1
|
Rademacher J, Ewig S, Grabein B, Nachtigall I, Abele-Horn M, Deja M, Gaßner M, Gatermann S, Geffers C, Gerlach H, Hagel S, Heußel CP, Kluge S, Kolditz M, Kramme E, Kühl H, Panning M, Rath PM, Rohde G, Schaaf B, Salzer HJF, Schreiter D, Schweisfurth H, Unverzagt S, Weigand MA, Welte T, Pletz MW. [Epidemiology, diagnosis and treatment of adult patients with nosocomial pneumonia]. Pneumologie 2025. [PMID: 40169124 DOI: 10.1055/a-2541-9872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
BACKGROUND Nosocomial pneumonia, encompassing hospital-acquired (HAP) and ventilator-associated pneumonia (VAP), remains a major cause of morbidity and mortality in hospitalized adults. In response to evolving pathogen profiles and emerging resistance patterns, this updated S3 guideline (AWMF Register No. 020-013) provides an evidence-based framework to enhance the diagnosis, risk stratification, and treatment of nosocomial pneumonia. METHODS The guideline update was developed by a multidisciplinary panel representing key German professional societies. A systematic literature review was conducted with subsequent critical appraisal using the GRADE methodology. Structured consensus conferences and external reviews ensured that the recommendations were clinically relevant, methodologically sound, and aligned with current antimicrobial stewardship principles. RESULTS For the management of nosocomial pneumonia patients should be divided in those with and without risk factors for multidrug-resistant pathogens and/or Pseudomonas aeruginosa. Bacterial multiplex-polymerase chain reaction (PCR) should not be used routinely. Bronchoscopic diagnosis is not considered superior to non-bronchoscopic sampling in terms of main outcomes. Combination antibiotic therapy is now reserved for patients in septic shock and high risk for multidrug-resistant pathogens, while select patients may be managed with monotherapy (e. g., meropenem). In clinically stabilized patients, antibiotic therapy should be de-escalated and focused, as well as duration shortened to 7-8 days. In critically ill patients, prolonged application of suitable beta-lactam antibiotics should be preferred. Patients on the intensive care unit (ICU) are at risk for invasive pulmonary aspergillosis (IPA). Diagnostics for Aspergillus should be performed with an antigen test from bronchial lavage fluid. CONCLUSION This updated S3 guideline offers a comprehensive, multidisciplinary approach to the management of nosocomial pneumonia in adults. By integrating novel diagnostic modalities and refined therapeutic strategies, it aims to standardize care, improve patient outcomes, and enhance antimicrobial stewardship to curb the emergence of resistant pathogens.
Collapse
Affiliation(s)
- Jessica Rademacher
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Kranken-Anstalt Bochum, Bochum, Germany
| | - Béatrice Grabein
- LMU Hospital, Clinical Microbiology and Hospital Hygiene, Munich, Germany
| | - Irit Nachtigall
- Division of Infectious Diseases and Infection Prevention, Helios Hospital Emil-Von-Behring, Berlin, Germany
| | - Marianne Abele-Horn
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Maria Deja
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Berlin, Lübeck, Germany
| | - Martina Gaßner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anaesthesiology and Intensive Care Medicine, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for multidrug-resistant Gram-negative bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Christine Geffers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Herwig Gerlach
- Department for Anaesthesia, Intensive Care Medicine and Pain Management, Vivantes-Klinikum Neukoelln, Berlin, Germany
| | - Stefan Hagel
- Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
| | - Claus Peter Heußel
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kluge
- Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Kolditz
- Medical Department 1, Division of Pulmonology, University Hospital of TU Dresden, Dresden, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Hilmar Kühl
- Department of Radiology, St. Bernhard-Hospital Kamp-Lintfort, Kamp-Lintfort, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter-Michael Rath
- Institute for Medical Microbiology, University Medicine Essen, Essen, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Bernhard Schaaf
- Department of Respiratory Medicine and Infectious Diseases, Klinikum Dortmund, Dortmund, Germany
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Dierk Schreiter
- Helios Park Clinic, Department of Intensive Care Medicine, Leipzig, Germany
| | | | - Susanne Unverzagt
- Institute of General Practice and Family Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus A Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Mathias W Pletz
- Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
| |
Collapse
|
2
|
Liu Y, Xu T, Tan Q, Xiong L. Effects of Candida colonization on patients with ventilator-associated pneumonia and pathogenic microorganisms: Systematic review and meta-analysis. Diagn Microbiol Infect Dis 2025; 111:116580. [PMID: 39488013 DOI: 10.1016/j.diagmicrobio.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND In the intensive care unit (ICU), patients undergoing mechanical ventilation (MV) often exhibit Candida colonization. This study aims to systematically review and analyze the effects of Candida colonization on the outcomes of mechanically ventilated patients and its relationship with bacterial pathogens associated with ventilator-associated pneumonia (VAP). METHODS We conducted a comprehensive search across PubMed, Embase, Web of Science (WOS), and the Cochrane Central Register of Controlled Trials (CENTRAL) without language restrictions to identify eligible studies. Inclusion criteria involved patients undergoing MV for >2 days, encompassing those with clinically suspected VAP (csVAP), and confirmed VAP patients. We assessed the impact of Candida colonization on patient prognosis, length of ICU stay, bacterial pathogens responsible for VAP, and inflammatory markers. The study protocol was registered with PROSPER (CRD42024580547). RESULTS Thirteen studies involving 3,802 patients were included in our analysis. The prevalence of Candida colonization among MV patients ranged from 10 % to 56 %. Our findings indicated that Candida airway colonization was associated with poorer patient prognosis (95 % CI 1.13-1.52, p < 0.05, I² = 39 %). Among patients who developed VAP, Candida colonization correlated with increased detection rates of Pseudomonas aeruginosa (RR = 1.37, 95 % CI 1.07-1.75, p = 0.01, I² = 3 %) and Acinetobacter baumannii (RR= 1.48, 95 % CI 1.17-1.86, p < 0.01, I² = 27 %). Additionally, an association with antibiotic resistance was observed, although the quality of evidence was low. In studies that recorded patients' inflammatory markers, no significant effect of Candida colonization on inflammatory markers (procalcitonin, interleukin-6) was observed. CONCLUSION Candida airway colonization is highly prevalent among mechanically ventilated patients and should be considered a marker of poor prognosis when it occurs. Antibiotics should be used more carefully when Candida colonization is detected in the respiratory tract of mechanically ventilated patients.
