1
|
Gou Y, Lv BH, Zhang JF, Li SM, Hei XP, Liu JJ, Li L, Yang JZ, Feng K. Identifying early predictive and diagnostic biomarkers and exploring metabolic pathways for sepsis after trauma based on an untargeted metabolomics approach. Sci Rep 2025; 15:12068. [PMID: 40199964 PMCID: PMC11978901 DOI: 10.1038/s41598-025-92631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Systemic inflammatory response syndrome (SIRS) and organ dysfunction make it challenging to predict which major trauma patients are at risk of developing sepsis. Additionally, the unclear pathogenesis of sepsis after trauma contributes to its high morbidity and mortality. Identifying early predictive and diagnostic biomarkers, as well as exploring related metabolic pathways, is crucial for improving early prevention, diagnosis, and treatment. This study prospectively analyzed plasma samples from patients with severe trauma collected between March 2022 and November 2023. Trauma patients were divided into two groups based on whether they developed sepsis within two weeks: the TDDS group (trauma patients who did not develop sepsis) and the TDS group (trauma patients who did develop sepsis). Plasma samples from the TDS group were collected at the time of sepsis diagnosis (Sepsis group). Metabolite concentrations were measured using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) through untargeted metabolomics. From the differential metabolites between the TDS and TDDS groups, we identified five significant metabolites (all area under the curve (AUC) ≥ 0.94) as early predictive biomarkers for sepsis after trauma: (1) docosatrienoic acid, (2) 7-alpha-carboxy-17-alpha-carboxyethylandrostan lactone phenyl ester, (3) sphingomyelin (SM) 8:1;2O/26:1, (4) N1-[1-(3-isopropenylphenyl)-1-methylethyl]-3-oxobutanamide, and (5) SM 34:2;2O. Furthermore, five significant metabolites (all AUC ≥ 0.85) were identified as early diagnostic biomarkers from the comparison between the TDS and TDDS groups: (1) lysophosphatidylcholine (LPC) O-22:1, (2) LPC O-22:0, (3) uric acid, (4) LPC O-24:2, and (5) LPC 22:0-SN1. 26 metabolites shared between two comparisons (TDS vs. TDDS and sepsis vs. TDS) were identified. Of which, 19 metabolites belong to lipid metabolism. The top three metabolic pathways related to sepsis after trauma under the impact of severe trauma were: (1) glycerophospholipid metabolism, (2) porphyrin metabolism, and (3) sphingolipid metabolism. The top three metabolic pathways related to sepsis after trauma under the impact of infection were: (1) caffeine metabolism, (2) biosynthesis of unsaturated fatty acids, and (3) steroid hormone biosynthesis. Our study identified early predictive and diagnostic biomarkers and explored metabolic pathways related to sepsis after trauma. These findings provide a foundation for future research on the onset and development of sepsis, facilitating its early prevention, diagnosis, and treatment based on specific metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Yi Gou
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Bo-Hui Lv
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Sheng-Ming Li
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Xiao-Ping Hei
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Jing-Jing Liu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Lei Li
- School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Jian-Zhong Yang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Ke Feng
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China.
| |
Collapse
|
2
|
Pandey S. Advances in metabolomics in critically ill patients with sepsis and septic shock. Clin Exp Emerg Med 2025; 12:4-15. [PMID: 39026452 PMCID: PMC12010799 DOI: 10.15441/ceem.24.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is associated with high morbidity and mortality rates in hospitalized patients. This condition has a complex pathophysiology and can swiftly progress to the severe form of septic shock, which can lead to organ dysfunction, organ failure, and death. Metabolomics has transformed the clinical and research topography of sepsis, with application to prognosis, diagnosis, and risk assessment. Metabolomics involves detecting and analyzing levels of metabolites in blood (plasma, serum, and/or erythrocytes) and urine; when applied in sepsis, this technology can improve our understanding of the pathogenesis of the disease and aid in better disease management by identifying early biomarkers. For this review article, "metabolomics," "sepsis," and "septic shock" were keywords used to search records in various databases including PubMed and Scopus from their inception until December 2023. This review article summarizes information regarding metabolic profiling performed in sepsis and septic shock and illustrates how metabolomics is advancing the diagnosis and prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Swarnima Pandey
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
3
|
Liu WJ, Xu DQ, Cui DX, Fu RJ, Jing H, Li XQ, Cao W, Tang YP. The structural features and anti-inflammatory properties of a glucogalactan from Holotrichia diomphalia Bates (Qi Cao). JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118948. [PMID: 39419304 DOI: 10.1016/j.jep.2024.118948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried larvae of Holotrichia diomphalia Bates, named Qi Cao, is a traditional Chinese medicine treat for liver diseases and arthritis. Polysaccharides is a principal component in Qi Cao, which exhibiting antioxidant and anti-inflammatory effects. However, the structural characteristics and underlying mechanisms of the polysaccharides remain inadequately elucidated. AIM OF THE STUDY To analyze the primary structure and elucidate the molecular anti-inflammatory mechanisms of the active polysaccharide in Qi Cao. MATERIALS AND METHODS The total polysaccharide was extracted by water extraction and alcohol precipitation, and further isolated and purified by DEAE Sephadex A-25 column and Sephadex G-100 column. The anti-inflammatory properties of four major fractions (HDPS-1, HDPS-2, HDPS-3, HDPS-4) and the pure homogeneous polysaccharides (HDPS-1I and HDPS-1II) were assessed using a RAW 264.7 cell model induced by lipopolysaccharide (LPS), and HDPS-1II was identified as the polysaccharide exhibiting significant anti-inflammatory activity in Qi Cao. The structural characteristics of HDPS-1II were subsequently analyzed using high-performance size-exclusion chromatography (HPSEC), fourier-transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The TLR4, NF-κB, COX-2 and iNOS expressions were determined by Western blot analysis to investigate the anti-inflammatory mechanism of HDPS-1II in vitro. Finally, the in vivo anti-inflammatory activity of HDPS-1II were evaluated by measuring the serum levels of pro-inflammatory factors, inflammatory cell infiltration and organelle damage in the lung tissues of sepsis model mice. RESULTS A homogeneous polysaccharide (HDPS-1II) with molecular weight of 1.7 × 104 Da was isolated from Holotrichia diomphalia Bates. HDPS-1II contains a backbone of α-T-Glcp-(1 → 6)-α-Glcp-(1 → 4)-α-Galp-(1 → 4)-α-Galp-(1 → 6)-α-Galp-(1 → 3)-α-Galp-(1 → . It inhibited activation of the TLR4/NF-κB signaling and reduced pro-inflammatory factors and NO in LPS-stimulated macrophage. Moreover, HDPS-1II increased the survival rate, inhibited inflammatory cells infiltration, and ameliorated the lung tissue damage in septic mice. CONCLUSIONS HDPS-1II exhibits anti-inflammatory effects in vitro and in vivo, which is the active polysaccharide components of the anti-inflammatory activity of Qi Cao.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hui Jing
- College of Pharmacy, Xi'an Medical University, Shaanxi, Xi'an, 710021, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
4
|
Ahmadi S, Sedaghat FR, Memar MY, Yekani M. Metabolomics in the Diagnosis of Bacterial Infections. Clin Chim Acta 2025; 565:120020. [PMID: 39489271 DOI: 10.1016/j.cca.2024.120020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
One of the essential factors in the appropriate treatment of infections is accurate and timely laboratory diagnosis. The correct diagnosis of infections plays a vital role in determining desirable therapy and controlling the spread of pathogens. Traditional methods of infection diagnosis are limited by several factors such as insufficient sensitivity and specificity, being time-consuming and laborious, having a low ability to distinguish infection from non-infectious inflammatory conditions and a low potential to predict treatment outcomes. Therefore, it is necessary to find innovative strategies for detecting specific biomarkers in order to diagnose infections. The rapid advancement of metabolomics makes it possible to determine the pattern of metabolite changes in the both of pathogen and the host during an infection. Metabolomics is a method used to assess the levels and type of metabolites in an organism. Metabolites are of low-molecular-weight compounds produced as a result of metabolic processes and pathways within cells. Metabolomics provides valuable data to detect accurate biomarkers of specific biochemical features directly related to certain phenotypes or conditions. This study aimed to review the applications and progress of metabolomics as a biomarker for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Rafie Sedaghat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Han T, Jiang Y, Ge W, Lu Y, Liu R, Sun Z. 2,5-Dihydroxyacetophenone attenuates acute kidney injury induced by intra-abdominal infection in rats. Nephrology (Carlton) 2024; 29:636-644. [PMID: 39054771 DOI: 10.1111/nep.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
AIMS As one of the most serious complications of sepsis, acute kidney injury (AKI) is pathologically associated with excessive inflammation. 2,5-Dihydroxyacetophenone (DHAP) is isolated from Radix rehmanniae praeparata and exhibit potent anti-inflammatory property. This research aimed at determining the role of DHAP in sepsis-associated AKI (SA-AKI) and the underlying mechanism. METHODS Plasma creatinine (Cre), blood urea nitrogen (BUN), tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels of SA-AKI patients were detected to evaluate their clinical characteristics. SA-AKI rat models were established by using caecum ligation puncture (CLP) surgery. CLP-induced rats were administered via oral gavage with 20 or 40 mg DHAP after 2 h of CLP surgery. Subsequently, survival rates, serum indexes, histopathological changes, inflammatory factors, renal function indexes and extracellular regulated protein kinases (ERK) and nuclear factor-κB (NF-κB) signalling pathways were detected. RESULTS SA-AKI patients exhibited markedly higher levels of plasma Cre, BUN, TNF-α and IL-1β than healthy people. Compared with sham rats, CLP-induced septic rats showed significantly decreased survival rate, increased serum lactate dehydrogenase activity and serum lactate level, obvious renal histopathological injury, upregulated TNF-α, IL-1β and TGF-β1 levels, elevated serum creatinine, BUN and serum cystatin C concentrations, serum neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 levels and reduced renal artery blood flow. All the above CLP-induced changes in septic rats were mitigated after DHAP administration. Additionally, CLP-induced elevation in phosphorylated-ERK1/2 and nuclear NF-κB p65 protein levels was inhibited by DHAP treatment. CONCLUSION DHAP hinders SA-AKI progression in rat models by inhibiting ERK and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Tao Han
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Jiang
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Weixing Ge
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yuyu Lu
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Rongming Liu
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zunpeng Sun
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Wang R, Sui X, Dong X, Hu L, Li Z, Yu H, Li C, Ji G, Wang S. Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying Chelidonium majus L. in the treatment of allergic asthma. Chin Med 2024; 19:65. [PMID: 38671520 PMCID: PMC11055330 DOI: 10.1186/s13020-024-00932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Chelidonium majus is a well-known traditional Chinese medicine, and has been reported of the effect in relieving cough and asthma. However, the mechanism of action is still unknown. METHODS Asthmatic SD rats were first sensitized and established through ovalbumin (OVA) motivation. Subsequently, Hematoxylin and eosin (H&E) staining, Masson's trichrome (Masson) staining, Periodic acid-Schiff (PAS) staining and inflammatory cytokines assay of interleukin (IL)-4, IL-6, IL-17 were implemented to evaluate the protective effects of Chelidonium majus on asthma. Then, the effects of Chelidonium majus and their molecular mechanisms of action on asthma were detected based on the integration of transcriptomics and metabolomics analyses. RESULTS After administration with Chelidonium majus, the histological injuries of inflammation, collagen deposition and mucus secretion in lungs were attenuated and the serum inflammatory cytokines perturbations were also converted. Furthermore, integrated analysis revealed that after Chelidonium majus treatment, 7 different expression genes (DEGs) (Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9) and 9 metabolic biomarkers (ADP, Xanthosine, Hypoxanthine, Inosine, prostaglandin E2 (PGE2), prostaglandin F2a (PGF2a), phosphatidylserine, Creatine and LysoPC (10:0)) were discovered to be connected with the enrichment metabolic pathways, including Purine metabolism, Arachidonic acid metabolism, Arginine and proline metabolism and Glycerophospholipid metabolism. The obtained metabolic biomarkers and DEGs were mainly related to energy metabolism and inflammation, and may be potential therapeutic targets. CONCLUSION Chelidonium majus relieved OVA-induced asthma in rats by regulating the Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9 genes expression to restore the disorders in energy metabolism and inflammation.
