494, Box 0663, San Francisco, California 94143, Phone: (415) 502-7319, Fax: (415) 486-2297
| |
Collapse
|
30
|
Drunalini Perera PN, Hu Q, Tang J, Li L, Barnhart M, Doycheva DM, Zhang JH, Tang J. Delayed remote ischemic postconditioning improves long term sensory motor deficits in a neonatal hypoxic ischemic rat model. PLoS One 2014; 9:e90258. [PMID: 24587303 PMCID: PMC3938659 DOI: 10.1371/journal.pone.0090258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022] Open
Abstract
Objective Remote Ischemic Postconditioning (RIPC) is a promising therapeutic intervention wherein a sub-lethal ischemic insult induced in one organ (limb) improves ischemia in an organ distant to it (brain). The main objective of this study was to investigate the long-term functional effects of delayed RIPC in a neonatal hypoxia-ischemia (HI) rat model. Method 10 day old rat pups were subjected to delayed RIPC treatment and randomized into four groups: 1) Sham, 2) HI induced, 3) HI +24 hr delayed RIPC, and 4) HI +24 hr delayed RIPC with three consecutive daily treatments. Neurobehavioral tests, brain weights, gross and microscopic brain tissue morphologies, and systemic organ weights were evaluated at five weeks post surgery. Results HI induced rats performed significantly worse than sham but both groups of delayed RIPC treatment showed improvement of sensory motor functions. Furthermore, compared to the HI induced group, the delayed RIPC treatment groups showed no further detrimental changes on brain tissue, both grossly and morphologically, and no changes on the systemic organ weights. Conclusion Delayed RIPC significantly improves long term sensory motor deficits in a neonatal HI rat model. A 24 hr delayed treatment does not significantly attenuate morphological brain injury but does attenuate sensory motor deficits. Sensory motor deficits improve with both a single treatment and with three consecutive daily treatments, and the consecutive treatments are possibly being more beneficial.
Collapse
Affiliation(s)
- Pradilka N. Drunalini Perera
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Qin Hu
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Junjia Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Li Li
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Margaret Barnhart
- Department of Neurosurgery Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Desislava M. Doycheva
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - John H. Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Neurosurgery Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Jellema RK, Lima Passos V, Ophelders DRMG, Wolfs TGAM, Zwanenburg A, De Munter S, Nikiforou M, Collins JJP, Kuypers E, Bos GMJ, Steinbusch HW, Vanderlocht J, Andriessen P, Germeraad WTV, Kramer BW. Systemic G-CSF attenuates cerebral inflammation and hypomyelination but does not reduce seizure burden in preterm sheep exposed to global hypoxia-ischemia. Exp Neurol 2013; 250:293-303. [PMID: 24120465 DOI: 10.1016/j.expneurol.2013.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 01/26/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is common in preterm infants, but currently no curative therapy is available. Cell-based therapy has a great potential in the treatment of hypoxic-ischemic preterm brain injury. Granulocyte-colony stimulating factor (G-CSF) is known to mobilize endogenous hematopoietic stem cells (HSC) and promotes proliferation of endogenous neural stem cells. On these grounds, we hypothesized that systemic G-CSF would be neuroprotective in a large translational animal model of hypoxic-ischemic injury in the preterm brain. Global hypoxia-ischemia (HI) was induced by transient umbilical cord occlusion in instrumented preterm sheep. G-CSF treatment (100μg/kg intravenously, during five consecutive days) was started one day before the global HI insult to ascertain mobilization of endogenous stem cells within the acute phase after global HI. Mobilization of HSC and neutrophils was studied by flow cytometry. Brain sections were stained for microglia (IBA-1), myelin basic protein (MBP) and myeloperoxidase (MPO) to study microglial proliferation, white matter injury and neutrophil invasion respectively. Electrographic seizure activity was analyzed using amplitude-integrated electroencephalogram (aEEG). G-CSF effectively mobilized CD34-positive HSC in the preterm sheep. In addition, G-CSF caused marked mobilization of neutrophils, but did not influence enhanced invasion of neutrophils into the preterm brain after global HI. Microglial proliferation and hypomyelination following global HI were reduced as a result of G-CSF treatment. G-CSF did not cause a reduction of the electrographic seizure activity after global HI. In conclusion, G-CSF induced mobilization of endogenous stem cells which was associated with modulation of the cerebral inflammatory response and reduced white matter injury in an ovine model of preterm brain injury after global HI. G-CSF treatment did not improve neuronal function as shown by seizure analysis. Our study shows that G-CSF treatment has neuroprotective potential following hypoxic-ischemic injury in the preterm brain.