Collapse
Affiliation(s)
- Yushan Liu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei, PR China
| | - Tingting Xu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei, PR China
| | - Qiwen Tan
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei, PR China
| | - Lijuan Xiong
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei, PR China; Department of Nosocomial Infection Management, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei, PR China.
| |
Collapse
|
3
|
Chaari A, Bousselmi K, Bahr M, Radwane A, Georgy MN, Kauts V. Respiratory tract colonization with Candida species in cancer patients: Epidemiology and prognostic impact. Int J Crit Illn Inj Sci 2025; 15:11-15. [PMID: 40291554 PMCID: PMC12020942 DOI: 10.4103/ijciis.ijciis_61_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 04/30/2025] Open
Abstract
Background Respiratory tract (RT) colonization with Candida spp. is common in ventilated patients. We aimed to investigate the epidemiology of candidal colonization of the RT in patients with malignancies and to assess its prognostic impact. Methods A retrospective study was conducted in two intensive care units (ICUs). All adult patients with proven malignancies requiring invasive mechanical ventilation ≥48 h were included. Two groups were compared (Candida+ and Candida-). Results One hundred and sixty-one patients were included. Twenty-one (13%) patients grew Candida species in their endotracheal cultures. Candida albicans represented 47.6% of the isolates. In a multivariate analysis, only candiduria was associated with candidal colonization of the RT (odds ratio = 3.86; 95% confidence interval: 1.47-10.13; P = 0.006). The incidence of ventilator-acquired pneumonia was similar between Candida+ and Candida- groups (38.1% and 32.1%, respectively; P = 0.588). The 28-day mortality rate was 55.9% with no significant difference between Candida+ and Candida- groups (66.7% and 54.3%, respectively; P = 0.287). However, Candida+ patients had a longer duration of mechanical ventilation (16 [9.5-29] vs. 6 [2-16] days; P = 0.002) and length of ICU stay (LOS; 20 [11.1-26.5] vs. 9 [3-19] days; P = 0.004). Conclusion Candidal colonization of the RT has no impact on 28-day mortality. However, it significantly increases the duration of mechanical ventilation and the LOS.
Collapse
Affiliation(s)
- Anis Chaari
- Department of Critical Care, Bahrain Oncology Centre and King Hamad University Hospital, Muharraq, Bahrain
- Department of Surgical, Royal College of Surgeons in Ireland University - Bahrain, Muharraq, Bahrain
| | - Kamel Bousselmi
- Department of Critical Care, Bahrain Oncology Centre and King Hamad University Hospital, Muharraq, Bahrain
| | - Mohamed Bahr
- Department of Critical Care, Bahrain Oncology Centre and King Hamad University Hospital, Muharraq, Bahrain
| | - Ahmad Radwane
- Department of Critical Care, Bahrain Oncology Centre and King Hamad University Hospital, Muharraq, Bahrain
| | - Mark Nashaat Georgy
- Department of Critical Care, Bahrain Oncology Centre and King Hamad University Hospital, Muharraq, Bahrain
| | - Vipin Kauts
- Department of Critical Care, Bahrain Oncology Centre and King Hamad University Hospital, Muharraq, Bahrain
- Department of Surgical, Royal College of Surgeons in Ireland University - Bahrain, Muharraq, Bahrain
| |
Collapse
|
4
|
Hurley J. Estimating the herd effects of anti-microbial-based decontamination (ABD) interventions on intensive care unit (ICU) acquired bloodstream infections: a deductive meta-analysis. BMJ Open 2024; 14:e092030. [PMID: 39572099 PMCID: PMC11580273 DOI: 10.1136/bmjopen-2024-092030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE To estimate the herd effects of anti-microbial-based decontamination (ABD) interventions on bloodstream infections (BSIs) among groups of intensive care unit (ICU) patients in relation to group mean length of stay (LOS). To deduce which of three competing hypotheses of ABD effect mediation best accounts for the observed effects. DESIGN Arms-based meta-regression of ICU-acquired BSI incidence against group mean LOS for control and interventions arms of ABD and non-ABD controlled trials each versus that in arms of observational studies. EXPOSURES Within controlled trials of ABD, intervention, concurrent control (CC) and non-concurrent (NCC) groups are directly, indirectly and non-exposed, respectively. MAIN OUTCOMES AND MEASURES BSI incidence, both overall and for BSI subtypes. RESULTS In the arms-based meta-regression, the predicted BSI incidence per 100 patients in the ABD intervention arms increased from 4.6 (95% CI 3.8 to 5.5) at mean LOS 7 days to 13.0 (10.4-16.0) at mean LOS 20 days (n=60 arms) and CC arms 8.5 (6.7-11.0) increasing to 19.3 (14.8-24.8; n=52). These increases were double those in the observational (7.2; 6.1-8.5 increasing to 12.9; 10.4-16.7; n=99) and NCC arms and non-ABD arms. These results triangulate with the notional effect size observed in contrast-based meta-analyses. CONCLUSIONS The increased tempo of BSI acquisition, both overall and for various BSI subtypes, within intervention and CC groups of ABD randomised concurrent controlled trials versus other groups implicate rebound and spillover, respectively. Mechanisms other than colonisation resistance mediate ABD effects.
Collapse
Affiliation(s)
- James Hurley
- Internal Medicine, Grampians Health Ballarat, Ballarat, Victoria, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- Ballarat Clinical School, Deakin University, Ballarat, Victoria, Australia
| |
Collapse
|
5
|
Hurley J. Structural Equation Modelling as a Proof-of-Concept Tool for Mediation Mechanisms Between Topical Antibiotic Prophylaxis and Six Types of Blood Stream Infection Among ICU Patients. Antibiotics (Basel) 2024; 13:1096. [PMID: 39596789 PMCID: PMC11591272 DOI: 10.3390/antibiotics13111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Whether exposing the microbiome to antibiotics decreases or increases the risk of blood stream infection with Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter, and Candida among ICU patients, and how this altered risk might be mediated, are critical research questions. Addressing these questions through the direct study of specific constituents within the microbiome would be difficult. An alternative tool for addressing these research questions is structural equation modelling (SEM). SEM enables competing theoretical causation networks to be tested 'en bloc' by confrontation with data derived from the literature. These causation models have three conceptual steps: exposure to specific antimicrobials are the key drivers, clinically relevant infection end points are the measurable observables, and the activity of key microbiome constituents on microbial invasion serve as mediators. These mediators, whether serving to promote, to impede, or neither, are typically unobservable and appear as latent variables in each model. SEM methods enable comparisons through confronting the three competing models, each versus clinically derived data with the various exposures, such as topical or parenteral antibiotic prophylaxis, factorized in each model. Candida colonization, represented as a latent variable, and concurrency are consistent promoters of all types of blood stream infection, and emerge as harmful mediators.
Collapse
Affiliation(s)
- James Hurley
- Melbourne Medical School, University of Melbourne, Parkville, VIC 3052, Australia;
- Ballarat Health Services, Grampians Health, Ballarat, VIC 3350, Australia;
- Ballarat Clinical School, Deakin University, Ballarat, VIC 3350, Australia
| |
Collapse
|
6
|
Zhao YS, Lai QP, Tang H, Luo RJ, He ZW, Huang W, Wang LY, Zhang ZT, Lin SH, Qin WJ, Xu F. Identifying the risk factors of ICU-acquired fungal infections: clinical evidence from using machine learning. Front Med (Lausanne) 2024; 11:1386161. [PMID: 38784232 PMCID: PMC11112035 DOI: 10.3389/fmed.2024.1386161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Background Fungal infections are associated with high morbidity and mortality in the intensive care unit (ICU), but their diagnosis is difficult. In this study, machine learning was applied to design and define the predictive model of ICU-acquired fungi (ICU-AF) in the early stage of fungal infections using Random Forest. Objectives This study aimed to provide evidence for the early warning and management of fungal infections. Methods We analyzed the data of patients with culture-positive fungi during their admission to seven ICUs of the First Affiliated Hospital of Chongqing Medical University from January 1, 2015, to December 31, 2019. Patients whose first culture was positive for fungi longer than 48 h after ICU admission were included in the ICU-AF cohort. A predictive model of ICU-AF was obtained using the Least Absolute Shrinkage and Selection Operator and machine learning, and the relationship between the features within the model and the disease severity and mortality of patients was analyzed. Finally, the relationships between the ICU-AF model, antifungal therapy and empirical antifungal therapy were analyzed. Results A total of 1,434 cases were included finally. We used lasso dimensionality reduction for all features and selected six features with importance ≥0.05 in the optimal model, namely, times of arterial catheter, enteral nutrition, corticosteroids, broadspectrum antibiotics, urinary catheter, and invasive mechanical ventilation. The area under the curve of the model for predicting ICU-AF was 0.981 in the test set, with a sensitivity of 0.960 and specificity of 0.990. The times of arterial catheter (p = 0.011, OR = 1.057, 95% CI = 1.053-1.104) and invasive mechanical ventilation (p = 0.007, OR = 1.056, 95%CI = 1.015-1.098) were independent risk factors for antifungal therapy in ICU-AF. The times of arterial catheter (p = 0.004, OR = 1.098, 95%CI = 0.855-0.970) were an independent risk factor for empirical antifungal therapy. Conclusion The most important risk factors for ICU-AF are the six time-related features of clinical parameters (arterial catheter, enteral nutrition, corticosteroids, broadspectrum antibiotics, urinary catheter, and invasive mechanical ventilation), which provide early warning for the occurrence of fungal infection. Furthermore, this model can help ICU physicians to assess whether empiric antifungal therapy should be administered to ICU patients who are susceptible to fungal infections.