Collapse
Affiliation(s)
- Renguang Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xintong Sui
- Jilin Zhong Ke Bio-Engineering Co., Ltd, Changchun, 130012, China
| | - Xin Dong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Zhong Ke Bio-Engineering Co., Ltd, Changchun, 130012, China
| | - Liming Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhimeng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hang Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Cuicui Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guoxin Ji
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shumin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
7
|
Shang W, Qian H, Zhang S, Yuan M, Pan X, Huang S, Liu J, Chen D. Human blood metabolites and risk of sepsis: A Mendelian randomization investigation. Eur J Clin Invest 2024; 54:e14145. [PMID: 38041600 DOI: 10.1111/eci.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Evidence supports the observational correlations between human blood metabolites and sepsis. However, whether these associations represent a causal relationship is unknown. In this study, we applied two-sample Mendelian randomization (MR) analyses to examine causality between genetically proxied 486 blood metabolites and sepsis risk. METHODS We used summary data from genome-wide association studies (GWAS) on 486 metabolites involving 7824 individuals as exposure and a sepsis GWAS including 11,643 cases and 474,841 controls as the outcome. The inverse-variance weighted (IVW) was the primary method to estimate the causal relationship between exposure and outcome, with MR-Egger and weighted median serving as supplements. Sensitivity analyses were implemented with Cochrane's Q test, MR-Egger intercept, MR-PRESSO and leave-one-out analysis. In addition, we performed replication MR, meta-analysis, Steiger test, linkage disequilibrium score (LDSC) regression and multivariable MR (MVMR) to thoroughly verify the causation. RESULTS We identified that genetically determined high levels of 1-oleoylglycerophosphoethanolamine (odds ratio (OR) = .52, 95% confidence interval (CI): .31-.87, p = .0122), alpha-glutamyltyrosine (OR = .75, 95% CI: .60-.93, p = .0102), heptanoate (7:0) (OR = .51, 95% CI: .33-.81, p = .0041) and saccharin (OR = .84, 95% CI: .74-.94, p = .0036) were causally associated with a lower risk of sepsis. MVMR analysis demonstrated the independent causal effect of these metabolites on sepsis. CONCLUSIONS These findings indicated that four blood metabolites have a protective impact on sepsis, thus providing novel perspectives into the metabolite-mediated development mechanism of sepsis by combining genomics and metabolomics.
Collapse
Affiliation(s)
- Weifeng Shang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Qian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Thooft A, Conotte R, Colet JM, Zouaoui Boudjeltia K, Biston P, Piagnerelli M. Serum Metabolomic Profiles in Critically Ill Patients with Shock on Admission to the Intensive Care Unit. Metabolites 2023; 13:metabo13040523. [PMID: 37110181 PMCID: PMC10144913 DOI: 10.3390/metabo13040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Inflammatory processes are common in intensive care (ICU) patients and can induce multiple changes in metabolism, leading to increased risks of morbidity and mortality. Metabolomics enables these modifications to be studied and identifies a patient’s metabolic profile. The objective is to precise if the use of metabolomics at ICU admission can help in prognostication. This is a prospective ex-vivo study, realized in a university laboratory and a medico-surgical ICU. Metabolic profiles were analyzed by proton nuclear magnetic resonance. Using multivariable analysis, we compared metabolic profiles of volunteers and ICU patients divided into predefined subgroups: sepsis, septic shock, other shock and ICU controls. We also assessed possible correlations between metabolites and mortality. One hundred and eleven patients were included within 24 h of ICU admission, and 19 healthy volunteers. The ICU mortality rate was 15%. Metabolic profiles were different in ICU patients compared to healthy volunteers (p < 0.001). Among the ICU patients, only the subgroup of patients with septic shock had significant differences compared to the ICU control patients in several metabolites: pyruvate, lactate, carnitine, phenylalanine, urea, creatine, creatinine and myo-inositol. However, there was no correlation between these metabolite profiles and mortality. On the first day of ICU admission, we observed changes in some metabolic products in patients with septic shock, suggesting increased anaerobic glycolysis, proteolysis, lipolysis and gluconeogenesis. These changes were not correlated with prognosis.
Collapse
Affiliation(s)
- Aurélie Thooft
- Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 140, chaussée de Bruxelles, 6042 Charleroi, Belgium
| | - Raphaël Conotte
- Laboratory of Human Biology and Toxicology, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Jean-Marie Colet
- Laboratory of Human Biology and Toxicology, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, ULB 222 Unit, Université Libre de Bruxelles, CHU-Charleroi, 6110 Charleroi, Belgium
| | - Patrick Biston
- Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 140, chaussée de Bruxelles, 6042 Charleroi, Belgium
| | - Michaël Piagnerelli
- Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 140, chaussée de Bruxelles, 6042 Charleroi, Belgium
- Laboratory of Experimental Medicine, ULB 222 Unit, Université Libre de Bruxelles, CHU-Charleroi, 6110 Charleroi, Belgium
| |
Collapse
|
9
|
Morales-Cano D, Izquierdo-García JL, Barreira B, Esquivel-Ruiz S, Callejo M, Pandolfi R, Villa-Valverde P, Rodríguez I, Cogolludo A, Ruiz-Cabello J, Perez-Vizcaino F, Moreno L. Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model. Front Pharmacol 2023; 14:1021535. [PMID: 37063275 PMCID: PMC10090662 DOI: 10.3389/fphar.2023.1021535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit.Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods.Results:In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA.Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.
Collapse
Affiliation(s)
- Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jose Luis Izquierdo-García
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Maria Callejo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Rachele Pandolfi
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Palmira Villa-Valverde
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- ICTS Bioimagen Complutense, Universidad Complutense de Madrid, Madrid, Spain
| | - Ignacio Rodríguez
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Jesus Ruiz-Cabello
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- *Correspondence: Laura Moreno,
| |
Collapse
|
10
|
Sun S, Wang D, Dong D, Xu L, Xie M, Wang Y, Ni T, Jiang W, Zhu X, Ning N, Sun Q, Zhao S, Li M, Chen P, Yu M, Li J, Chen E, Zhao B, Peng Y, Mao E. Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis. Crit Care 2023; 27:127. [PMID: 36978107 PMCID: PMC10044080 DOI: 10.1186/s13054-023-04412-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The gut microbiome plays a pivotal role in the progression of sepsis. However, the specific mechanism of gut microbiota and its metabolites involved in the process of sepsis remains elusive, which limits its translational application. METHOD In this study, we used a combination of the microbiome and untargeted metabolomics to analyze stool samples from patients with sepsis enrolled at admission, then microbiota, metabolites, and potential signaling pathways that might play important roles in disease outcome were screened out. Finally, the above results were validated by the microbiome and transcriptomics analysis in an animal model of sepsis. RESULTS Patients with sepsis showed destruction of symbiotic flora and elevated abundance of Enterococcus, which were validated in animal experiments. Additionally, patients with a high burden of Bacteroides, especially B. vulgatus, had higher Acute Physiology and Chronic Health Evaluation II scores and longer stays in the intensive care unit. The intestinal transcriptome in CLP rats illustrated that Enterococcus and Bacteroides had divergent profiles of correlation with differentially expressed genes, indicating distinctly different roles for these bacteria in sepsis. Furthermore, patients with sepsis exhibited disturbances in gut amino acid metabolism compared with healthy controls; namely, tryptophan metabolism was tightly related to an altered microbiota and the severity of sepsis. CONCLUSION Alterations in microbial and metabolic features in the gut corresponded with the progression of sepsis. Our findings may help to predict the clinical outcome of patients in the early stage of sepsis and provide a translational basis for exploring new therapies.