Collapse
Affiliation(s)
- Reint K Jellema
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Pediatrics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lackner P, Vahmjanin A, Hu Q, Krafft PR, Rolland W, Zhang JH. Chronic hydrocephalus after experimental subarachnoid hemorrhage. PLoS One 2013; 8:e69571. [PMID: 23936048 PMCID: PMC3720671 DOI: 10.1371/journal.pone.0069571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
Chronic communicating hydrocephalus is a significant health problem affecting up to 20% of survivors of spontaneous subarachnoid hemorrhage (SAH). The development of new treatment strategies is hampered by the lack of well characterized disease models. This study investigated the incidence of chronic hydrocephalus by evaluating the temporal profile of intracranial pressure (ICP) elevation after SAH, induced by endovascular perforation in rats. Twenty-five adult male Sprague-Dawley rats (260-320 g) were subjected to either endovascular perforation or sham surgery. Five animals died after SAH induction. At 7, 14 and 21 days after surgery ICP was measured by stereotaxic puncture of the cisterna magna in SAH (n=10) and SHAM (n=10) animals. On day 21 T-maze test was performed and the number of alterations and latency to decision was recorded. On day 23, samples were processed for histological analyses. The relative ventricle area was evaluated in coronal Nissl stained sections. On day 7 after surgery all animals showed normal ICP. The absolute ICP values were significantly higher in SAH compared to SHAM animals on day 21 (8.26±4.53 mmHg versus 4.38±0.95 mmHg) but not on day 14. Observing an ICP of 10 mmHg as cut-off, 3 animals showed elevated ICP on day 14 and another animal on day 21. The overall incidence of ICP elevation was 40% in SAH animals. On day 21, results of T-maze testing were significantly correlated with ICP values, i.e. animals with elevated ICP showed a lower number of alterations and a delayed decision. Histology yielded a significantly higher (3.59 fold increased) relative ventricle area in SAH animals with ICP elevation compared to SAH animals without ICP elevation. In conclusion, the current study shows that experimental SAH leads to chronic hydrocephalus, which is associated with ICP elevation, behavioral alterations and ventricular dilation in about 40% of SAH animals.
Collapse
Affiliation(s)
- Peter Lackner
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America.
| | | | | | | | | | | |
Collapse
|
33
|
Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M. Putative neuroprotective agents in neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013. [PMID: 23178231 DOI: 10.1016/j.pnpbp.2012.11.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders.
Collapse
Affiliation(s)
- Seetal Dodd
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Legacy J, Hanea S, Theoret J, Smith PD. Granulocyte macrophage colony-stimulating factor promotes regeneration of retinal ganglion cells in vitro through a mammalian target of rapamycin-dependent mechanism. J Neurosci Res 2013; 91:771-9. [DOI: 10.1002/jnr.23205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/22/2012] [Accepted: 12/21/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Jacqueline Legacy
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| | - Sonia Hanea
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| | - Jennifer Theoret
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| | - Patrice D. Smith
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| |
Collapse
|
35
|
Sameshima H, Ikenoue T. Hypoxic-ischemic neonatal encephalopathy: animal experiments for neuroprotective therapies. Stroke Res Treat 2013; 2013:659374. [PMID: 23533962 PMCID: PMC3600180 DOI: 10.1155/2013/659374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
Hypoxic-ischemic neonatal encephalopathy and ensuing brain damage is still an important problem in modern perinatal medicine. In this paper, we would like to share some of the results of our recent studies on neuroprotective therapies in animal experiments, as well as some literature reviews. From the basic animal studies, we have now obtained some possible candidates for therapeutic measures against hypoxic-ischemic neonatal encephalopathy. For example, they are hypothermia, rehabilitation, free radical scavenger, neurotrophic factors and growth factors, steroid, calcium channel blocker, vagal stimulation, some anti apoptotic agents, pre- and post conditioning, antioxidants, cell therapy with stem cells, modulators of K(+)-ATP channels, and so on. Whether combination of these therapies may be more beneficial than any single therapy needs to be clarified. Hypoxia-ischemia is a complicated condition, in which the cause, severity, and time-course are different in each case. Likewise, each fetus has its own inherent potentials such as adaptation, preconditioning-tolerance, and intolerance. Therefore, further extensive studies are required to establish an individualized strategy for neuroprotection against perinatal hypoxic-ischemic insult.