Collapse
Affiliation(s)
- Yi-Si Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, China
| | - Qing-Pei Lai
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ren-Jie Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Wei He
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu-Yang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Tao Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Hui Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Jian Qin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Hurley J. Rebound Inverts the Staphylococcus aureus Bacteremia Prevention Effect of Antibiotic Based Decontamination Interventions in ICU Cohorts with Prolonged Length of Stay. Antibiotics (Basel) 2024; 13:316. [PMID: 38666992 PMCID: PMC11047347 DOI: 10.3390/antibiotics13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Could rebound explain the paradoxical lack of prevention effect against Staphylococcus aureus blood stream infections (BSIs) with antibiotic-based decontamination intervention (BDI) methods among studies of ICU patients within the literature? Two meta-regression models were applied, each versus the group mean length of stay (LOS). Firstly, the prevention effects against S. aureus BSI [and S. aureus VAP] among 136 studies of antibiotic-BDI versus other interventions were analyzed. Secondly, the S. aureus BSI [and S. aureus VAP] incidence in 268 control and intervention cohorts from studies of antibiotic-BDI versus that among 165 observational cohorts as a benchmark was modelled. In model one, the meta-regression line versus group mean LOS crossed the null, with the antibiotic-BDI prevention effect against S. aureus BSI at mean LOS day 7 (OR 0.45; 0.30 to 0.68) inverted at mean LOS day 20 (OR 1.7; 1.1 to 2.6). In model two, the meta-regression line versus group mean LOS crossed the benchmark line, and the predicted S. aureus BSI incidence for antibiotic-BDI groups was 0.47; 0.09-0.84 percentage points below versus 3.0; 0.12-5.9 above the benchmark in studies with 7 versus 20 days mean LOS, respectively. Rebound within the intervention groups attenuated and inverted the prevention effect of antibiotic-BDI against S. aureus VAP and BSI, respectively. This explains the paradoxical findings.
Collapse
Affiliation(s)
- James Hurley
- Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia;
- Ballarat Health Services, Grampians Health, Ballarat, VIC 3350, Australia
- Ballarat Clinical School, Deakin University, Ballarat, VIC 3350, Australia
| |
Collapse
|
8
|
Bustos IG, Martín-Loeches I, Acosta-González A, Chotirmall SH, Dickson RP, Reyes LF. Exploring the complex relationship between the lung microbiome and ventilator-associated pneumonia. Expert Rev Respir Med 2023; 17:889-901. [PMID: 37872770 DOI: 10.1080/17476348.2023.2273424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Understanding the presence and function of a diverse lung microbiome in acute lung infections, particularly ventilator-associated pneumonia (VAP), is still limited, evidencing significant gaps in our knowledge. AREAS COVERED In this comprehensive narrative review, we aim to elucidate the contribution of the respiratory microbiome in the development of VAP by examining the current knowledge on the interactions among microorganisms. By exploring these intricate connections, we endeavor to enhance our understanding of the disease's pathophysiology and pave the way for novel ideas and interventions in studying the respiratory tract microbiome. EXPERT OPINION The conventional perception of lungs as sterile is deprecated since it is currently recognized the existence of a diverse microbial community within them. However, despite extensive research on the role of the respiratory microbiome in healthy lungs, respiratory chronic diseases and acute lung infections such as pneumonia are not fully understood. It is crucial to investigate further the relationship between the pathophysiology of VAP and the pulmonary microbiome, elucidating the mechanisms underlying the interactions between the microbiome, host immune response and mechanical ventilation for the development of VAP.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Doctorado de Biociencias, Department of Engineering, Universidad de la Sabana, Chia, Colombia
| | - Ignacio Martín-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Alejandro Acosta-González
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Bioprospection Research Group (GIBP), Department of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Critical Care Department, Clinica Universidad de La Sabana, Chia, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Helmy AK, Sidkey NM, El-Badawy RE, Hegazi AG. Emergence of microbial infections in some hospitals of Cairo, Egypt: studying their corresponding antimicrobial resistance profiles. BMC Infect Dis 2023; 23:424. [PMID: 37349674 DOI: 10.1186/s12879-023-08397-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is one of the ten major public health threats facing humanity, especially in developing countries. Identification of the pathogens responsible for different microbial infections and antimicrobial resistance patterns are important to help clinicians to choose the correct empirical drugs and provide optimal patient care. METHODS During the period from November 2020 to January 2021, one hundred microbial isolates were collected randomly from different specimens from some hospitals in Cairo, Egypt. Sputum and chest specimens were from COVID-19 patients. Antimicrobial susceptibility testing was performed according to CLSI guidelines. RESULTS Most microbial infections were more common in males and in elderly people over 45 years of age. They were caused by Gram-negative, Gram-positive bacteria, and yeast isolates that represented 69%, 15%, and 16%, respectively. Uropathogenic Escherichia coli (35%) were the most prevalent microbial isolates and showed high resistance rates towards penicillin, ampicillin, and cefixime, followed by Klebsiella spp. (13%) and Candida spp. (16%). Of all microbial isolates, Acinetobacter spp., Serratia spp., Hafnia alvei, and Klebsiella ozaenae were extremely multidrug-resistant (MDR) and have resisted all antibiotic classes used, except for glycylcycline, in varying degrees. Acinetobacter spp., Serratia spp., and Candida spp. were secondary microbial infections in COVID-19 patients, while H. alvei was a bloodstream infection isolate and K. ozaenae was recorded in most infections. Moreover, about half of Staphylococcus aureus strains were MRSA isolates and reported low rates of resistance to glycylcycline and linezolid. In comparison, Candida spp. showed high resistance rates between 77 and 100% to azole drugs and terbinafine, while no resistance rate towards nystatin was reported. Indeed, glycylcycline, linezolid, and nystatin were considered the drugs of choice for the treatment of MDR infections. CONCLUSION The prevalence of antimicrobial resistance in some Egyptian hospitals was high among Gram-negative, Gram-positive bacteria, and candida spp. The high resistance pattern -especially in secondary microbial infections in COVID-19 patients- to most antibiotics used is a matter of great concern, portends an inevitable catastrophe, and requires continuous monitoring to avoid the evolution of new generations.