Collapse
Affiliation(s)
- Silei Sun
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Lili Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Mengqi Xie
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Tongtian Ni
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Weisong Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Xiaojuan Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Ning Ning
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Qian Sun
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Shuyuan Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Mengjiao Li
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Peili Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Meiling Yu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Jian Li
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Bing Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
11
|
Wang Y, Jin Y, Ji X, Huang M, Xie B. Metabonomic Analysis of Metabolites Produced by Escherichia coli in Patients With and Without Sepsis. Infect Drug Resist 2022; 15:7339-7350. [PMID: 36536860 PMCID: PMC9759013 DOI: 10.2147/idr.s388034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/29/2022] [Indexed: 01/25/2024] Open
Abstract
AIM To analyze the metabolites of the most common sepsis-related pathogen and their correlation with clinical indicators. METHODS Information of bacterial-infection patients in Huzhou Central hospital was retrospectively investigated and analyzed. The most common pathogen inducing sepsis was selected. Then, the metabolic profiles of pathogens from blood were detected by liquid chromatography/mass spectrometry. Cluster and classification analysis, KEGG pathway enrichment analysis, multidimensional OPLS-DA, Z scores, correlation analysis were used to analyze the metabolites. RESULTS Escherichia coli (E. coli) was the pathogen that caused the most infection (about 21%) and sepsis. Amino acids, peptides, terpene glycosides, carbohydrates were the main metabolites of E.coli and they were mainly digestive and endocrine-related compounds. Most of them were related to amino acids metabolism, cofactors and vitamins metabolism, biosynthesis of secondary metabolites, et al. Moreover, metabolites were involved in purine metabolism, neuroactive ligand-receptor interaction, ABC transporters, etc. Then, over 70 differential metabolites such as tyramine, tryptophan, 3- hydroxymalondialdehyde were screened in E.coli from nonseptic and septic patients. They were mainly involved in phenylalanine metabolism, tryptophan metabolism, protein digestion and absorption. Distribution of metabolites of E. coli from nonseptic and septic patients was obviously different. What is more, differential metabolites had evidently correlation with SOFA score, APPACHE II score, C-reactive protein, erythrocyte, platelet, aspartate aminotransferase, coagulation function, lactic acid (p < 0.01). CONCLUSION The different metabolic profile of E. coli from nonseptic and septic patients indicated that differential metabolites might be associated with sepsis.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- Department of General Intensive Care Unit, Huzhou Central Hospital, Huzhou Hospital Affiliated to Zhejiang University School of Medicine, Huzhou, People’s Republic of China
| | - Yin Jin
- Department of Clinical Laboratory, Huzhou Central Hospital, Huzhou Hospital Affiliated to Zhejiang University School of Medicine, Huzhou, People’s Republic of China
| | - Xiaowei Ji
- Department of General Intensive Care Unit, Huzhou Central Hospital, Huzhou Hospital Affiliated to Zhejiang University School of Medicine, Huzhou, People’s Republic of China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University, Hangzhou, People’s Republic of China
| | - Bo Xie
- Department of General Intensive Care Unit, Huzhou Central Hospital, Huzhou Hospital Affiliated to Zhejiang University School of Medicine, Huzhou, People’s Republic of China
| |
Collapse
|
12
|
Wang W, Wang Z, Yang X, Song W, Chen P, Gao Z, Wu J, Huang F. Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1. Life Sci 2022; 310:121115. [DOI: 10.1016/j.lfs.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
13
|
Montague B, Summers A, Bhawal R, Anderson ET, Kraus-Malett S, Zhang S, Goggs R. Identifying potential biomarkers and therapeutic targets for dogs with sepsis using metabolomics and lipidomics analyses. PLoS One 2022; 17:e0271137. [PMID: 35802586 PMCID: PMC9269464 DOI: 10.1371/journal.pone.0271137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis is a diagnostic and therapeutic challenge and is associated with morbidity and a high risk of death. Metabolomic and lipidomic profiling in sepsis can identify alterations in metabolism and might provide useful insights into the dysregulated host response to infection, but investigations in dogs are limited. We aimed to use untargeted metabolomics and lipidomics to characterize metabolic pathways in dogs with sepsis to identify therapeutic targets and potential diagnostic and prognostic biomarkers. In this prospective observational cohort study, we examined the plasma metabolomes and lipidomes of 20 healthy control dogs and compared them with those of 21 client-owned dogs with sepsis. Patient data including signalment, physical exam findings, clinicopathologic data and clinical outcome were recorded. Metabolites were identified using an untargeted mass spectrometry approach and pathway analysis identified multiple enriched metabolic pathways including pyruvaldehyde degradation; ketone body metabolism; the glucose-alanine cycle; vitamin-K metabolism; arginine and betaine metabolism; the biosynthesis of various amino acid classes including the aromatic amino acids; branched chain amino acids; and metabolism of glutamine/glutamate and the glycerophospholipid phosphatidylethanolamine. Metabolites were identified with high discriminant abilities between groups which could serve as potential biomarkers of sepsis including 13,14-Dihydro-15-keto Prostaglandin A2; 12(13)-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid); and 9-HpODE (9-Hydroxyoctadecadienoic acid). Metabolites with higher abundance in samples from nonsurvivors than survivors included 3-(2-hydroxyethyl) indole, indoxyl sulfate and xanthurenic acid. Untargeted lipidomic profiling revealed multiple sphingomyelin species (SM(d34:0)+H; SM(d36:0)+H; SM(d34:0)+HCOO; and SM(d34:1D3)+HCOO); lysophosphatidylcholine molecules (LPC(18:2)+H) and lipophosphoserine molecules (LPS(20:4)+H) that were discriminating for dogs with sepsis. These biomarkers could aid in the diagnosis of dogs with sepsis, provide prognostic information, or act as potential therapeutic targets.
Collapse
Affiliation(s)
- Brett Montague
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - April Summers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth T. Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Sydney Kraus-Malett
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ding X, Tong R, Song H, Sun G, Wang D, Liang H, Sun J, Cui Y, Zhang X, Liu S, Cheng M, Sun T. Identification of metabolomics-based prognostic prediction models for ICU septic patients. Int Immunopharmacol 2022; 108:108841. [DOI: 10.1016/j.intimp.2022.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
|
15
|
Oh TS, Zabalawi M, Jain S, Long D, Stacpoole PW, McCall CE, Quinn MA. Dichloroacetate improves systemic energy balance and feeding behavior during sepsis. JCI Insight 2022; 7:153944. [PMID: 35730570 PMCID: PMC9309051 DOI: 10.1172/jci.insight.153944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to an infection. The metabolic aberrations associated with sepsis underly an acute and organism-wide hyperinflammatory response and multiple organ dysfunction; however, crosstalk between systemic metabolomic alterations and metabolic reprogramming at organ levels remains unknown. We analyzed substrate utilization by the respiratory exchange ratio, energy expenditure, metabolomic screening, and transcriptional profiling in a cecal ligation and puncture model to show that sepsis increases circulating free fatty acids and acylcarnitines but decreases levels of amino acids and carbohydrates, leading to a drastic shift in systemic fuel preference. Comparative analysis of previously published metabolomics from septic liver indicated a positive correlation with hepatic and plasma metabolites during sepsis. In particular, glycine deficiency was a common abnormality of the plasma and liver during sepsis. Interrogation of the hepatic transcriptome in septic mice suggested that the septic liver may contribute to systemic glycine deficiency by downregulating genes involved in glycine synthesis. Interestingly, intraperitoneal injection of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reversed sepsis-induced anorexia, energy imbalance, inflammation, dyslipidemia, hypoglycemia, and glycine deficiency. Collectively, our data indicated that PDK inhibition rescued systemic energy imbalance and metabolic dysfunction in sepsis partly through restoration of hepatic fuel metabolism.
Collapse
Affiliation(s)
- Tae Seok Oh
- Department of Pathology, Section on Comparative Medicine, and
| | - Manal Zabalawi
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shalini Jain
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David Long
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W. Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew A. Quinn
- Department of Pathology, Section on Comparative Medicine, and,Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
16
|
Lu G, Zhou J, Yang T, Li J, Jiang X, Zhang W, Gu S, Wang J. Landscape of Metabolic Fingerprinting for Diagnosis and Risk Stratification of Sepsis. Front Immunol 2022; 13:883628. [PMID: 35663956 PMCID: PMC9159301 DOI: 10.3389/fimmu.2022.883628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sepsis and septic shock, a subset of sepsis with higher risk stratification, are hallmarked by high mortality rates and necessitated early and accurate biomarkers. Methods Untargeted metabolomic analysis was performed to compare the metabolic features between the sepsis and control systemic inflammatory response syndrome (SIRS) groups in discovery cohort, and potential metabolic biomarkers were selected and quantified using multiple reaction monitoring based target metabolite detection method. Results Differentially expressed metabolites including 46 metabolites in positive electrospray ionization (ESI) ion mode, 22 metabolites in negative ESI ion mode, and 4 metabolites with dual mode between sepsis and SIRS were identified and revealed. Metabolites 5-Oxoproline, L-Kynurenine and Leukotriene D4 were selected based on least absolute shrinkage and selection operator regularization logistic regression and differential expressed between sepsis and septic shock group in the training and test cohorts. Respective risk scores for sepsis and septic shock based on a 3-metabolite fingerprint classifier were established to distinguish sepsis from SIRS, septic shock from sepsis. Significant relationship between developed sepsis risk scores, septic shock risk scores and Sequential (sepsis-related) Organ Failure Assessment (SOFA), procalcitonin (PCT) and lactic acid were observed. Conclusions Collectively, our findings demonstrated that the characteristics of plasma metabolites not only manifest phenotypic variation in sepsis onset and risk stratification of sepsis but also enable individualized treatment and improve current therapeutic strategies.
Collapse
Affiliation(s)
- Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiawei Zhou
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jin Li
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xinrui Jiang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjun Zhang
- Departments of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuangshuang Gu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Wang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
17
|
Title NMR-based metabolic profiling provides diagnostic and prognostic information in critically ill children with suspected infection. Sci Rep 2020; 10:20198. [PMID: 33214628 PMCID: PMC7677384 DOI: 10.1038/s41598-020-77319-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
Sepsis, defined as life-threatening organ dysfunction caused by infection is difficult to distinguish clinically from infection or post-operative inflammation. We hypothesized that in a heterogeneous group of critically ill children, there would be different metabolic profiles between post-operative inflammation, bacterial and viral infection and infection with or without organ dysfunction. 1D 1H nuclear magnetic resonance spectra were acquired in plasma samples from critically ill children. We included children with bacterial (n = 25) and viral infection (n = 30) and controls (n = 58) (elective cardiac surgery without infection). Principal component analysis was used for data exploration and partial least squares discriminant analysis models for the differences between groups. Area under receiver operating characteristic curve (AUC) values were used to evaluate the models. Univariate analysis demonstrated differences between controls and bacterial and viral infection. There was excellent discrimination between bacterial and control (AUC = 0.94), and viral and control (AUC = 0.83), with slightly more modest discrimination between bacterial and viral (AUC = 0.78). There was modest discrimination (AUC = 0.73) between sepsis with organ dysfunction and infection with no organ dysfunction. In critically ill children, NMR metabolomics differentiates well between those with a post-operative inflammation but no infection, and those with infection (bacterial and viral), and between sepsis and infection.
