1
|
Tan X, Zheng D, Lin Q, Wang L, Zhu Z, Huang Y, Lin J, Zeng Y, Mao M, Yi Z, Liu L, Ma D, Wang J, Li X. Confirmation of pain-related neuromodulation mechanism of Bushen Zhuangjin Decoction on knee osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117772. [PMID: 38266947 DOI: 10.1016/j.jep.2024.117772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Zhuangjin Decoction (BZD) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY This study aimed to verify the mechanism of Bushen Zhuangjin Decoction in relieving the pain of knee osteoarthritis. MATERIALS AND METHODS Network pharmacology evaluation was used to discover the potential targets of BZD to relieve pain in KOA. The therapeutic effects of BZD treatment on KOA pain using histomorphology, behavioral assessments, suspension chip analysis, and ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) assays. The functional magnetic resonance imaging was used to explore the effects of BZD treatment on brain function associated to KOA. RESULTS Network pharmacological analysis revealed the association between the analgesic effect of BZD on KOA and the pain signaling neurotransmitter 5-HT. Subsequently, we conducted experiments to verify the therapeutic effect of BZD on pain in KOA animal models. Behavioral tests demonstrated that the pain threshold of knee osteoarthritis rats decreased in PWT and PWL, but BZD was able to increase the pain threshold. Histopathological staining indicated thinning of the cartilage layer and sparse trabeculae in the subchondral bone. Suspension chip analysis revealed a significant increase in pro-inflammatory factors of IL-1α, IL-5, IL-12, IL-17A, RANTES, TNF-α and M-CSF in KOA, along with a significant decrease in anti-inflammatory factor of IL-13. However, BZD treatment decreased the expression of pro-inflammatory factors and increased the content of anti-inflammatory factor. UHPLC-MS/MS analysis showed a significant decrease in the serum levels of GABA, E, GSH, Kyn, Met, and VMA in KOA, which were significantly increased by BZD. Conversely, the serum levels of TrpA, TyrA, Spd, and BALa were significantly increased in KOA and significantly decreased by BZD. ELISA and Western blot analysis showed increased expression of subchondral bone pain-related neuropeptides SP, CGRP, TH, NPY, VEGFA, 5-HT3 in KOA, which were decreased in BZD. Functional magnetic resonance imaging demonstrated that BZD exerts its therapeutic effect on KOA by modulating the activity and functional connections of the cortex, hypothalamus, and hippocampus. CONCLUSIONS This study confirmed the significant role of pain-related neuromodulation mechanisms in the analgesic therapy of BZD and provides a theoretical foundation for using BZD as a traditional Chinese medical treatment for KOA pain.
Collapse
Affiliation(s)
- Xue Tan
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Danhao Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Qing Lin
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lili Wang
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Zaishi Zhu
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yanfeng Huang
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jiaqiu Lin
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yihui Zeng
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Mao
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zhouping Yi
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Linglong Liu
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Dezun Ma
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Jie Wang
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China; Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xihai Li
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop 2024; 11:e12016. [PMID: 38572391 PMCID: PMC10985633 DOI: 10.1002/jeo2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Abstract Intact articular cartilage plays a vital role in joint homeostasis. Local cartilage repairs, where defects in the cartilage matrix are filled in and sealed to congruity, are therefore important treatments to restore a joint equilibrium. The base for all cartilage repairs is the cells; either chondrocytes or chondrogeneic cells from bone, synovia and fat tissue. The surgical options include bone marrow stimulation techniques alone or augmented with scaffolds, chondrogeneic cell implantations and osteochondral auto- or allografts. The current trend is to choose one-stage procedures being easier to use from a regulatory point of view. This narrative review provides an overview of the current nonoperative and surgical options available for the repair of various cartilage lesions. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, Team Orthopedic Research Region Halland‐TOR, Region Halland Orthopaedics, Varberg HospitalUniversity of GothenburgVarbergSweden
| |
Collapse
|
3
|
Otis C, Bouet E, Keita-Alassane S, Frezier M, Delsart A, Guillot M, Bédard A, Pelletier JP, Martel-Pelletier J, Lussier B, Beaudry F, Troncy E. Face and Predictive Validity of MI-RAT ( Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. Int J Mol Sci 2023; 24:16341. [PMID: 38003530 PMCID: PMC10671647 DOI: 10.3390/ijms242216341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.