Collapse
Affiliation(s)
- Asmaa K Helmy
- Botany and Microbiology Department, Faculty of Science for Girls, Al-Azhar University, Cairo, Egypt.
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed G Hegazi
- Zoonotic Diseases Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Britton N, Yang H, Fitch A, Li K, Seyed K, Guo R, Qin S, Zhang Y, Bain W, Shah F, Biswas P, Choi W, Finkelman M, Zhang Y, Haggerty CL, Benos PV, Brooks MM, McVerry BJ, Methe B, Kitsios GD, Morris A. Respiratory Fungal Communities are Associated with Systemic Inflammation and Predict Survival in Patients with Acute Respiratory Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.11.23289861. [PMID: 37292915 PMCID: PMC10246035 DOI: 10.1101/2023.05.11.23289861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rationale Disruption of respiratory bacterial communities predicts poor clinical outcomes in critical illness; however, the role of respiratory fungal communities (mycobiome) is poorly understood. Objectives We investigated whether mycobiota variation in the respiratory tract is associated with host-response and clinical outcomes in critically ill patients. Methods To characterize the upper and lower respiratory tract mycobiota, we performed rRNA gene sequencing (internal transcribed spacer) of oral swabs and endotracheal aspirates (ETA) from 316 mechanically-ventilated patients. We examined associations of mycobiome profiles (diversity and composition) with clinical variables, host-response biomarkers, and outcomes. Measurements and Main Results ETA samples with >50% relative abundance for C. albicans (51%) were associated with elevated plasma IL-8 and pentraxin-3 (p=0.05), longer time-to-liberation from mechanical ventilation (p=0.04) and worse 30-day survival (adjusted hazards ratio (adjHR): 1.96 [1.04-3.81], p=0.05). Using unsupervised clustering, we derived two clusters in ETA samples, with Cluster 2 (39%) showing lower alpha diversity (p<0.001) and higher abundance of C. albicans (p<0.001). Cluster 2 was significantly associated with the prognostically adverse hyperinflammatory subphenotype (odds ratio 2.07 [1.03-4.18], p=0.04) and predicted worse survival (adjHR: 1.81 [1.03-3.19], p=0.03). C. albicans abundance in oral swabs was also associated with the hyperinflammatory subphenotype and mortality. Conclusions Variation in respiratory mycobiota was significantly associated with systemic inflammation and clinical outcomes. C. albicans abundance emerged as a negative predictor in both the upper and lower respiratory tract. The lung mycobiome may play an important role in the biological and clinical heterogeneity among critically ill patients and represent a potential therapeutic target for lung injury in critical illness.
Collapse
Affiliation(s)
- Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Adam Fitch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Khaled Seyed
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Rui Guo
- Department of Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, China
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Partha Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Wonseok Choi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Yonglong Zhang
- Associates of Cape Cod Inc., East Falmouth, Massachusetts, USA
| | - Catherine L. Haggerty
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Panayiotis V. Benos
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Maria M. Brooks
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Barbara Methe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Hurley JC. Staphylococcus aureus hitchhiking from colonization to bacteremia via Candida within ICU infection prevention studies: a proof of concept modelling. Eur J Clin Microbiol Infect Dis 2023; 42:543-554. [PMID: 36877261 PMCID: PMC10105687 DOI: 10.1007/s10096-023-04573-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
Whether Candida within the patient microbiome drives the pathogenesis of Staphylococcus aureus bacteremia, described as microbial hitchhiking, cannot be directly studied. Group-level observations from studies of various decontamination and non-decontamination-based ICU infection prevention interventions and studies without study interventions (observational groups) collectively enable tests of this interaction within causal models. Candidate models of the propensity for Staphylococcus aureus bacteremia to arise with versus without various antibiotic, anti-septic, and antifungal exposures, each identified as singleton exposures, were tested using generalized structural equation modelling (GSEM) techniques with Candida and Staphylococcus aureus colonization appearing as latent variables within the models. Each model was tested by confrontation against blood and respiratory isolate data, obtained from 467 groups within 284 infection prevention studies. Introducing an interaction term between Candida colonization and Staphylococcus aureus colonization substantially improved GSEM model fit. Model-derived coefficients for singular exposure to anti-septic agents (- 1.28; 95% confidence interval; - 2.05 to - 0.5), amphotericin (- 1.49; - 2.3 to - 0.67), and topical antibiotic prophylaxis (TAP; + 0.93; + 0.15 to + 1.71) as direct effects versus Candida colonization were similar in magnitude but contrary in direction. By contrast, the coefficients for singleton exposure to TAP, as with anti-septic agents, versus Staphylococcus colonization were weaker or non-significant. Topical amphotericin would be predicted to halve both candidemia and Staphylococcus aureus bacteremia incidences versus literature derived benchmarks for absolute differences of < 1 percentage point. Using ICU infection prevention data, GSEM modelling validates the postulated interaction between Candida and Staphylococcus colonization facilitating bacteremia.
Collapse
Affiliation(s)
- James C Hurley
- Melbourne Medical School, University of Melbourne, Melbourne, Australia. .,Division of Internal Medicine, Grampians Health Ballarat, PO Box 577, Ballarat, VIC, 3353, Australia.
| |
Collapse
|
12
|
Hurley JC. Structural equation modelling the impact of antimicrobials on the human microbiome. Colonization resistance versus colonization susceptibility as case studies. J Antimicrob Chemother 2023; 78:328-337. [PMID: 36512373 DOI: 10.1093/jac/dkac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The impact of antimicrobials on the human microbiome and its relationship to human health are of great interest. How antimicrobial exposure might drive change within specific constituents of the microbiome to effect clinically relevant endpoints is difficult to study. Clinical investigation of each step within a network of causation would be challenging if done 'step-by-step'. An analytic tool of great potential to clinical microbiome research is structural equation modelling (SEM), which has a long history of applications to research questions arising within subject areas as diverse as psychology and econometrics. SEM enables postulated models based on a network of causation to be tested en bloc by confrontation with data derived from the literature. Case studies for the potential application of SEM techniques are colonization resistance (CR) and its counterpart, colonization susceptibility (CS), wherein specific microbes within the microbiome are postulated to either impede (CR) or facilitate (CS) invasive infection with pathogenic bacteria. These postulated networks have three causation steps: exposure to specific antimicrobials are key drivers, clinically relevant infection endpoints are the measurable observables and the activity of key microbiome constituents mediating CR or CS, which may be unobservable, appear as latent variables in the model. SEM methods have potential application towards evaluating the activity of specific antimicrobial agents within postulated networks of causation using clinically derived data.