Collapse
|
18
|
Viswan A, Singh C, Kayastha AM, Azim A, Sinha N. An NMR based panorama of the heterogeneous biology of acute respiratory distress syndrome (ARDS) from the standpoint of metabolic biomarkers. NMR IN BIOMEDICINE 2020; 33:e4192. [PMID: 31733128 DOI: 10.1002/nbm.4192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS), manifested by intricate etiology and pathophysiology, demands careful clinical surveillance due to its high mortality and imminent life support measures. NMR based metabolomics provides an approach for ARDS which culminates from a wide spectrum of illness thereby confounding early manifestation and prognosis predictors. 1 H NMR with its manifold applications in critical disease settings can unravel the biomarker of ARDS thus holding potent implications by providing surrogate endpoints of clinical utility. NMR metabolomics which is the current apogee platform of omics trilogy is contributing towards the possible panacea of ARDS by subsequent validation of biomarker credential on larger datasets. In the present review, the physiological derangements that jeopardize the whole metabolic functioning in ARDS are exploited and the biomarkers involved in progression are addressed and substantiated. The following sections of the review also outline the clinical spectrum of ARDS from the standpoint of NMR based metabolomics which is an emerging element of systems biology. ARDS is the main premise of intensivists textbook, which has been thoroughly reviewed along with its incidence, progressive stages of severity, new proposed diagnostic definition, and the preventive measures and the current pitfalls of clinical management. The advent of new therapies, the need for biomarkers, the methodology and the contemporary promising approaches needed to improve survival and address heterogeneity have also been evaluated. The review has been stepwise illustrated with potent biometrics employed to selectively pool out differential metabolites as diagnostic markers and outcome predictors. The following sections have been drafted with an objective to better understand ARDS mechanisms with predictive and precise biomarkers detected so far on the basis of underlying physiological parameters having close proximity to diseased phenotype. The aim of this review is to stimulate interest in conducting more studies to help resolve the complex heterogeneity of ARDS with biomarkers of clinical utility and relevance.
Collapse
Affiliation(s)
- Akhila Viswan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- Faculty of Engineering and Technology, Dr. A. P. J Abdul Kalam Technical University, Lucknow, India
| | - Chandan Singh
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Afzal Azim
- Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Metabolomic Profile of ARDS by Nuclear Magnetic Resonance Spectroscopy in Patients With H1N1 Influenza Virus Pneumonia. Shock 2019; 50:504-510. [PMID: 29293175 DOI: 10.1097/shk.0000000000001099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The integrated analysis of changes in the metabolic profile could be critical for the discovery of biomarkers of lung injury, and also for generating new pathophysiological hypotheses and designing novel therapeutic targets for the acute respiratory distress syndrome (ARDS). This study aimed at developing a nuclear magnetic resonance (NMR)-based approach for the identification of the metabolomic profile of ARDS in patients with H1N1 influenza virus pneumonia. METHODS Serum samples from 30 patients (derivation set) diagnosed of H1N1 influenza virus pneumonia were analyzed by unsupervised principal component analysis to identify metabolic differences between patients with and without ARDS by NMR spectroscopy. A predictive model of partial least squares discriminant analysis (PLS-DA) was developed for the identification of ARDS. PLS-DA was trained with the derivation set and tested in another set of samples from 26 patients also diagnosed of H1N1 influenza virus pneumonia (validation set). RESULTS Decreased serum glucose, alanine, glutamine, methylhistidine and fatty acids concentrations, and elevated serum phenylalanine and methylguanidine concentrations, discriminated patients with ARDS versus patients without ARDS. PLS-DA model successfully identified the presence of ARDS in the validation set with a success rate of 92% (sensitivity 100% and specificity 91%). The classification functions showed a good correlation with the Sequential Organ Failure Assessment score (R = 0.74, P < 0.0001) and the PaO2/FiO2 ratio (R = 0.41, P = 0.03). CONCLUSIONS The serum metabolomic profile is sensitive and specific to identify ARDS in patients with H1N1 influenza A pneumonia. Future studies are needed to determine the role of NMR spectroscopy as a biomarker of ARDS.
Collapse
|
20
|
GC/MS-based metabonomics approach reveals effects of Xuebijing injection in CLP induced septic rats. Biomed Pharmacother 2019; 117:109163. [PMID: 31238257 DOI: 10.1016/j.biopha.2019.109163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 11/23/2022] Open
Abstract
Xuebijing (XBJ) injection, a Chinese traditional medicine injection, is widely used in the treatment of sepsis in China, and shows a promising clinical therapeutic effect. However, its impacts on the metabolic changes of sepsis have not yet been reported. We established a septic rat model using cecal ligation and puncture (CLP) and treated with XBJ or placebo (saline). The survival rates were monitored for 7d, the effects of XBJ on liver and kidney tissue morphology, serum biochemistry [alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr)] and cytokines [tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6)] production were assessed. Plasma samples were profiled by gas chromatography/mass spectrometer (GC/MS) and analyzed to evaluate the metabolites changes. We found that XBJ can increase the survival rate of septic rats by reducing multi-organ dysfunctions shown as decrease in serum biochemistry indicators, cytokines, and morphologic changes. A Partial Least-Squares Discriminant Analysis (PLS-DA) score plot indicated that rats undergo significant metabolic changes between the three groups. 21 distinct metabolites with VIP>1.5 and p<0.05 were were identified between these group. These metabolites primarily reflected disorders in energy metabolism, glucose metabolism and amino acid metabolism. This study established the foundation for further research of the mechanisms and therapeutic targets of sepsis.
Collapse
|
21
|
Izquierdo-García JL, Nin N, Cardinal-Fernandez P, Ruiz-Cabello J, Lorente JÁ. Metabolomic profile of acute respiratory distress syndrome of different etiologies. Intensive Care Med 2019; 45:1318-1320. [PMID: 31087114 PMCID: PMC7095478 DOI: 10.1007/s00134-019-05634-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Affiliation(s)
- José Luis Izquierdo-García
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain. .,Centro de Investigación Cooperativa en Biomateriales, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain. .,Departamento de Química-Física II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | - Nicolás Nin
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Hospital Español, Montevideo, Uruguay
| | - Pablo Cardinal-Fernandez
- Emergency Department, Fundacion de Investigacion HM, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Centro de Investigación Cooperativa en Biomateriales, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain.,Departamento de Química-Física II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José Ángel Lorente
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Maresin1 Alleviates Metabolic Dysfunction in Septic Mice: A 1H NMR-Based Metabolomics Analysis. Mediators Inflamm 2019; 2019:2309175. [PMID: 30800000 PMCID: PMC6360043 DOI: 10.1155/2019/2309175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022] Open
Abstract
Maresin1 (MaR1), a new anti-inflammatory and proresolving lipid mediator, has been proven to exert organ-protective effects in septic animal models. However, the potential mechanisms are still not fully elucidated. In this study, we sought to explore the impact of MaR1 on metabolic dysfunction in cecal ligation and puncture- (CLP-) induced septic mice. We found that MaR1 significantly increased the overall survival rate and attenuated lung and liver injuries in septic mice. In addition, MaR1 markedly reduced the levels of proinflammatory cytokines (TNF-α and IL-6) and alleviated mitochondrial damage. Based on a 1H NMR-based metabolomics analysis, CLP-induced septic mice had increased levels of acetate, pyruvate, and lactate in serum and decreased levels of alanine, aspartate, glutamate, and fumarate in lungs. However, these metabolic disorders, mainly involving energy and amino acid metabolism, can be recovered by MaR1 treatment. Therefore, our results suggest that the protective effects of MaR1 on sepsis could be related to the recovery of metabolic dysfunction and the alleviation of inflammation and mitochondrial damage.
Collapse
|
23
|
Xu T, Zhou L, Shi Y, Liu L, Zuo L, Jia Q, Du S, Kang J, Zhang X, Sun Z. Metabolomics approach in lung tissue of septic rats and the interventional effects of Xuebijing injection using UHPLC-Q-Orbitrap-HRMS. J Biochem 2019; 164:427-435. [PMID: 30165618 DOI: 10.1093/jb/mvy070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Sepsis is the dysregulated host response to an infection which leads to life-threatening organ dysfunction. Metabolomic profiling in bio-fluid or tissue is vital for elucidating the pathogenesis of sepsis and evaluating therapeutic effects of medication. In this study, an untargeted metabolomics approach was applied to study the metabolic changes in lung tissue of septic rats induced by cecal ligation and puncture (CLP) and investigate the treatment effects of Xubijing injection (XBJ). Metabolomics analyses were performed on ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry (UHPLC-Q-Orbitrap-HRMS) together with multivariate statistical analysis. A total of 26 differential metabolites between CLP and sham-operated group were identified. The altered metabolic pathways included energy metabolism, amino metabolism, lipid metabolism, fatty acid metabolism and hormone metabolism. Among the 26-varied metabolites, 15 were significantly regulated after XBJ treatment. The metabolic pathway network of sepsis was drawn to interpret the pathological feature of lung damage caused by sepsis and the underlying regulating mechanism of XBJ on the molecular levels. Our findings display that LC-MS-based metabolomics is a useful tool for uncovering the underlying molecular mechanism of sepsis, and XBJ may exert therapeutic effect by regulating multiple metabolic pathways.