Collapse
Affiliation(s)
- Hiroshi Sameshima
- Department of Obstetrics and Gynecology and Center for Perinatal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Kihara, Miyazaki 889-1692, Japan
| | - Tsuyomu Ikenoue
- Department of Obstetrics and Gynecology and Center for Perinatal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Kihara, Miyazaki 889-1692, Japan
| |
Collapse
|
36
|
Ghorbani M, Moallem SA, Abnous K, Tabatabaee Yazdi SA, Movassaghi AR, Azizzadeh M, Mohamadpour AH. The effect of granulocyte colony-stimulating factor administration on carbon monoxide neurotoxicity in rats. Drug Chem Toxicol 2012; 36:102-8. [DOI: 10.3109/01480545.2012.737802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Granulocyte-colony stimulating factor in combination with stem cell factor confers greater neuroprotection after hypoxic-ischemic brain damage in the neonatal rats than a solitary treatment. Transl Stroke Res 2012; 4:171-8. [PMID: 23565130 DOI: 10.1007/s12975-012-0225-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a devastating condition resulting in neuronal cell death and often culminates in neurological deficits. Granulocyte-colony stimulating factor (G-CSF) has been shown to have neuroprotective activity via inhibition of apoptosis and inflammation in various stroke models. Stem cell factor (SCF) regulates hematopoietic stem cells in the bone marrow and has been reported to have neuroprotective properties in an experimental ischemic stroke model. In this study we aim to determine the protective effects of G-CSF in combination with SCF treatment after experimental HI. Seven-day old Sprague-Dawley rats were subjected to unilateral carotid artery ligation followed by 2.5 hours of hypoxia. Animals were randomly assigned to five groups: Sham (n=8), Vehicle (n=8), HI with G-CSF treatment (n=9), HI with SCF treatment (n=9) and HI with G-CSF+SCF treatment (coadministration group; n=10). G-CSF (50 µg/kg), SCF (50 µg/kg) and G-CSF+SCF (50 µg/kg) were administered intraperitoneally 1 hour post HI followed by daily injection for 4 consecutive days (five total injections). Animals were euthanized 14 days after HI for neurological testing. Additionally assessment of brain, heart, liver, spleen and kidney atrophy was performed. Both G-CSF and G-CSF+SCF treatments improved body growth and decreased brain atrophy at 14 days post HI. No significant differences were found in the peripheral organ weights between groups. Finally, the G-CSF+SCF coadministration group showed significant improvement in neurological function. Our data suggest that administration of G-CSF in combination with SCF not only prevented brain atrophy but also significantly improved neurological function.
Collapse
|
38
|
Huang Y, Zitta K, Bein B, Scholz J, Steinfath M, Albrecht M. Effect of propofol on hypoxia re-oxygenation induced neuronal cell damage in vitro*. Anaesthesia 2012; 68:31-9. [PMID: 23088185 DOI: 10.1111/j.1365-2044.2012.07336.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Propofol may protect neuronal cells from hypoxia re-oxygenation injury, possibly via an antioxidant actions under hypoxic conditions. This study investigated the molecular effects of propofol on hypoxia-induced cell damage using a neuronal cell line. Cultured human IMR-32 cells were exposed to propofol (30 μm) and biochemical and molecular approaches were used to assess cellular effects. Propofol significantly reduced hypoxia-mediated increases in lactate dehydrogenase, a marker of cell damage (mean (SD) for normoxia: 0.39 (0.07) a.u.; hypoxia: 0.78 (0.21) a.u.; hypoxia+propofol: 0.44 (0.17) a.u.; normoxia vs hypoxia, p<0.05; hypoxia vs hypoxia+propofol, p<0.05), reactive oxygen species and hydrogen peroxide. Propofol also diminished the morphological signs of cell damage. Increased amounts of catalase, which degrades hydrogen peroxide, were detected under hypoxic conditions. Propofol decreased the amount of catalase produced, but increased its enzymatic activity. Propofol protects neuronal cells from hypoxia re-oxygenation injury, possibly via a combined direct antioxidant effect along with induced cellular antioxidant mechanisms.