Collapse
Affiliation(s)
- James C Hurley
- Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.,Division of Internal Medicine, Ballarat Health Services, Ballarat, Victoria, Australia
| |
Collapse
|
13
|
Candida and the Gram-positive trio: testing the vibe in the ICU patient microbiome using structural equation modelling of literature derived data. Emerg Themes Epidemiol 2022; 19:7. [PMID: 35982466 PMCID: PMC9387012 DOI: 10.1186/s12982-022-00116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Whether Candida interacts with Gram-positive bacteria, such as Staphylococcus aureus, coagulase negative Staphylococci (CNS) and Enterococci, to enhance their invasive potential from the microbiome of ICU patients remains unclear. Several effective anti-septic, antibiotic, anti-fungal, and non-decontamination based interventions studied for prevention of ventilator associated pneumonia (VAP) and other ICU acquired infections among patients receiving prolonged mechanical ventilation (MV) are known to variably impact Candida colonization. The collective observations within control and intervention groups from numerous ICU infection prevention studies enables tests of these postulated microbial interactions in the clinical context. Methods Four candidate generalized structural equation models (GSEM), each with Staphylococcus aureus, CNS and Enterococci colonization, defined as latent variables, were confronted with blood culture and respiratory tract isolate data derived from 460 groups of ICU patients receiving prolonged MV from 283 infection prevention studies. Results Introducing interaction terms between Candida colonization and each of S aureus (coefficient + 0.40; 95% confidence interval + 0.24 to + 0.55), CNS (+ 0.68; + 0.34 to + 1.0) and Enterococcal (+ 0.56; + 0.33 to + 0.79) colonization (all as latent variables) improved the fit for each model. The magnitude and significance level of the interaction terms were similar to the positive associations between exposure to topical antibiotic prophylaxis (TAP) on Enterococcal (+ 0.51; + 0.12 to + 0.89) and Candida colonization (+ 0.98; + 0.35 to + 1.61) versus the negative association of TAP with S aureus (− 0.45; − 0.70 to − 0.20) colonization and the negative association of anti-fungal exposure and Candida colonization (− 1.41; − 1.6 to − 0.72). Conclusions GSEM modelling of published ICU infection prevention data enables the postulated interactions between Candida and Gram-positive bacteria to be tested using clinically derived data. The optimal model implies interactions occurring in the human microbiome facilitating bacterial invasion and infection. This interaction might also account for the paradoxically high bacteremia incidences among studies of TAP in ICU patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12982-022-00116-9. GSEM modelling of published ICU infection prevention data from > 250 studies enables a test of and provides support to the interaction between Candida and Gram-positive bacteria. The various ICU infection prevention interventions may each broadly impact the patient microbiome.
Collapse
|
14
|
Erami M, Raiesi O, Momen-Heravi M, Getso MI, Fakhrehi M, Mehri N, Yarahmadi M, Amiri S, Raissi V, Hashemi SJ. Clinical impact of Candida respiratory tract colonization and acute lung infections in critically ill patients with COVID-19 pneumonia. Microb Pathog 2022; 166:105520. [PMID: 35405278 PMCID: PMC8993493 DOI: 10.1016/j.micpath.2022.105520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19), which is attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been causing a worldwide health issue. Airways colonization by Candida spp. is prevalent among patients on automatic ventilation in intensive care units (ICUs). This research aimed to ascertain the risk factors and roles of Candida spp. respiratory tract colonization, and Candida lung infection during the progression of COVID-19 pneumonia in critically ill patients. In total, Candida spp. were recovered in 69 from 100 immunosuppressed patients with COVID-19. Bronchoscopy was used to collect the Bronchoalveolar lavage (BAL) specimens. For the identification of Candida spp. PCR sequencing was done using the ITS1 and ITS4 primers. The amplification of the HWP1 gene was conducted to identify the Candida albicans complex. The antifungal activities of fluconazole, itraconazole, voriconazole, amphotericin B and caspofungin against Candida spp. were evaluated using the Clinical and Laboratory Standards Institute M60. In 63.77% of the patients, Candida respiratory colonization at D0 and D14 had no impact on the severity of COVID-19. In comparison to C. albicans strains, Candida respiratory disorder with C. glabrata had influenced the severity of COVID-19 for critically ill patients following adjustment for the risk factors of COVID-19 (P < 0.05). Amphotericin B and caspofungin showed superior activity against all Candida spp. All antifungal agents showed 100% sensitivity against the two C. africana strains. Our observation on patients who used automatic ventilation, respiratory colonization by Candida spp. was not seen to influence the infection or death caused by COVID-19. Amphotericin B and caspofungin showed superior activity against all Candida spp. and were recommended for the treatment regime of pulmonary candidiasis associated with COVID-19 infection. Although “Candida pneumonia” is rarely being reported in critically ill patients, Candida airway colonization mainly by Candida albicans is common especially among patients with diabetes, malignancies, and kidney disorders.
Collapse
|
15
|
|
16
|
Hurley JC. Structural equation modelling the relationship between anti-fungal prophylaxis and Pseudomonas bacteremia in ICU patients. Intensive Care Med Exp 2022; 10:2. [PMID: 35059904 PMCID: PMC8776977 DOI: 10.1186/s40635-022-00429-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/30/2021] [Indexed: 01/20/2023] Open
Abstract
Purpose Animal models implicate candida colonization facilitating invasive bacterial infections. The clinical relevance of this microbial interaction remains undefined and difficult to study directly. Observations from studies of anti-septic, antibiotic, anti-fungal, and non-decontamination-based interventions to prevent ICU acquired infection collectively serve as a natural experiment. Methods Three candidate generalized structural equation models (GSEM), with Candida and Pseudomonas colonization as latent variables, were confronted with blood culture and respiratory tract isolate data derived from 464 groups from 279 studies including studies of combined antibiotic and antifungal exposures within selective digestive decontamination (SDD) interventions. Results Introducing an interaction term between Candida colonization and Pseudomonas colonization substantially improved GSEM model fit. Model derived coefficients for singular exposure to anti-septic agents (− 1.23; − 2.1 to − 0.32), amphotericin (− 1.78; − 2.79 to − 0.78) and topical antibiotic prophylaxis (TAP; + 1.02; + 0.11 to + 1.93) versus Candida colonization were similar in magnitude but contrary in direction. By contrast, the model-derived coefficients for singular exposure to TAP, as with anti-septic agents, versus Pseudomonas colonization were weaker or non-significant. Singular exposure to amphotericin would be predicted to more than halve candidemia and Pseudomonas bacteremia incidences versus literature benchmarks for absolute differences of approximately one percentage point or less. Conclusion GSEM modelling of published data supports the postulated interaction between Candida and Pseudomonas colonization towards promoting bacteremia among ICU patients. This would be difficult to detect without GSEM modelling. The model indicates that anti-fungal agents have greater impact in preventing Pseudomonas bacteremia than TAP, which has no impact. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00429-8.