Collapse
Affiliation(s)
- Colombe Otis
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Emilie Bouet
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Sokhna Keita-Alassane
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Marilyn Frezier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Aliénor Delsart
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Martin Guillot
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 1C1, Canada;
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Bertrand Lussier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| | - Eric Troncy
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| |
Collapse
|
4
|
Huang Y, Lin Q, Tan X, Jia L, Li H, Zhu Z, Fu C, Wang L, Liu L, Mao M, Yi Z, Ma D, Li X. Rehmannia alcohol extract inhibits neuropeptide secretion and alleviates osteoarthritis pain through cartilage protection. Heliyon 2023; 9:e19322. [PMID: 37674829 PMCID: PMC10477487 DOI: 10.1016/j.heliyon.2023.e19322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by chronic pain, and the perception of pain is closely associated with brain function and neuropeptide regulation. Rehmannia is common plant herb with anti-inflammatory and analgesic properties that is used to treat OA. However, it is unclear whether Rehmannia alleviates OA-related pain via regulation of neuropeptides and brain function. We examined the pain relief regulatory pathway in OA after treatment with Rehmannia by verifying the therapeutic effect of Rehmannia alcohol extract in vivo and vitro and exploring of the potential mechanism underlying the analgesic effect of Rahmanian using functional magnetic resonance imaging and measuring neuropeptide secretion. Our results showed that Rehmannia alcohol extract and the related active ingredient, Rehmannioside D, can delay cartilage degradation and alleviate inflammation in OA rats. The Rehmannia alcohol extract can also relieve OA pain, reduce the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP), and reverse the pathological changes in the cerebral cortex and hippocampus. Our research results demonstrate that Rehmannia alleviates OA pain by protecting cartilage, preventing the stimulation of inflammatory factors on neuropeptide secretion, and influencing the relevant functional areas of the brain.
Collapse
Affiliation(s)
- Yanfeng Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Qing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Liangliang Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Hui Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Pharmacy Science, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zaishi Zhu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Linlong Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Mao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Zhouping Yi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
5
|
Nakawaki M, Kenmoku T, Uchida K, Arendt-Nielsen L, Nagura N, Takaso M. Expression of Apelin in Rotator Cuff Tears and Examination of Its Regulatory Mechanism: A Translational Study. Cureus 2023; 15:e44347. [PMID: 37654901 PMCID: PMC10465352 DOI: 10.7759/cureus.44347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES Inflammatory mediators play important roles in the pain associated with rotator cuff tears (RCTs), but their underlying mechanisms are unclear. Apelin, a neuropeptide, is upregulated under inflammatory conditions and possibly contributes to pain induced by rotator cuff tears. This translational study aimed to examine apelin expression and regulation by tumor necrosis factor alpha (TNF-α) in patients with RCT and in rat RCT models. METHODS Synovial tissues were harvested from the glenohumeral joints of the shoulders in 46 patients who underwent arthroscopic Bankart repair for recurrent shoulder dislocations (RSDs) or arthroscopic rotator cuff repair for RCTs. The harvested tissues were extracted and processed by reverse transcriptase-polymerase chain reaction (RT-PCR). Rats underwent sham or RCT surgery; the rotator cuff tissues were extracted 1, 7, 14, 28, and 56 days after surgery and analyzed for mRNA expression levels of the TNF-α and apelin using RT-PCR. The cultured rotator cuff cells (RCCs) were stimulated with TNF-α to examine their role in the regulation of apelin expression. RESULTS Apelin expression was higher in the RCT group than in the RSD group and significantly correlated with pain intensity. In rats, the expression was also higher in RCT. Apelin expression significantly increased during the acute and chronic phases in rats. CONCLUSIONS In cultured RCCs, apelin mRNA levels significantly increased after TNF-α stimulation. Apelin levels were regulated by TNF-α and were highly expressed in patients with RCT and rats in RCT models. Thus, apelin may be a new pain management target for RCTs.