Collapse
Affiliation(s)
- Tanye Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China.,College of Food Science and Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, Liaoning Province, PR China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| |
Collapse
|
24
|
Johansson PI, Nakahira K, Rogers AJ, McGeachie MJ, Baron RM, Fredenburgh LE, Harrington J, Choi AMK, Christopher KB. Plasma mitochondrial DNA and metabolomic alterations in severe critical illness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:360. [PMID: 30594224 PMCID: PMC6310975 DOI: 10.1186/s13054-018-2275-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/22/2018] [Indexed: 01/28/2023]
Abstract
Background Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA. Methods We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels. Results Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines. Conclusions Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. Electronic supplementary material The online version of this article (10.1186/s13054-018-2275-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pär I Johansson
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Angela J Rogers
- Pulmonary & Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura E Fredenburgh
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York Presbyterian-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, USA
| | - Augustine M K Choi
- Department of Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Kenneth B Christopher
- Renal Division, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, MRB 418, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Liu S, Zhang P, Liu Y, Gao X, Hua J, Li W. Metabolic regulation protects mice against Klebsiella pneumoniae lung infection. Exp Lung Res 2018; 44:302-311. [PMID: 30513234 DOI: 10.1080/01902148.2018.1538396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Klebsiella pneumoniae-caused pneumonia is a risk factor for development of lung injury. However, the current clinical isolates of K. pneumoniae are mostly multidrug-resistance and thus must be addressed with new treatments. One ideal approach is to enhance the innate immunity of the infected host through metabolic modulators. MATERIALS AND METHODS We used GC/MS-based metabolomics to profile the metabolomes among Control, Dead and Survival groups. The key metabolites were administrated in mice, and the bacterial loads in lung and survival were measured. The effect of the key metabolites on macrophage phagocytosis was determined by flow cytometry. RESULTS Compared with the mice that compromised from K. pneumoniae lung infection, mice that survived the infection displayed the varied metabolomic profile. The differential analysis of metabolome showed D-Glucose, Glutamine, L-Serine, Myo-inositol, Ethanedioic acid and Lactic acid related to the host surviving a K. pneumoniae lung infection. Further pathway enrichment analysis proposed that valine, leucine and isoleucine biosynthesis involved in outcome of lung infection. The follow-up data showed that exogenous L-Serine, L-Valine and L-Leucine could decline the load of K. pneumoniae in infected lung and increases the mouse survival. More interestingly, L-Serine, L-Valine and L-Leucine also were able to promote macrophage phagocytosis that is the natural way to promote hosts to clear lung pathogens. CONCLUSIONS Our study establishes a novel strategy of identifying metabolic modulator from surviving host and emphasizes the feasibility of employing the metabolic modulator as a therapy for K. pneumoniae lung infection.
Collapse
Affiliation(s)
- Sunan Liu
- a Emergency department , Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Pan Zhang
- b Department of Infectious Diseases , Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yanan Liu
- b Department of Infectious Diseases , Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Xiaoyan Gao
- b Department of Infectious Diseases , Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Juan Hua
- b Department of Infectious Diseases , Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Wei Li
- b Department of Infectious Diseases , Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| |
Collapse
|
26
|
Hong J, Nachkebia S, Tun SM, Petzer A, Windsor JA, Hickey AJ, Phillips AR. Altered Metabolic Profile of Triglyceride-Rich Lipoproteins in Gut-Lymph of Rodent Models of Sepsis and Gut Ischemia-Reperfusion Injury. Dig Dis Sci 2018; 63:3317-3328. [PMID: 30182310 DOI: 10.1007/s10620-018-5270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/29/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND Triglyceride-rich lipoproteins are important in dietary lipid absorption and subsequent energy distribution in the body. Their importance in the gut-lymph may have been overlooked in sepsis, the most common cause of critical illness, and in gut ischemia-reperfusion injury, a common feature of many critical illnesses. AIMS We aimed to undertake an exploratory study of triglyceride-rich lipoprotein fractions in gut-lymph using untargeted metabolic profiling to identify altered metabolites in sepsis or gut ischemia-reperfusion. METHODS The gut-lymph was collected from rodent sham, sepsis, and gut ischemia-reperfusion models. The triglyceride-rich lipoprotein-enriched fractions isolated from the gut-lymph were subjected to a dual metabolomics analysis approach: non-polar metabolite analysis by ultra-high performance liquid chromatography-mass spectrometry and polar metabolite analysis by gas chromatography-mass spectrometry. RESULTS The metabolite analysis of gut-lymph triglyceride-rich lipoprotein fractions revealed a significant increase (FDR-adjusted P value < 0.05) in myo-inositol in the sepsis group and monoacylglycerols [(18:1) and (18:2)] in gut ischemia-reperfusion. There were no significantly increased specific metabolites in the lipoprotein-enriched fractions of both sepsis and gut ischemia-reperfusion. In contrast, there was a widespread decrease in multiple lipid species in sepsis (35 out of 190; adjusted P < 0.05), but not in the gut ischemia-reperfusion. CONCLUSIONS Increased levels of myo-inositol and monoacylglycerols, and decreased multiple lipid species in the gut-lymph triglyceride-rich lipoprotein fraction could be candidates for new biomarkers and/or involved in the progression of sepsis and gut ischemia-reperfusion pathobiology.
Collapse
Affiliation(s)
- Jiwon Hong
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand.
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| | - Shorena Nachkebia
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Soe Min Tun
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Amorita Petzer
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - John A Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony J Hickey
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Anthony R Phillips
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Izquierdo-Garcia JL, Nin N, Cardinal-Fernandez P, Rojas Y, de Paula M, Granados R, Martínez-Caro L, Ruíz-Cabello J, Lorente JA. Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury. Am J Physiol Renal Physiol 2018; 316:F54-F62. [PMID: 30379100 DOI: 10.1152/ajprenal.00315.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study is the identification of metabolomic biomarkers of sepsis and sepsis-induced acute kidney injury (AKI) in an experimental model. Pigs were anesthetized and monitored to measure mean arterial pressure (MAP), systemic blood flow (QT), mean pulmonary arterial pressure, renal artery blood flow (QRA), renal cortical blood flow (QRC), and urine output (UO). Sepsis was induced at t = 0 min by the administration of live Escherichia coli ( n = 6) or saline ( n = 8). At t = 300 min, animals were killed. Renal tissue, urine, and serum samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy. Principal component analyses were performed on the processed NMR spectra to highlight kidney injury biomarkers. Sepsis was associated with decreased QT and MAP and decreased QRA, QRC, and UO. Creatinine serum concentration and neutrophil gelatinase-associated lipocalin (NGAL) serum and urine concentrations increased. NMR-based metabolomics analysis found metabolic differences between control and septic animals: 1) in kidney tissue, increased lactate and nicotinuric acid and decreased valine, aspartate, glucose, and threonine; 2) in urine, increased isovaleroglycine, aminoadipic acid, N-acetylglutamine, N-acetylaspartate, and ascorbic acid and decreased myoinositol and phenylacetylglycine; and 3) in serum, increased lactate, alanine, pyruvate, and glutamine and decreased valine, glucose, and betaine concentrations. The concentration of several metabolites altered in renal tissue and urine samples from septic animals showed a significant correlation with markers of AKI (i.e., creatinine and NGAL serum concentrations). NMR-based metabolomics is a potentially useful tool for biomarker identification of sepsis-induced AKI.
Collapse
Affiliation(s)
- Jose L Izquierdo-Garcia
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,CIC biomaGUNE, Donostia- San Sebastian , Spain
| | - Nicolás Nin
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Hospital Español , Montevideo , Uruguay
| | - Pablo Cardinal-Fernandez
- Department of Emergency, Hospital Universitario HM Sanchinarro. Fundación de Investigación HM , Madrid , Spain
| | - Yenny Rojas
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Marta de Paula
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Rosario Granados
- Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Leticia Martínez-Caro
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Jesús Ruíz-Cabello
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,CIC biomaGUNE, Donostia- San Sebastian , Spain.,Departamento de Química-Física II, Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - José A Lorente
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain.,Universidad Europea de Madrid , Madrid , Spain
| |
Collapse
|
28
|
Izquierdo-Garcia JL, Arias T, Rojas Y, Garcia-Ruiz V, Santos A, Martin-Puig S, Ruiz-Cabello J. Metabolic Reprogramming in the Heart and Lung in a Murine Model of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2018; 5:110. [PMID: 30159317 PMCID: PMC6104186 DOI: 10.3389/fcvm.2018.00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
A significant glycolytic shift in the cells of the pulmonary vasculature and right ventricle during pulmonary arterial hypertension (PAH) has been recently described. Due to the late complications and devastating course of any variant of this disease, there is a great need for animal models that reproduce potential metabolic reprograming of PAH. Our objective is to study, in situ, the metabolic reprogramming in the lung and the right ventricle of a mouse model of PAH by metabolomic profiling and molecular imaging. PAH was induced by chronic hypoxia exposure plus treatment with SU5416, a vascular endothelial growth factor receptor inhibitor. Lung and right ventricle samples were analyzed by magnetic resonance spectroscopy. In vivo energy metabolism was studied by positron emission tomography. Our results show that metabolomic profiling of lung samples clearly identifies significant alterations in glycolytic pathways. We also confirmed an upregulation of glutamine metabolism and alterations in lipid metabolism. Furthermore, we identified alterations in glycine and choline metabolism in lung tissues. Metabolic reprograming was also confirmed in right ventricle samples. Lactate and alanine, endpoints of glycolytic oxidation, were found to have increased concentrations in mice with PAH. Glutamine and taurine concentrations were correlated to specific ventricle hypertrophy features. We demonstrated that most of the metabolic features that characterize human PAH were detected in a hypoxia plus SU5416 mouse model and it may become a valuable tool to test new targeting treatments of this severe disease.
Collapse
Affiliation(s)
- Jose L Izquierdo-Garcia
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Teresa Arias
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Yeny Rojas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Victoria Garcia-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Unidad de Gestion Clinica del Corazon, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | | | - Jesus Ruiz-Cabello
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Universidad Complutense Madrid, Facultad de Farmacia, Departamento de Quimica en Ciencias Farmaceuticas, Madrid, Spain
| |
Collapse
|
29
|
Rodrigues FADP, Santos ADDC, de Medeiros PHQS, Prata MDMG, Santos TCDS, da Silva JA, Brito GADC, Dos Santos AA, Silveira ER, Lima AÂM, Havt A. Gingerol suppresses sepsis-induced acute kidney injury by modulating methylsulfonylmethane and dimethylamine production. Sci Rep 2018; 8:12154. [PMID: 30108263 PMCID: PMC6092401 DOI: 10.1038/s41598-018-30522-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) and metabolic dysfunction are critical complications in sepsis syndrome; however, their pathophysiological mechanisms remain poorly understood. Therefore, we evaluated whether the pharmacological properties of 6-gingerol (6G) and 10-gingerol (10G) could modulate AKI and metabolic disruption in a rat model of sepsis (faecal peritonitis). Animals from the sham and AKI groups were intraperitoneally injected with 6G or 10G (25 mg/kg). Septic AKI decreased creatinine clearance and renal antioxidant activity, but enhanced oxidative stress and the renal mRNA levels of tumour necrosis factor-α, interleukin-1β, and transforming growth factor-β. Both phenol compounds repaired kidney function through antioxidant activity related to decreased oxidative/nitrosative stress and proinflammatory cytokines. Metabolomics analysis indicated different metabolic profiles for the sham surgery group, caecal ligation and puncture model alone group, and sepsis groups treated with gingerols. 1H nuclear magnetic resonance analysis detected important increases in urinary creatine, allantoin, and dimethylglycine levels in septic rats. However, dimethylamine and methylsulfonylmethane metabolites were more frequently detected in septic animals treated with 6G or 10G, and were associated with increased survival of septic animals. Gingerols attenuated septic AKI by decreasing renal disturbances, oxidative stress, and inflammatory response through a mechanism possibly correlated with increased production of dimethylamine and methylsulfonylmethane.