Collapse
|
17
|
La Y, Kwon DE, Jeon S, Lee S, Lee KH, Han SH, Song YG. Clinical Implication of Candida Score in Multidrug-Resistant Pneumonia with Airway Candida Colonization. Infect Chemother 2022; 54:287-297. [PMID: 35706075 PMCID: PMC9259915 DOI: 10.3947/ic.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background The growth of Candida in respiratory secretions is usually considered colonization, and antifungal therapy is rarely required. The role of Candida colonization in the progression of bacterial pneumonia remains controversial. The aim of this study was to identify the clinical implication of Candida score by analyzinge the relationship with multidrug-resistant (MDR) pneumonia and prognosis in patients with airway Candida colonization. Materials and Methods This study was a retrospective review of patients with airway Candida colonization by bronchial washing or bronchoalveolar lavage. The Candida score was calculated according to the four factors (severe sepsis, surgery at baseline, total parenteral nutrition, and multifocal Candida colonization). Pneumonia related mortality or hopeless discharge expecting death was defined as a poor outcome. Results A total of 148 patients were enrolled in the study. In a multivariate analysis model, Candida score was identified as an independent predictor of poor outcomes (odds ratio 2.23; 95% confidential interval 1.57 – 3.17; P <0.001) in pneumonia patients with airway Candida colonization. With a Candida score of three or higher compared with low score group, it was associated with bacterial pneumonia, especially methicillin-resistant Staphylococcus aureus (MRSA) infection (0.0% vs. 15.2%, P = 0.004). In addition, patients with a high Candida score had a longer hospital stay (13 vs. 38 days, P <0.001), longer duration of intensive care (7 vs. 18 days, P <0.001), and higher pneumonia-related mortality (0.0% vs. 45.5%, P <0.001) as compared to the low Candida score group. The Candida score showed a positive correlation with other pneumonia severity scales such as CURB-65 (Confusion, Urea, Respiratory rate, Blood pressure, and age ≥65 years) (r = 0.461, P <0.001), Pneumonia Severity Index (r = 0.397, P <0.001), and predisposition, insult, response, and organ dysfunction (PIRO) score (r = 0.425, P <0.001). Conclusion This study revealed that Candida is no longer a bystander of airway colonization, and that it affects the progression of bacterial pneumonia, including multidrug-resistant pathogens, particularly MRSA infection. Also Candida score can be used to predict the prognosis of patients with pneumonia.
Collapse
Affiliation(s)
- Yeonju La
- Division of Infectious Diseases, Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Da Eun Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soyoung Jeon
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Sujee Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Hwa Lee
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Han
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Dadi NCT, Radochová B, Vargová J, Bujdáková H. Impact of Healthcare-Associated Infections Connected to Medical Devices-An Update. Microorganisms 2021; 9:2332. [PMID: 34835457 PMCID: PMC8618630 DOI: 10.3390/microorganisms9112332] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Healthcare-associated infections (HAIs) are caused by nosocomial pathogens. HAIs have an immense impact not only on developing countries but also on highly developed parts of world. They are predominantly device-associated infections that are caused by the planktonic form of microorganisms as well as those organized in biofilms. This review elucidates the impact of HAIs, focusing on device-associated infections such as central line-associated bloodstream infection including catheter infection, catheter-associated urinary tract infection, ventilator-associated pneumonia, and surgical site infections. The most relevant microorganisms are mentioned in terms of their frequency of infection on medical devices. Standard care bundles, conventional therapy, and novel approaches against device-associated infections are briefly mentioned as well. This review concisely summarizes relevant and up-to-date information on HAIs and HAI-associated microorganisms and also provides a description of several useful approaches for tackling HAIs.
Collapse
Affiliation(s)
| | - Barbora Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (N.C.T.D.); (J.V.)
| | | | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (N.C.T.D.); (J.V.)
| |
Collapse
|
19
|
Jiang WQ, Li XS, Zhong WH, Huang LQ, Lin XJ, Wen MY, Deng YJ, Li X, Zeng HK. Comparison of clinical characteristics in patients with coronavirus disease and influenza A in Guangzhou, China. World J Emerg Med 2021; 12:287-292. [PMID: 34512825 DOI: 10.5847/wjem.j.1920-8642.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND This study aims to compare the epidemiological, clinical and laboratory characteristics between patients with coronavirus disease (COVID-19) and influenza A (H1N1), and to develop a differentiating model and a simple scoring system. METHODS We retrospectively analyzed the data from patients with COVID-19 and H1N1. The logistic regression model based on clinical and laboratory characteristics was constructed to distinguish COVID-19 from H1N1. Scores were assigned to each of independent discrimination factors based on their odds ratios. The performance of the prediction model and scoring system was assessed. RESULTS A total of 236 patients were recruited, including 20 COVID-19 patients and 216 H1N1 patients. Logistic regression revealed that age >34 years, temperature ≤37.5 °C, no sputum or myalgia, lymphocyte ratio ≥20% and creatine kinase-myocardial band isoenzyme (CK-MB) >9.7 U/L were independent differentiating factors for COVID-19. The area under curves (AUCs) of the prediction model and scoring system in differentiating COVID-19 from H1N1 were 0.988 and 0.962, respectively. CONCLUSIONS There are certain differences in clinical and laboratory features between patients with COVID-19 and H1N1. The simple scoring system may be a useful tool for the early identification of COVID-19 patients from H1N1 patients.
Collapse
Affiliation(s)
- Wen-Qiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xu-Sheng Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wen-Hong Zhong
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Lin-Qiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiao-Jun Lin
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Miao-Yun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu-Jun Deng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xin Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Hong-Ke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
20
|
Liu J, Yu YT, Xu CH, Chen DC. Candida Colonization in the Respiratory Tract: What Is the Significance? Front Med (Lausanne) 2021; 7:598037. [PMID: 33614672 PMCID: PMC7889970 DOI: 10.3389/fmed.2020.598037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/18/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Tian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Hui Xu
- Clinical Laboratory Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - De-Chang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Martin-Loeches I, Metersky M, Kalil A, Pezzani MD, Torres A. Strategies for implementation of a multidisciplinary approach to the treatment of nosocomial infections in critically ill patients. Expert Rev Anti Infect Ther 2020; 19:759-767. [PMID: 33249874 DOI: 10.1080/14787210.2021.1857730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Intensive Care Units (ICU) are among the hospital wards exhibiting the highest prevalence of antimicrobial resistance (AMR), and resulting impact on patient outcomes. Antimicrobial resistance surveillance and antimicrobial stewardship (AMS) programs play a pivotal role in promoting interventions tailored to optimize infection diagnosis and treatment in the final attempt to limit unnecessary antimicrobial use and development of resistance. AREAS COVERED A narrative review of the literature was carried out to summarize the available evidence and develop a set of actions that should be considered for integration into the ICU stewardship framework. Four questions were addressed: how AMR surveillance can inform antibiotic policy in ICU; whether pharmacokinetic and pharmacodynamic (PK/PD) principles and the use of procalcitonin should be incorporated as a standard practice in ICU AMS programs to optimize antibiotic treatment and to drive antibiotic discontinuation; which criteria should drive treatment duration of ICU-associated infections. EXPERT OPINION In this review we aim to highlight that the ICU must be considered in its own right. Each ICU has its own characteristics depending on the country, on the local antibiotic resistance profile, on the patients feature and the severity of infection.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, St James's Hospital, Dublin, Ireland.,Hospital Clinic, IDIBAPS, Universidad De Barcelona, CIBERES, Barcelona, Spain
| | - Mark Metersky
- Dept of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Andre Kalil
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maria Diletta Pezzani
- Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona Italy
| | - Antoni Torres
- Hospital Clinic, IDIBAPS, Universidad De Barcelona, CIBERES, Barcelona, Spain
| |
Collapse
|
22
|
Candida- Acinetobacter-Pseudomonas Interaction Modelled within 286 ICU Infection Prevention Studies. J Fungi (Basel) 2020; 6:jof6040252. [PMID: 33121074 PMCID: PMC7712580 DOI: 10.3390/jof6040252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Whether Candida interacts to enhance the invasive potential of Acinetobacter and Pseudomonas bacteria cannot be resolved within individual studies. There are several anti-septic, antibiotic, anti-fungal, and non-decontamination-based interventions to prevent ICU acquired infection. These effective prevention interventions would be expected to variably impact Candida colonization. The collective observations within control and intervention groups from numerous ICU infection prevention studies simulates a multi-centre natural experiment with which to evaluate Candida, Acinetobacter and Pseudomonas interaction (CAPI). METHODS Eight Candidate-generalized structural equation models (GSEM), with Candida, Pseudomonas and Acinetobacter colonization as latent variables, were confronted with blood culture and respiratory tract isolate data derived from >400 groups derived from 286 infection prevention studies. RESULTS Introducing an interaction term between Candida colonization and each of Pseudomonas and Acinetobacter colonization improved model fit in each case. The size of the coefficients (and 95% confidence intervals) for these interaction terms in the optimal Pseudomonas (+0.33; 0.22 to 0.45) and Acinetobacter models (+0.32; 0.01 to 0.5) were similar to each other and similar in magnitude, but contrary in direction, to the coefficient for exposure to topical antibiotic prophylaxis (TAP) on Pseudomonas colonization (-0.45; -0.71 to -0.2). The coefficient for exposure to topical antibiotic prophylaxis on Acinetobacter colonization was not significant. CONCLUSIONS GSEM modelling of published ICU infection prevention data supports the CAPI concept. The CAPI model could account for some paradoxically high Acinetobacter and Pseudomonas infection incidences, most apparent among the concurrent control groups of TAP studies.