Collapse
Affiliation(s)
- Mitsufumi Nakawaki
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Tomonori Kenmoku
- Orthopaedic Surgery, Kitasato University Hospital, Sagamihara, JPN
| | - Kentaro Uchida
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Lars Arendt-Nielsen
- Health Science and Technology, Center for Neuroplasticity and Pain (CNP), Faculty of Medicine, Aalborg University, Aalborg, DNK
- Health Science and Technology, Center for Sensory-Motor Interaction (SMI), Faculty of Medicine, Aalborg University, Aalborg, DNK
| | - Naoshige Nagura
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masashi Takaso
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| |
Collapse
|
6
|
Wang H, Shu J, Zhang C, Wang Y, Shi R, Yang F, Tang X. Extracellular Vesicle-Mediated miR-150-3p Delivery in Joint Homeostasis: A Potential Treatment for Osteoarthritis? Cells 2022; 11:cells11172766. [PMID: 36078172 PMCID: PMC9454967 DOI: 10.3390/cells11172766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background: The disruption of joint homeostasis is a critical event during the process of joint injury in osteoarthritis (OA). As regulatory molecules, microRNAs (miRNAs) can be released from secretory cells and delivered to recipient cells through extracellular vesicles (EVs), thereby playing an important role in regulating joint homeostasis. We hypothesized that the fibroblast-like synoviocytes (FLSs) in healthy joints could release EVs enriched in miRNAs that can maintain joint homeostasis by regulating the signal transduction pathways in the joints, whereby the articular cartilage (AC) is protected from degeneration, and OA progression is delayed. Methods: Via high-throughput sequencing and qPCR, we found that miR-150-3p was enriched in the circulating EVs in healthy rats. Next, we established an in vitro cell model in which chondrocytes were cultured with (i) FLSs transfected with miR-150-3p mimics or (ii) EVs released by FLSs (FLS–EVs) inside the healthy synovial membrane (SM). The transportation mechanism from FLSs to chondrocytes was studied using the EV inhibitor GW4869, and the FLSs were transfected with a miR-150-3p mimic or inhibitor. To assess the therapeutic effect of miR-150-3p-carrying EVs (EVs-150) in vivo, healthy FLS-derived EVs (H-FLS–EVs) were injected into the tail vein of rats with OA at various stages of the pathogenesis and evaluated for the progression of OA. Results: The chondrocytes could uptake fluorescent-labeled miR-150-3p mimics and FLS–EVs, and GW4869 suppressed this uptake. The overexpression of miR-150-3p could significantly reduce the concentrations of pro-inflammatory cytokines in the cell culture medium and the expression of the miR-150-3p target T cell receptor-interacting molecule 14 (Trim14), as well as the innate immune-related factors, including nuclear factor kappa B (NF-κB) and interferon-β (IFN-β). Similarly to the in vitro findings, the miR-150-3p level in the serum EVs was significantly upregulated among the EV-treated rats. In the AC of the OA rat model injected with H-FLS–EVs, the joint degeneration was suppressed, and Type II collagen (COLII) and aggrecan (ACAN) were significantly upregulated, whereas the innate immune-related factors Trim14, NF-κB, and IFN-β were downregulated compared with the levels in the untreated OA rats. Notably, the suppression of joint degeneration was more significant when H-FLS–EVs were administered at the early stages of OA rather than the late stages. Conclusion: H-FLS–EVs protect chondrocyte function and maintain joint homeostasis by modulating the innate immune response by suppressing the Trim14/NF-κB/IFNβ axis. These effects are achieved through the EV-mediated transport of miR-150-3p from the FLSs to the chondrocytes. Our findings show that EV-mediated miR-150-3p can be used to suppress OA, thus providing a novel therapeutic strategy. Additionally, the EV-mediated miR-150-3p transport may also serve as a potential biomarker in the diagnosis, treatment, and prognosis of OA.
Collapse
Affiliation(s)
- Huan Wang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: (H.W.); (X.T.)
| | - Jun Shu
- Institute of Clinical Research, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chengfei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongxing Shi
- Department of Traditional Chinese Medicine Acupuncture, China-Japan Friendship Hospital, Beijing 100029, China
| | - Fan Yang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuezhang Tang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: (H.W.); (X.T.)