Collapse
Affiliation(s)
| | | | | | - Mara de Moura Gondim Prata
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Gerly Anne de Castro Brito
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Edilberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aldo Ângelo Moreira Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
30
|
Evangelatos N, Bauer P, Reumann M, Satyamoorthy K, Lehrach H, Brand A. Metabolomics in Sepsis and Its Impact on Public Health. Public Health Genomics 2018; 20:274-285. [PMID: 29353273 DOI: 10.1159/000486362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022] Open
Abstract
Sepsis, with its often devastating consequences for patients and their families, remains a major public health concern that poses an increasing financial burden. Early resuscitation together with the elucidation of the biological pathways and pathophysiological mechanisms with the use of "-omics" technologies have started changing the clinical and research landscape in sepsis. Metabolomics (i.e., the study of the metabolome), an "-omics" technology further down in the "-omics" cascade between the genome and the phenome, could be particularly fruitful in sepsis research with the potential to alter the clinical practice. Apart from its benefit for the individual patient, metabolomics has an impact on public health that extends beyond its applications in medicine. In this review, we present recent developments in metabolomics research in sepsis, with a focus on pneumonia, and we discuss the impact of metabolomics on public health, with a focus on free/libre open source software.
Collapse
Affiliation(s)
- Nikolaos Evangelatos
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany.,UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands
| | - Pia Bauer
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Matthias Reumann
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,IBM Research - Zurich, Rueschlikon, Switzerland
| | | | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angela Brand
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,Public Health Genomics, Department of International Health, Maastricht University, Maastricht, the Netherlands.,Manipal University, Madhav Nagar, Manipal, India
| |
Collapse
|
31
|
Iroh Tam PY, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res 2017; 82:574-583. [PMID: 28574980 DOI: 10.1038/pr.2017.134] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Progress has been made in the reduction of morbidity and mortality from neonatal sepsis. However, diagnosis continues to rely primarily on conventional microbiologic techniques, which can be inaccurate. The objective of this review is to provide the clinician with an overview of the current information available on diagnosing this condition. We review currently available diagnostic approaches for documenting neonatal sepsis and also describe novel approaches for diagnosing infection in neonates who are under development and investigation. Substantial progress has been made with molecular approaches and further development of non-culture-based methods offer promise. The potential ability to incorporate antimicrobial resistance gene testing in addition to pathogen identification may provide a venue to incorporate a predominantly molecular platform into a larger program of neonatal care.
Collapse
|
32
|
Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J Crit Care 2017; 43:246-255. [PMID: 28942199 DOI: 10.1016/j.jcrc.2017.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/23/2017] [Accepted: 09/09/2017] [Indexed: 11/20/2022]
Abstract
Metabolomics globally evaluates the totality of the endogenous metabolites in patient's body, at the same time reflecting gene function, enzyme activity and degree of organ dysfunction in sepsis. The authors performed the analysis of the main chemical classes of low molecular weight compounds (amino acids, polyols, fatty acids, hydroxy acids, amines, nucleotides and their derivatives) that quantitatively distinguish patients with sepsis from healthy ones. The following keywords were used to find papers published in the Scopus and Web of Science databases from 2008 to 2015: (marker OR biomarker) AND (sepsis OR critical ill OR pneumonia OR hypoxia). Key words for the search were the following: metabolomics, metabolic profiling, sepsis, metabolism, biomarkers, critically ill patients, multiple organ failure. Several metabolomic findings in sepsis are still waiting for an explanation. When assessing metabolomic analysis results in patients with sepsis we should take into account the intervention of microbial metabolism. Among the low molecular weight compounds detected in septic patient blood, a special attention should be paid to the molecules which could be attributed to "common metabolites" of man and bacteria. The genomic region overlap and the production of enzymes which are similar in function and final products could be a possible reason for this phenomenon. For example, microbial biodegradation products of aromatic compounds are increased many times in blood of patients with sepsis. On the one hand, it shows a high metabolic activity of the bacteria. On the other hand, these molecules are intermediates in the metabolism of aromatic amino acids such as tyrosine and phenylalanine in human body. It is important that there are many clinical studies, which confirmed the diagnostic and prognostic significance of series of aromatic metabolites, including those with intrinsic biological activity. We can't exclude the presence of signaling pathways, cell receptors, transmembrane transporters and others which are common for a human and bacteria and their direct participation in mechanisms of organ dysfunction and hypotension in sepsis. Thus, today, we should not limit ourselves studying eukaryotic cells while searching for new molecular mechanisms of sepsis-associated organ failure and septic shock. We should take into account and simulate in the experiments the changes of a human internal environment, which occur during the radical microbiome "restructuring" in critically ill patients. This approach opens up new prospects for an objective monitoring of diseases, carrying out an assessment of the integral metabolic profile in a given time on common metabolites (particularly aromatic), and in future will provide new targets for therapeutic effects.
Collapse
|
33
|
Eckerle M, Ambroggio L, Puskarich M, Winston B, Jones AE, Standiford TJ, Stringer KA. Metabolomics as a Driver in Advancing Precision Medicine in Sepsis. Pharmacotherapy 2017; 37:1023-1032. [PMID: 28632924 PMCID: PMC5600684 DOI: 10.1002/phar.1974] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of this review is to explain the science of metabolomics-a science of systems biology that measures and studies endogenous small molecules (metabolites) that are present in a single biological sample-and its application to the diagnosis and treatment of sepsis. In addition, we discuss how discovery through metabolomics can contribute to the development of precision medicine targets for this complex disease state and the potential avenues for those new discoveries to be applied in the clinical environment. A nonsystematic literature review was performed focusing on metabolomics, pharmacometabolomics, and sepsis. Human (adult and pediatric) and animal studies were included. Metabolomics has been investigated in the diagnosis, prognosis, and risk stratification of sepsis, as well as for the identification of drug target opportunities. Metabolomics elucidates a new level of detail when compared with other systems biology sciences, with regard to the metabolites that are most relevant in the pathophysiology of sepsis, as well as highlighting specific biochemical pathways at work in sepsis. Metabolomics also highlights biochemical differences between sepsis survivors and nonsurvivors at a level of detail greater than that demonstrated by genomics, transcriptomics, or proteomics, potentially leading to actionable targets for new therapies. The application of pharmacometabolomics and its integration with other systems pharmacology to sepsis therapeutics could be particularly helpful in differentiating drug responders and nonresponders and furthering knowledge of mechanisms of drug action and response. The accumulated literature on metabolomics suggests it is a viable tool for continued discovery around the pathophysiology, diagnosis and prognosis, and treatment of sepsis in both adults and children, and it provides a greater level of biochemical detail and insight than other systems biology approaches. However, the clinical application of metabolomics in sepsis has not yet been fully realized. Prospective validation studies are needed to translate metabolites from the discovery phase into the clinical utility phase.
Collapse
Affiliation(s)
- Michelle Eckerle
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lilliam Ambroggio
- Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Michael Puskarich
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Brent Winston
- Departments of Critical Care, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Kathleen A. Stringer
- Division of Pulmonary and Critical Care Medicine, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care, College of Pharmacy, University of Michigan, Ann Arbor, MI
- School of Medicine and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
| |
Collapse
|
34
|
Lasky-Su J, Dahlin A, Litonjua AA, Rogers AJ, McGeachie MJ, Baron RM, Gazourian L, Barragan-Bradford D, Fredenburgh LE, Choi AMK, Mogensen KM, Quraishi SA, Amrein K, Christopher KB. Metabolome alterations in severe critical illness and vitamin D status. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:193. [PMID: 28750641 PMCID: PMC5532782 DOI: 10.1186/s13054-017-1794-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/12/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Metabolic homeostasis is substantially disrupted in critical illness. Given the pleiotropic effects of vitamin D, we hypothesized that metabolic profiles differ between critically ill patients relative to their vitamin D status. METHODS We performed a metabolomics study on biorepository samples collected from a single academic medical center on 65 adults with systemic inflammatory response syndrome or sepsis treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to vitamin D status in critical illness, we first generated metabolomic data using gas and liquid chromatography mass spectroscopy. We followed this by partial least squares-discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis to identify groups of metabolites and pathways that were differentiates of vitamin D status. Finally we performed logistic regression to construct a network model of chemical-protein target interactions important in vitamin D status. RESULTS Metabolomic profiles significantly differed in critically ill patients with 25(OH)D ≤ 15 ng/ml relative to those with levels >15 ng/ml. In particular, increased 1,5-anhydroglucitol, tryptophan betaine, and 3-hydroxyoctanoate as well as decreased 2-arachidonoyl-glycerophosphocholine and N-6-trimethyllysine were strong predictors of 25(OH)D >15 ng/ml. The combination of these five metabolites led to an area under the curve for discrimination for 25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71-0.93). The metabolite pathways related to glutathione metabolism and glutamate metabolism are significantly enriched with regard to vitamin D status. CONCLUSION Vitamin D status is associated with differential metabolic profiles during critical illness. Glutathione and glutamate pathway metabolism, which play principal roles in redox regulation and immunomodulation, respectively, were significantly altered with vitamin D status.