Collapse
|
23
|
Yao J, Guan S, Liu Z, Li X, Zhou Q. Changes in immune indicators and bacteriologic profile were associated with patients with ventilator-associated pneumonia. Medicine (Baltimore) 2020; 99:e19716. [PMID: 32311958 PMCID: PMC7440178 DOI: 10.1097/md.0000000000019716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The aim of this study is to explore and identify ventilator-associated pneumonia (VAP)-related prognostic immune factors and further detect the drug-resistant pathogens to establish the theoretical guidance for clinical prevention and treatment strategies of VAP. A total of 478 patients using ventilator who were hospitalized in July 2014 to November 2016 in our hospital were enrolled in this study. About 103 patients with VAP (21.5%, 103/478) among 478 cases of patients using ventilator. Among the 103 patients with VAP, the distribution of pathogenic bacteria and drug resistance in patients with VAP were detected and analyzed. In the VAP group, 35 patients died and 43 patients had simultaneous sepsis. Compared with those of non-VAP group, the proportion of CD3 (P = .012), CD3CD4 (P = .024) and CD8CD28 ( P = .017) T cells in VAP group increased significantly, which indicated more severe immune response. Multivariate regression model analysis revealed that tracheotomy of mechanical ventilation (P = .013), mechanical ventilation time ≥7 days (P = .02) and aspiration and reflux (P = .011) were independent risk factors associated with VAP. According to the results of bacterial culture and drug sensitivity test, rational selection of antibiotics and monitoring of patients within intensive care unit can effectively control the incidence of VAP and improve the prognosis of patients.
Collapse
|
24
|
Martin-Loeches I, Povoa P, Poulakou G. Focus on infection. Intensive Care Med 2020; 46:787-789. [PMID: 32157355 PMCID: PMC7224144 DOI: 10.1007/s00134-020-05995-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, St. James Street, Dublin 8, Dublin, Ireland. .,Hospital Clinic, IDIBAPS, Universidad de Barcelona, Ciberes, Barcelona, Spain.
| | - Pedro Povoa
- Polyvalent Intensive Care Unit, São Francisco Xavier Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal.,NOVA Medical School, CHRC, New University of Lisbon, Lisbon, Portugal.,Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Garyphallia Poulakou
- 3rd Department of Internal Medicine, Sotiria General Hospital, Medical School, National and Kapodistrian University of Athens, 152 Mesogion St., 115 27, Athens, Greece
| |
Collapse
|
25
|
Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med 2020; 46:888-906. [PMID: 32157357 PMCID: PMC7095206 DOI: 10.1007/s00134-020-05980-0] [Citation(s) in RCA: 442] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Ventilator-associated pneumonia (VAP) is one of the most frequent ICU-acquired infections. Reported incidences vary widely from 5 to 40% depending on the setting and diagnostic criteria. VAP is associated with prolonged duration of mechanical ventilation and ICU stay. The estimated attributable mortality of VAP is around 10%, with higher mortality rates in surgical ICU patients and in patients with mid-range severity scores at admission. Microbiological confirmation of infection is strongly encouraged. Which sampling method to use is still a matter of controversy. Emerging microbiological tools will likely modify our routine approach to diagnosing and treating VAP in the next future. Prevention of VAP is based on minimizing the exposure to mechanical ventilation and encouraging early liberation. Bundles that combine multiple prevention strategies may improve outcomes, but large randomized trials are needed to confirm this. Treatment should be limited to 7 days in the vast majority of the cases. Patients should be reassessed daily to confirm ongoing suspicion of disease, antibiotics should be narrowed as soon as antibiotic susceptibility results are available, and clinicians should consider stopping antibiotics if cultures are negative.
Collapse
Affiliation(s)
- Laurent Papazian
- Médecine Intensive Réanimation, Hôpital Nord, Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France. .,Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, Groupe de recherche en Réanimation et Anesthésie de Marseille pluridisciplinaire (GRAM +), Faculté de médecine, Aix-Marseille Université, 13005, Marseille, France.
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, USA
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM, UMRS 1166, ICAN Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| |
Collapse
|
26
|
Hellyer TP, McAuley DF, Walsh TS, Anderson N, Conway Morris A, Singh S, Dark P, Roy AI, Perkins GD, McMullan R, Emerson LM, Blackwood B, Wright SE, Kefala K, O'Kane CM, Baudouin SV, Paterson RL, Rostron AJ, Agus A, Bannard-Smith J, Robin NM, Welters ID, Bassford C, Yates B, Spencer C, Laha SK, Hulme J, Bonner S, Linnett V, Sonksen J, Van Den Broeck T, Boschman G, Keenan DJ, Scott J, Allen AJ, Phair G, Parker J, Bowett SA, Simpson AJ. Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2): a randomised controlled trial and process evaluation. THE LANCET. RESPIRATORY MEDICINE 2020; 8:182-191. [PMID: 31810865 PMCID: PMC7599318 DOI: 10.1016/s2213-2600(19)30367-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ventilator-associated pneumonia is the most common intensive care unit (ICU)-acquired infection, yet accurate diagnosis remains difficult, leading to overuse of antibiotics. Low concentrations of IL-1β and IL-8 in bronchoalveolar lavage fluid have been validated as effective markers for exclusion of ventilator-associated pneumonia. The VAPrapid2 trial aimed to determine whether measurement of bronchoalveolar lavage fluid IL-1β and IL-8 could effectively and safely improve antibiotic stewardship in patients with clinically suspected ventilator-associated pneumonia. METHODS VAPrapid2 was a multicentre, randomised controlled trial in patients admitted to 24 ICUs from 17 National Health Service hospital trusts across England, Scotland, and Northern Ireland. Patients were screened for eligibility and included if they were 18 years or older, intubated and mechanically ventilated for at least 48 h, and had suspected ventilator-associated pneumonia. Patients were randomly assigned (1:1) to biomarker-guided recommendation on antibiotics (intervention group) or routine use of antibiotics (control group) using a web-based randomisation service hosted by Newcastle Clinical Trials Unit. Patients were randomised using randomly permuted blocks of size four and six and stratified by site, with allocation concealment. Clinicians were masked to patient assignment for an initial period until biomarker results were reported. Bronchoalveolar lavage was done in all patients, with concentrations of IL-1β and IL-8 rapidly determined in bronchoalveolar lavage fluid from patients randomised to the biomarker-based antibiotic recommendation group. If concentrations were below a previously validated cutoff, clinicians were advised that ventilator-associated pneumonia was unlikely and to consider discontinuing antibiotics. Patients in the routine use of antibiotics group received antibiotics according to usual practice at sites. Microbiology was done on bronchoalveolar lavage fluid from all patients and ventilator-associated pneumonia was confirmed by at least 104 colony forming units per mL of bronchoalveolar lavage fluid. The primary outcome was the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage. Data were analysed on an intention-to-treat basis, with an additional per-protocol analysis that excluded patients randomly assigned to the intervention group who defaulted to routine use of antibiotics because of failure to return an adequate biomarker result. An embedded process evaluation assessed factors influencing trial adoption, recruitment, and decision making. This study is registered with ISRCTN, ISRCTN65937227, and ClinicalTrials.gov, NCT01972425. FINDINGS Between Nov 6, 2013, and Sept 13, 2016, 360 patients were screened for inclusion in the study. 146 patients were ineligible, leaving 214 who were recruited to the study. Four patients were excluded before randomisation, meaning that 210 patients were randomly assigned to biomarker-guided recommendation on antibiotics (n=104) or routine use of antibiotics (n=106). One patient in the biomarker-guided recommendation group was withdrawn by the clinical team before bronchoscopy and so was excluded from the intention-to-treat analysis. We found no significant difference in the primary outcome of the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage in the intention-to-treat analysis (p=0·58). Bronchoalveolar lavage was associated with a small and transient increase in oxygen requirements. Established prescribing practices, reluctance for bronchoalveolar lavage, and dependence on a chain of trial-related procedures emerged as factors that impaired trial processes. INTERPRETATION Antibiotic use remains high in patients with suspected ventilator-associated pneumonia. Antibiotic stewardship was not improved by a rapid, highly sensitive rule-out test. Prescribing culture, rather than poor test performance, might explain this absence of effect. FUNDING UK Department of Health and the Wellcome Trust.