| |
Collapse
|
7
|
Zhang T, Chen Y, Chen C, Li S, Xiao H, Wang L, Hu J, Lu H. Treadmill exercise facilitated rotator cuff healing is coupled with regulating periphery neuropeptides expression in a murine model. J Orthop Res 2021; 39:680-692. [PMID: 32239544 DOI: 10.1002/jor.24678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 02/04/2023]
Abstract
Postoperative exercise has been found able to accelerate bone-tendon (B-T) healing. In this study, we systematically compared tendon-to-bone healing in mice subjected to postoperative treadmill exercise and free cage recovery in a murine rotator cuff repair model. Specifically, C57BL/6 mice underwent unilateral supraspinatus tendon (SST) detachment and repair were randomly allocated into treadmill group and control group. Treadmill group received daily treadmill running initiated from postoperative day 7 while the control group was allowed free cage activity. Mice were euthanized at postoperative 4 and 8 weeks for synchrotron radiation micro-computed tomography (SR-μCT), histology and biomechanical tests to investigate the effect of treadmill running on B-T healing. The results indicated that treadmill running initiated at day 7 postoperatively was able to accelerate B-T healing, as evidenced by better tendon-to-bone maturation and increased mechanical property. Recent studies show that peripheral neuropeptides are closely associated with musculoskeletal tissue repair. We furtherly conducted quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining to investigate the temporal-spatial expression of calcitonin gene-related peptide (CGRP), substance P (SP), and peripheral neuropeptide Y (NPY) to verify whether they are related to rotator cuff healing. Our results show increased expression of CGRP, SP, and NPY at the healing site under the effect of mechanical stimulation. In conclusion, delayed postoperative exercise with moderate strength appears to accelerate the early phase of B-T healing, a process that may prove to be linked to increased expression of periphery neuropeptides known to play a role in tissue healing.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
8
|
Abstract
Rheumatic diseases are characterized by chronic inflammation of synovial joints and are often associated with persistent pain and increased pain sensitivity. The inflammatory process is a complex cascade of events involving several mediators, which can lead to a chronic condition of pain. Inflammation can stimulate angiogenesis, and angiogenesis can facilitate inflammation. Inflammatory pain arises from tissue damage via the sensitization of pain receptors (nociceptors). The main peripheral mechanism underlying nociceptive pain is a change in the activity of the nociceptors located in the affected anatomical structures (joints, tendons, and ligaments), which renders them more sensitive to normally painful stimuli (hyperalgesia) or normally non-painful stimuli (allodynia). Neuroimmune interaction has been considered to play an essential role in rheumatic disease. Neurogenic inflammation, which influences normal central nervous system signaling, leads to insufficient signaling/bioavailability of various cytokines. These central mechanisms play an important role in the increased pain sensitivity following inflammation and are responsible for the development of secondary hyperalgesia in regions beyond the injured tissue. Reduction of pain in rheumatic disease requires familiarity with various pain mechanisms.
Collapse
Affiliation(s)
- O Seifert
- Klinik für Endokrinologie, Nephrologie und Rheumatologie, Universitätsklinikum Leipzig AöR, Liebigstr. 20, 04103, Leipzig, Germany.
| | - C Baerwald
- Klinik für Endokrinologie, Nephrologie und Rheumatologie, Universitätsklinikum Leipzig AöR, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
10
|
Zhang D, Ni N, Su Y, Miao H, Tang Z, Ji Y, Wang Y, Gao H, Ju Y, Sun N, Sun H, Yuan G, Wang Y, Zhou H, Huang H, Gu P, Fan X. Targeting Local Osteogenic and Ancillary Cells by Mechanobiologically Optimized Magnesium Scaffolds for Orbital Bone Reconstruction in Canines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27889-27904. [PMID: 32130854 DOI: 10.1021/acsami.0c00553] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Large-sized orbital bone defects have serious consequences that destroy orbital integrity and result in maxillofacial deformities and vision loss. The treatment of orbital bone defects is currently palliative and not reparative, suggesting an urgent demand for biomaterials that regenerate orbital bones. In this study, via alloying, extrusion and surface modification, we developed mechanobiologically optimized magnesium (Mg) scaffolds (Ca-P-coated Mg-Zn-Gd scaffolds, referred to as Ca-P-Mg) for the orthotopic reconstruction of large-sized orbital bone defects. At 6 months after transplanting the scaffolds to a clinically relevant canine large animal model, large-sized defects were successfully bridged by an abundance of new bone with normal mechanical properties that corresponded to gradual degradation of the implants. The osteogenic and ancillary cells, including vascular endothelial cells and trigeminal neurons, played important roles in this process. The scaffolds robustly enhanced bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation. In addition, the increased angiogenesis including increased ratio of the specific endothelial subtype CD31hi endomucinhi (CD31hiEmcnhi) endothelial cells can facilitate osteogenesis. Furthermore, the scaffolds trigger trigeminal neurons via transient receptor potential vanilloid subtype 1 (Trpv1) to produce the neuropeptide calcitonin gene-related peptide (CGRP), which promotes angiogenesis and osteogenesis. Overall, our investigations revealed the efficacy of Ca-P-Mg scaffolds in healing orbital bone defects and warrant further exploration of these scaffolds for clinical applications.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yun Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Hongwei Miao
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yongrong Ji
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Na Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Yinchuan Wang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| |
Collapse
|