Collapse
Affiliation(s)
- Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Pulmonary and Critical Care Division, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Angela J Rogers
- Pulmonary & Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lee Gazourian
- Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Diana Barragan-Bradford
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura E Fredenburgh
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Augustine M K Choi
- Department of Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Kris M Mogensen
- Department of Nutrition, Brigham and Women's Hospital, Boston, MA, USA
| | - Sadeq A Quraishi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Karin Amrein
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kenneth B Christopher
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Renal Division, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, MRB 418, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Urine metabolomics in neonates with late-onset sepsis in a case-control study. Sci Rep 2017; 7:45506. [PMID: 28374757 PMCID: PMC5379623 DOI: 10.1038/srep45506] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Although late-onset sepsis (LOS) is a major cause of neonatal morbidity and mortality, biomarkers evaluated in LOS lack high diagnostic accuracy. In this prospective, case-control, pilot study, we aimed to determine the metabolic profile of neonates with LOS. Urine samples were collected at the day of initial LOS evaluation, the 3rd and 10th day, thereafter, from 16 septic neonates (9 confirmed and 7 possible LOS cases) and 16 non-septic ones (controls) at respective time points. Urine metabolic profiles were assessed using non-targeted nuclear magnetic resonance spectroscopy and targeted liquid chromatography-tandem mass spectrometry analysis. Multivariate statistical models with data from either analytical approach showed clear separation between the metabolic profiles of septic neonates (both possible and confirmed) and the controls. Metabolic changes appeared to be related to disease progression. Overall, neonates with confirmed or possible LOS exhibited comparable metabolic profiles indicating similar metabolic alternations upon the onset of clinical manifestations. This methodology therefore enabled the discrimination of neonates with LOS from non-septic individuals, providing potential for further research toward the discovery of LOS-related biomarkers.
Collapse
|
36
|
Chen XH, Liu SR, Peng B, Li D, Cheng ZX, Zhu JX, Zhang S, Peng YM, Li H, Zhang TT, Peng XX. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens. Front Immunol 2017; 8:207. [PMID: 28321214 PMCID: PMC5337526 DOI: 10.3389/fimmu.2017.00207] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/15/2017] [Indexed: 01/21/2023] Open
Abstract
The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections.
Collapse
Affiliation(s)
- Xin-Hai Chen
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Shi-Rao Liu
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Bo Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Dan Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Zhi-Xue Cheng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Jia-Xin Zhu
- Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Song Zhang
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Yu-Ming Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Hui Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| | - Tian-Tuo Zhang
- Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
37
|
Research Advances in Biomarker for Sepsis. ADVANCED TRAUMA AND SURGERY 2017. [PMCID: PMC7120075 DOI: 10.1007/978-981-10-2425-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sepsis is one of the most common causes of death in severely injured patients worldwide. The early detection of sepsis still has to be solved in clinical practice. The delayed diagnosis often contributes to inappropriate antimicrobial treatment and subsequent high mortality. Sepsis biomarkers are produced during the host response to infection. Traditional biomarkers are polypeptides and/or proteins derived from this response. Omics-based biomarkers are screening out from all kinds of molecules of host response while high-throughout omics technologies are emerging. This review describes traditional and potential omics-based sepsis biomarkers from currently available literatures. The combination of these biomarkers would refine the identification of sepsis for further clinical and experimental sepsis studies.
Collapse
|
38
|
Liu Z, Yin P, Amathieu R, Savarin P, Xu G. Application of LC-MS-based metabolomics method in differentiating septic survivors from non-survivors. Anal Bioanal Chem 2016; 408:7641-7649. [PMID: 27614981 DOI: 10.1007/s00216-016-9845-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/27/2016] [Indexed: 01/26/2023]
Abstract
Septic shock is the most severe form of sepsis, which is still one of the leading causes of death in the intensive care unit (ICU). Even though early prognosis and diagnosis are known to be indispensable for reaching an optimistic outcome, pathogenic complexities and the lack of specific treatment make it difficult to predict the outcome individually. In the present study, serum samples from surviving and non-surviving septic shock patients were drawn before clinical intervention at admission. Metabolic profiles of all the samples were analyzed by liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. One thousand four hundred nineteen peaks in positive mode and 1878 peaks in negative mode were retained with their relative standard deviation (RSD) below 30 %, in which 187 metabolites were initially identified by retention time and database in the light of the exact molecular mass. Differences between samples from the survivors and the non-survivors were investigated using multivariate and univariate analysis. Finally, 43 significantly varied metabolites were found in the comparison between survivors and non-survivors. Concretely, metabolites in the tricarboxylic acid (TCA) cycle, amino acids, and several energy metabolism-related metabolites were up-regulated in the non-survivors, whereas those in the urea cycle and fatty acids were generally down-regulated. Metabolites such as lysine, alanine, and methionine did not present significant changes in the comparison. Six metabolites were further defined as primary discriminators differentiating the survivors from the non-survivors at the early stage of septic shock. Our findings reveal that LC-MS-based metabolomics is a useful tool for studying septic shock. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Zhicheng Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
- Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Université Paris 13, Rue de Chablis 1, 93000, Bobigny, France
| | - Peiyuan Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Roland Amathieu
- Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Université Paris 13, Rue de Chablis 1, 93000, Bobigny, France
- Intensive Care Unit, Jean Verdier Teaching Hospital, AP-HP, 93140, Bondy, France
| | - Philippe Savarin
- Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Université Paris 13, Rue de Chablis 1, 93000, Bobigny, France
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
39
|
Adamko DJ, Saude E, Bear M, Regush S, Robinson JL. Urine metabolomic profiling of children with respiratory tract infections in the emergency department: a pilot study. BMC Infect Dis 2016; 16:439. [PMID: 27549246 PMCID: PMC4994221 DOI: 10.1186/s12879-016-1709-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinicians lack objective tests to help determine the severity of bronchiolitis or to distinguish a viral from bacterial causes of respiratory distress. We hypothesized that children with respiratory syncytial virus (RSV) infection would have a different metabolomic profile compared to those with bacterial infection or healthy controls, and this might also vary with bronchiolitis severity. METHODS Clinical information and urine-based metabolomic data were collected from healthy age-matched children (n = 37) and those admitted to hospital with a proven infection (RSV n = 55; Non-RSV viral n = 16; bacterial n = 24). Nuclear magnetic resonance (NMR) measured 86 metabolites per urine sample. Partial least squares discriminant analysis (PLS-DA) was performed to create models of separation. RESULTS Using a combination of metabolites, a strong PLS-DA model (R2 = 0.86, Q2 = 0.76) was created differentiating healthy children from those with RSV infection. This model had over 90 % accuracy in classifying blinded infants with similar illness severity. Two other models differentiated length of hospitalization and viral versus bacterial infection. CONCLUSION While the sample sizes remain small, this is the first report suggesting that metabolomic analysis of urine samples has the potential to become a diagnostic aid. Future studies with larger sample sizes are required to validate the utility of metabolomics in pediatric patients with respiratory distress.
Collapse
Affiliation(s)
- Darryl J Adamko
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada. .,University of Saskatchewan, S7N 0W8, Saskatoon, Saskatchewan, Canada.
| | - Erik Saude
- Department of Emergency Medicine, University of Calgary, T2N 2T9, Calgary, Alberta, Canada
| | - Matthew Bear
- University of Saskatchewan, S7N 0W8, Saskatoon, Saskatchewan, Canada
| | - Shana Regush
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada
| | - Joan L Robinson
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada
| |
Collapse
|
40
|
Mogensen KM, Lasky-Su J, Rogers AJ, Baron RM, Fredenburgh LE, Rawn J, Robinson MK, Massarro A, Choi AMK, Christopher KB. Metabolites Associated With Malnutrition in the Intensive Care Unit Are Also Associated With 28-Day Mortality. JPEN J Parenter Enteral Nutr 2016; 41:188-197. [PMID: 27406941 DOI: 10.1177/0148607116656164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. MATERIALS AND METHODS We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. RESULTS Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. CONCLUSION Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.
Collapse
Affiliation(s)
- Kris M Mogensen
- 1 Department of Nutrition, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessica Lasky-Su
- 2 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Angela J Rogers
- 3 Pulmonary & Critical Care Medicine, Stanford University Medical Center, Palo Alto, California, USA
| | - Rebecca M Baron
- 4 Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Laura E Fredenburgh
- 4 Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James Rawn
- 5 Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Malcolm K Robinson
- 5 Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anthony Massarro
- 4 Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Augustine M K Choi
- 6 Department of Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Kenneth B Christopher
- 7 The Nathan E. Hellman Memorial Laboratory, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Lin Z, Liu X, Sun L, Li J, Hu Z, Xie H, Zu X, Deng X, Zhang W. Comparison of sepsis rats induced by caecal ligation puncture or Staphylococcus aureus using a LC-QTOF-MS metabolomics approach. INFECTION GENETICS AND EVOLUTION 2016; 43:86-93. [PMID: 27174089 DOI: 10.1016/j.meegid.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
Sepsis is a whole-body inflammatory response to infection with high mortality and is treated in intensive care units (ICUs). In the present study, to identify metabolic biomarkers that can differentiate sepsis models induced by caecal ligation puncture (CLP) or Staphylococcus aureus (S. aureus), small molecular metabolites in the serum were measured by liquid chromatography quadruple time-of-flight mass spectrometry (LC-QTOF-MS) and analysed using the multivariate statistical analysis (MVA) of partial least square-discrimination analysis (PLS-DA) method. The results demonstrated that the body showed obvious metabolic disorders in the sepsis groups compared with the control group. A total of 8 potential biomarkers were identified in the CLP group, and 10 potential biomarkers were identified in the S. aureus group. These potential biomarkers primarily reflected an energy metabolism disorder, inflammatory response, oxidative stress and tissue damage, which occur during sepsis, and these markers might potentially be used to differentiate CLP from Staphylococcus aureus sepsis.
Collapse
Affiliation(s)
- Zhang Lin
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xinru Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lulu Sun
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; Department of Anesthesiology, Shanghai Ninth People Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | - Jinbao Li
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhenglin Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Haisheng Xie
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiaoming Deng
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Weidong Zhang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
42
|
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- David Antcliffe
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK
| | - Anthony C Gordon
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK.
| |
Collapse
|
43
|
Abstract
Metabolomics is the quantitative analysis of a large number of low molecular weight metabolites that are intermediate or final products of all the metabolic pathways in a living organism. Any metabolic profiles detectable in a human biological fluid are caused by the interaction between gene expression and the environment. The metabolomics approach offers the possibility to identify variations in metabolite profile that can be used to discriminate disease. This is particularly important for neonatal and pediatric studies especially for severe ill patient diagnosis and early identification. This property is of a great clinical importance in view of the newer definitions of health and disease. This review emphasizes the workflow of a typical metabolomics study and summarizes the latest results obtained in neonatal studies with particular interest in prematurity, intrauterine growth retardation, inborn errors of metabolism, perinatal asphyxia, sepsis, necrotizing enterocolitis, kidney disease, bronchopulmonary dysplasia, and cardiac malformation and dysfunction.