Collapse
Affiliation(s)
- Y Huang
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Charles MS, Ostrowski RP, Manaenko A, Duris K, Zhang JH, Tang J. Role of the pituitary–adrenal axis in granulocyte-colony stimulating factor-induced neuroprotection against hypoxia–ischemia in neonatal rats. Neurobiol Dis 2012; 47:29-37. [PMID: 22779090 DOI: 10.1016/j.nbd.2012.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Several reports indicate that the activity of the hypothalamic–pituitary–adrenal axis (HPA) is increased after a brain insult and that its down-regulation can improve detrimental outcomes associated with ischemic brain injuries.Granulocyte-colony stimulating factor (G-CSF) is a neuroprotective drug shown in the naïve rat to regulate hormones of the HPA axis. In this study we investigate whether G-CSF confers its neuroprotective properties by influencing the HPA response after neonatal hypoxia–ischemia (HI). Following the Rice–Vannucci model, seven day old rats (P7)were subjected to unilateral carotid ligation followed by 2.5 h of hypoxia. To test our hypothesis,metyrapone was administered to inhibit the release of rodent specific glucocorticoid, corticosterone, at the adrenal level. Dexamethasone, a synthetic glucocorticoid, was administered to agonize the effects of corticosterone.Our results show that both G-CSF and metyrapone significantly reduced infarct volume while dexamethasone treatment did not reduce infarct size even when combined with G-CSF. The protective effects of G-CSF do not include blood brain barrier preservation as suggested by the brain edema results. G-CSF did not affect the pituitary released adrenocorticotropic hormone (ACTH) levels in the blood plasma at 4 h, but suppressed the increase of corticosterone in the blood. The administration of G-CSF and metyrapone increased weight gain, and significantly reduced the Bax/Bcl-2 ratio in the brain while dexamethasone reversed the effects of G-CSF. The combination of G-CSF and metyrapone significantly decreased caspase-3 protein levels in the brain, and the effect was antagonized by dexamethasone.We report that G-CSF is neuroprotective in neonatal HI by reducing infarct volume, by suppressing the HI-induced increase of the Bax/Bcl-2 ratio, and by decreasing corticosterone in the blood. Metyrapone was able to confer similar neuroprotection as G-CSF while dexamethasone reversed the effects of G-CSF. In conclusion, we show that decreasing HPA axis activity is neuroprotective after neonatal HI, which can be conferred by administering G-CSF.
Collapse
Affiliation(s)
- Mélissa S Charles
- Department of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
40
|
Urdziková L, Likavčanová-Mašínová K, Vaněček V, Růžička J, Sedý J, Syková E, Jendelová P. Flt3 ligand synergizes with granulocyte-colony-stimulating factor in bone marrow mobilization to improve functional outcome after spinal cord injury in the rat. Cytotherapy 2011; 13:1090-104. [PMID: 21539498 DOI: 10.3109/14653249.2011.575355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS The effect of granulocyte-colony-stimulating factor (G-CSF) and/or the cytokine fms-like thyrosin kinase 3 (Flt3) ligand on functional outcome and tissue regeneration was studied in a rat model of spinal cord injury (SCI). METHODS Rats with a balloon-induced compression lesion were injected with G-CSF and/or Flt3 ligand to mobilize bone marrow cells. Behavioral tests (Basso-Beattie-Bresnahan and plantar test), blood counts, morphometric evaluation of the white and gray matter, and histology were performed 5 weeks after SCI. RESULTS The mobilization of bone marrow cells by G-CSF, Flt3 ligand and their combination improved the motor and sensory performance of rats with SCI, reduced glial scarring, increased axonal sprouting and spared white and gray matter in the lesion. The best results were obtained with a combination of G-CSF and Flt3. G-CSF alone or in combination with Flt3 ligand significantly increased the number of white blood cells, but not red blood cells or hemoglobin content, during and after the time-course of bone marrow stimulation. The combination of factors led to infiltration of the lesion by CD11b(+) cells. CONCLUSIONS The observed improvement in behavioral and morphologic parameters and tissue regeneration in animals with SCI treated with a combination of both factors could be associated with a prolonged time-course of mobilization of bone marrow cells. The intravenous administration of G-CSF and/or Flt3 ligand represents a safe and effective treatment modality for SCI.
Collapse
Affiliation(s)
- Lucia Urdziková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
41
|
Antonelli M, Azoulay E, Bonten M, Chastre J, Citerio G, Conti G, De Backer D, Gerlach H, Hedenstierna G, Joannidis M, Macrae D, Mancebo J, Maggiore SM, Mebazaa A, Preiser JC, Pugin J, Wernerman J, Zhang H. Year in review in Intensive Care Medicine 2010: III. ARDS and ALI, mechanical ventilation, noninvasive ventilation, weaning, endotracheal intubation, lung ultrasound and paediatrics. Intensive Care Med 2011; 37:394-410. [PMID: 21290103 PMCID: PMC3042109 DOI: 10.1007/s00134-011-2136-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 01/10/2023]
Affiliation(s)
- Massimo Antonelli
- Department of Intensive Care and Anesthesiology, Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|