Collapse
Affiliation(s)
- Thomas P Hellyer
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Daniel F McAuley
- The Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK; Regional Intensive Care Unit, The Royal Hospitals, Belfast, UK
| | - Timothy S Walsh
- Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK; Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Suveer Singh
- Department of Cancer and Surgery, Imperial College London, London, UK
| | - Paul Dark
- Division of Infection Immunity and Respiratory Medicine, Manchester National Institute for Health Research Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Alistair I Roy
- Integrated Critical Care Unit, Sunderland Royal Hospital, City Hospitals Sunderland NHS Foundation Trust, Sunderland, UK
| | - Gavin D Perkins
- Warwick Medical School, University of Warwick, Coventry, UK; Intensive Care Unit, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ronan McMullan
- The Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lydia M Emerson
- The Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Bronagh Blackwood
- The Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Stephen E Wright
- Integrated Critical Care Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Kallirroi Kefala
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Cecilia M O'Kane
- The Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Simon V Baudouin
- Intensive Care Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Ross L Paterson
- Intensive Care Unit, Western General Hospital, Edinburgh, UK
| | - Anthony J Rostron
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Integrated Critical Care Unit, Sunderland Royal Hospital, City Hospitals Sunderland NHS Foundation Trust, Sunderland, UK
| | - Ashley Agus
- Northern Ireland Clinical Trials Unit, The Royal Hospitals, Belfast, UK
| | - Jonathan Bannard-Smith
- Intensive Care Unit, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicole M Robin
- Intensive Care Unit, Countess of Chester NHS Foundation Trust, Chester, UK
| | - Ingeborg D Welters
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Christopher Bassford
- Intensive Care Unit, University Hospital Coventry, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Bryan Yates
- Intensive Care Unit, Northumbria Specialist Emergency Care Hospital, Cramlington, UK
| | - Craig Spencer
- Intensive Care Unit, Preston Royal Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Shondipon K Laha
- Intensive Care Unit, Preston Royal Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Jonathan Hulme
- Intensive Care Unit, Sandwell General Hospital, Sandwell and West Birmingham Hospitals NHS Trust, West Bromwich, UK
| | - Stephen Bonner
- Intensive Care Unit, James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Vanessa Linnett
- Intensive Care Unit, Queen Elizabeth Hospital, Gateshead NHS Foundation Trust, Gateshead, UK
| | - Julian Sonksen
- Intensive Care Unit, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
| | | | - Gert Boschman
- Becton Dickinson Biosciences Europe, Erembodegem, Belgium
| | | | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - A Joy Allen
- National Institute for Health Research Newcastle In Vitro Diagnostics Cooperative, Newcastle University, Newcastle, UK
| | - Glenn Phair
- Northern Ireland Clinical Trials Unit, The Royal Hospitals, Belfast, UK
| | - Jennie Parker
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | - Susan A Bowett
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; National Institute for Health Research Newcastle In Vitro Diagnostics Cooperative, Newcastle University, Newcastle, UK.
| |
Collapse
|
27
|
Yu Y, Li J, Wang S, Gao Y, Shen H, Lu L. Effect of Candida albicans bronchial colonization on hospital-acquired bacterial pneumonia in patients with systemic lupus erythematosus. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:673. [PMID: 31930074 PMCID: PMC6944617 DOI: 10.21037/atm.2019.10.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND To investigate the effect of Candida albicans airway colonization on hospital-acquired bacterial pneumonia (HABP) in patients with systemic lupus erythematosus (SLE). METHODS SLE patients with HAP were enrolled in this retrospective cohort study from January 2015 to December 2018. According to the culture results of respiratory tract secretions and antifungal treatment, patients were divided into non-C. albicans colonization group (NCG), C. albicans colonization with antifungal treatment group (CTG) and C. albicans colonization without antifungal treatment group (CNTG). Twenty-eight days of all-cause mortality after the onset of HABP of each group was assessed, total duration of antibiotic treatment, changes of inflammatory cytokines and markers of immune status were documented. RESULTS A total of 269 SLE patients with HABP were finally included in the study. Among them, 69.1% (186/269) were found C. albicans airway colonization, and 36.1% (97/269) received antifungal treatment. No difference of 28 days of all-cause mortality after HABP onset was found among the three groups (10.8% vs. 13.4% vs. 15.7%, P>0.05). Duration of antibiotic treatment of HABP due to Acinetobacter baumannii was shorter in CTG (11.21±2.45 days) than that in CNTG (12.89±3.87 days) as well as HABP due to Pseudomonas aeruginosa (10.57±2.66 vs. 12.56±3.04 days) (P<0.05, respectively). Antifungal treatment could decrease the level of interleukin-1β, interleukin-6, tumor necrosis factor-α and interferon-γ in CTG than in CNTG (P<0.05, respectively). In addition, it could regulate immune function by decrease the concentration of interleukin-17 and elevate the counts of CD4+Th lymphocyte as well (P<0.05, respectively). CONCLUSIONS C. albicans airway colonization was not associated with HABP mortality in SLE patients. Antifungal therapy in these patients might shorten the duration of antibiotics in treating HABP due to A. baumannii and P. aeruginosa.
Collapse
Affiliation(s)
- Yuetian Yu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jia Li
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Suli Wang
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Hui Shen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Liangjing Lu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|