Collapse
|
44
|
Viswan A, Sharma RK, Azim A, Sinha N. NMR-Based Metabolic Snapshot from Minibronchoalveolar Lavage Fluid: An Approach To Unfold Human Respiratory Metabolomics. J Proteome Res 2015; 15:302-10. [PMID: 26587756 DOI: 10.1021/acs.jproteome.5b00919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The utility of mini bronchoalveolar lavage (mBAL) and its applicability in metabolomics has not been explored in the field of human respiratory disease. mBAL, "an archetype" of the local lung environment, ensures a potent technique to get the snapshot of the epithelial lining fluid afflicted to human lung disorders. Characterization of the mBAL fluid has potential to help in elucidating the composition of the alveoli and airways in the diseased state, yielding diagnostic information on clinical applicability. In this study, one of the first attempts has been made to comprehensively assign and detect metabolites in mBAL fluid, extracted from human lungs, by the composite use of 800 MHz 1D and 2D NMR, J-resolved homonuclear spectroscopy, COSY, TOCSY, and heteronuclear HSQC correlation methods. A foremost all-inclusive sketch of the 50 metabolites has been corroborated and assigned, which can be a resourceful archive to further lung-directed metabolomics, prognosis, and diagnosis. Thus, NMR-based mBALF studies, as proposed in this article, will leverage many more prospective respiratory researches for routine clinical application and prove to be a viable approach to mirror the key predisposing factors contributing to the onset of lung disease.
Collapse
Affiliation(s)
- Akhila Viswan
- Centre of Biomedical Research , SGPGIMS Campus, Raebarelly Road, Lucknow 226014, India.,Faculty of Engineering and Technology, Dr. A. P. J Abdul Kalam Technical University , Lucknow 226021, India
| | - Raj Kumar Sharma
- Centre of Biomedical Research , SGPGIMS Campus, Raebarelly Road, Lucknow 226014, India
| | - Afzal Azim
- Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow 226014, India
| | - Neeraj Sinha
- Centre of Biomedical Research , SGPGIMS Campus, Raebarelly Road, Lucknow 226014, India
| |
Collapse
|
45
|
Dessì A, Liori B, Caboni P, Corsello G, Giuffrè M, Noto A, Serraino F, Stronati M, Zaffanello M, Fanos V. Monitoring neonatal fungal infection with metabolomics. J Matern Fetal Neonatal Med 2015; 27 Suppl 2:34-8. [PMID: 25284175 DOI: 10.3109/14767058.2014.954787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of our study was to evaluate the capability of the metabolomics approach to identify the variations of urine metabolites over time related to the neonatal fungal septic condition. The study population included a clinical case of a preterm neonate with invasive fungal infection and 13 healthy preterm controls. This study showed a unique urine metabolic profile of the patient affected by fungal sepsis compared to urine of controls and it was also possible to evaluate the efficacy of therapy in improving patient health.
Collapse
Affiliation(s)
- Angelica Dessì
- Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, University of Cagliari , Cagliari , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mickiewicz B, Tam P, Jenne CN, Leger C, Wong J, Winston BW, Doig C, Kubes P, Vogel HJ. Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:11. [PMID: 25928796 PMCID: PMC4340832 DOI: 10.1186/s13054-014-0729-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Septic shock is a major life-threatening condition in critically ill patients and it is well known that early recognition of septic shock and expedient initiation of appropriate treatment improves patient outcome. Unfortunately, to date no single compound has shown sufficient sensitivity and specificity to be used as a routine biomarker for early diagnosis and prognosis of septic shock in the intensive care unit (ICU). Therefore, the identification of new diagnostic tools remains a priority for increasing the survival rate of ICU patients. In this study, we have evaluated whether a combined nuclear magnetic resonance spectroscopy-based metabolomics and a multiplex cytokine/chemokine profiling approach could be used for diagnosis and prognostic evaluation of septic shock patients in the ICU. METHODS Serum and plasma samples were collected from septic shock patients and ICU controls (ICU patients with the systemic inflammatory response syndrome but not suspected of having an infection). (1)H Nuclear magnetic resonance spectra were analyzed and quantified using the targeted profiling methodology. The analysis of the inflammatory mediators was performed using human cytokine and chemokine assay kits. RESULTS By using multivariate statistical analysis we were able to distinguish patient groups and detect specific metabolic and cytokine/chemokine patterns associated with septic shock and its mortality. These metabolites and cytokines/chemokines represent candidate biomarkers of the human response to septic shock and have the potential to improve early diagnosis and prognosis of septic shock. CONCLUSIONS Our findings show that integration of quantitative metabolic and inflammatory mediator data can be utilized for the diagnosis and prognosis of septic shock in the ICU.
Collapse
Affiliation(s)
- Beata Mickiewicz
- Bio-NMR-Centre, Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB, T2N 1N4, Canada.
| | - Patrick Tam
- Snyder Translational Laboratory, Department of Critical Care Medicine, University of Calgary, 3280 Hospital Drive Northwest, Calgary, AB, T2N 4N1, Canada.
| | - Craig N Jenne
- Snyder Translational Laboratory, Department of Critical Care Medicine, University of Calgary, 3280 Hospital Drive Northwest, Calgary, AB, T2N 4N1, Canada.
| | - Caroline Leger
- Snyder Translational Laboratory, Department of Critical Care Medicine, University of Calgary, 3280 Hospital Drive Northwest, Calgary, AB, T2N 4N1, Canada.
| | - Josee Wong
- Critical Care Epidemiologic and Biologic Tissue Resource, Department of Critical Care Medicine, University of Calgary, 3280 Hospital Drive Northwest, Calgary, AB, T2N 4N1, Canada.
| | - Brent W Winston
- Critical Care Epidemiologic and Biologic Tissue Resource, Department of Critical Care Medicine, University of Calgary, 3280 Hospital Drive Northwest, Calgary, AB, T2N 4N1, Canada.
| | - Christopher Doig
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive Northwest, Calgary, AB, T2N 4N1, Canada.
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, 3280 Hospital Drive Northwest, Calgary, AB, T2N 4N1, Canada.
| | - Hans J Vogel
- Bio-NMR-Centre, Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB, T2N 1N4, Canada.
| | | |
Collapse
|
47
|
Su L, Huang Y, Zhu Y, Xia L, Wang R, Xiao K, Wang H, Yan P, Wen B, Cao L, Meng N, Luan H, Liu C, Li X, Xie L. Discrimination of sepsis stage metabolic profiles with an LC/MS-MS-based metabolomics approach. BMJ Open Respir Res 2014; 1:e000056. [PMID: 25553245 PMCID: PMC4265126 DOI: 10.1136/bmjresp-2014-000056] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022] Open
Abstract
Background To identify metabolic biomarkers that can be used to differentiate sepsis from systemic inflammatory response syndrome (SIRS), assess severity and predict outcomes. Methods 65 patients were involved in this study, including 35 patients with sepsis, 15 patients with SIRS and 15 normal patients. Small metabolites that were present in patient serum samples were measured by liquid chromatography mass spectrometry techniques and analysed using multivariate statistical methods. Results The metabolic profiling of normal patients and patients with SIRS or sepsis was markedly different. A significant decrease in the levels of lactitol dehydrate and S-phenyl-d-cysteine and an increase in the levels of S-(3-methylbutanoyl)-dihydrolipoamide-E and N-nonanoyl glycine were observed in patients with sepsis in comparison to patients with SIRS (p<0.05). Patients with severe sepsis and septic shock displayed lower levels of glyceryl-phosphoryl-ethanolamine, Ne, Ne dimethyllysine, phenylacetamide and d-cysteine (p<0.05) in their sera. The profiles of patients with sepsis 48 h before death illustrated an obvious state of metabolic disorder, such that S-(3-methylbutanoyl)-dihydrolipoamide-E, phosphatidylglycerol (22:2 (13Z, 16Z)/0:0), glycerophosphocholine and S-succinyl glutathione were significantly decreased (p<0.05). The receiver operating characteristic curve of the differential expression of these metabolites was also performed. Conclusions The body produces significant evidence of metabolic disorder during SIRS or sepsis. Seven metabolites may potentially be used to diagnose sepsis. Trial registration number ClinicalTrial.gov identifier NCT01649440.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China ; Department of Critical Care Medicine , Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences , Beijing , China
| | - Yingyu Huang
- Shenzhen Proteome Engineering Laboratory , BGI Shenzhen , Shenzhen , China
| | - Ying Zhu
- Shenzhen Proteome Engineering Laboratory , BGI Shenzhen , Shenzhen , China
| | - Lei Xia
- Decision-Consulting Office, Chinese PLA General Hospital , Beijing , China
| | - Rentao Wang
- Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China
| | - Kun Xiao
- Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China
| | - Huijuan Wang
- Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China
| | - Peng Yan
- Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China
| | - Bo Wen
- Shenzhen Proteome Engineering Laboratory , BGI Shenzhen , Shenzhen , China
| | - Lichao Cao
- Shenzhen Proteome Engineering Laboratory , BGI Shenzhen , Shenzhen , China
| | - Nan Meng
- Shenzhen Proteome Engineering Laboratory , BGI Shenzhen , Shenzhen , China
| | - Hemi Luan
- Shenzhen Proteome Engineering Laboratory , BGI Shenzhen , Shenzhen , China
| | - Changting Liu
- Nanlou Respiratory Diseases Department , Chinese PLA General Hospital , Beijing , China
| | - Xin Li
- Clinical division of Internal Medicine , Chinese PLA General Hospital , Beijing , China
| | - Lixin Xie
- Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
48
|
Cheng SC, Joosten LA, Netea MG. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev 2014; 25:707-13. [DOI: 10.1016/j.cytogfr.2014.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
49
|
Larive CK, Barding GA, Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem 2014; 87:133-46. [PMID: 25375201 DOI: 10.1021/ac504075g] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cynthia K Larive
- Department of Chemistry, University of California-Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
50
|
Shukla P, Rao GM, Pandey G, Sharma S, Mittapelly N, Shegokar R, Mishra PR. Therapeutic interventions in sepsis: current and anticipated pharmacological agents. Br J Pharmacol 2014; 171:5011-31. [PMID: 24977655 PMCID: PMC4253453 DOI: 10.1111/bph.12829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ-organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo- and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis.
Collapse
Affiliation(s)
- Prashant Shukla
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - G Madhava Rao
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Gitu Pandey
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Shweta Sharma
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Naresh Mittapelly
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Ranjita Shegokar
- Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Institute of Pharmacy, Freie Universität BerlinBerlin, Germany
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| |
Collapse
|