1
|
Men Y, Wei L, Wang Y, Chen W, Liu F, Ren Y. Simulation analysis of surgical neck fractures of the humerus related to bone degeneration. Comput Methods Biomech Biomed Engin 2025:1-10. [PMID: 39865714 DOI: 10.1080/10255842.2025.2456986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
The most common type of proximal humerus fracture is surgical neck fracture. The purpose of this paper is to study the mechanical mechanism and the effect of bone degeneration on humeral surgical neck fractures. The right humerus finite element models were established based on CT computed tomography. The stress values and crack propagation process under an axial force were obtained. Three indexes (mechanical property, cortical bone thickness of diaphysis and cancellous bone volume fraction) in this article were used to describe bone degeneration. The results showed that the three models group with different index had the same conclusions. The calculation results showed that the higher the bone degeneration level, the shorter the fracture time and the lower the fracture stress. The crack initiated from the medial side of the humerus, then gradually grew toward lateral side along the both sides, and finally broke. The medial crack was flat and single like "a thin line", while the lateral fracture of the humerus was irregular and crushed into fragments. The medial humerus cracks were generated by tensile stress, while the lateral cracks were generated by compressive stress. The thickness of humerus diaphysis might be used as the index of fracture risk due to direct readability from clinical images and quantitative relation of fracture risk. This article would provide reference data for the treatment and prevention of humeral surgical neck fracture.
Collapse
Affiliation(s)
- Yutao Men
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Lele Wei
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yeming Wang
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Wei Chen
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Fulong Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yucheng Ren
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
2
|
Varley I, Sale C, Greeves JP, Morris JG, Sunderland C, Saward C. Relationship between Football-Specific Training Characteristics and Tibial Bone Adaptation in Male Academy Football Players. Sports (Basel) 2023; 11:sports11040086. [PMID: 37104160 PMCID: PMC10145492 DOI: 10.3390/sports11040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
We examined the relationship between football-specific training and changes in bone structural properties across a 12-week period in 15 male football players aged 16 years (Mean ± 1 SD = 16.6 ± 0.3 years) that belonged to a professional football academy. Tibial scans were performed at 4%, 14% and 38% sites using peripheral quantitative computed tomography immediately before and 12 weeks after increased football-specific training. Training was analysed using GPS to quantify peak speed, average speed, total distance and high-speed distance. Analyses were conducted with bias-corrected and accelerated bootstrapped 95% confidence intervals (BCa 95% CI). There were increases in bone mass at the 4% (mean ∆ = 0.15 g, BCa 95% CI = 0.07, 0.26 g, g = 0.72), 14% (mean ∆ = 0.04 g, BCa 95% CI = 0.02, 0.06 g, g = 1.20), and 38% sites (mean ∆ = 0.03 g, BCa 95% CI = 0.01, 0.05 g, g = 0.61). There were increases in trabecular density (4%), (mean ∆ = 3.57 mg·cm-3, BCa 95% CI = 0.38, 7.05 mg·cm-3, g = 0.53), cortical dentsity (14%) (mean ∆ = 5.08 mg·cm-3, BCa 95% CI = 0.19, 9.92 mg·cm-3, g = 0.49), and cortical density (38%) (mean ∆ = 6.32 mg·cm-3, BCa 95% CI = 4.31, 8.90 mg·cm-3, g = 1.22). Polar stress strain index (mean ∆ = 50.56 mm3, BCa 95% CI = 10.52, 109.95 mm3, g = 0.41), cortical area (mean ∆ = 2.12 mm2, BCa 95% CI = 0.09, 4.37 mm2, g = 0.48) and thickness (mean ∆ = 0.06 mm, BCa 95% CI = 0.01, 0.13 mm, g = 0.45) increased at the 38% site. Correlations revealed positive relationships between total distance and increased cortical density (38%) (r = 0.39, BCa 95% CI = 0.02, 0.66), and between peak speed and increased trabecular density (4%) (r = 0.43, BCa 95% CI = 0.03, 0.73). There were negative correlations between total (r = -0.21, BCa 95% CI = -0.65, -0.12) and high-speed distance (r = -0.29, BCa 95% CI = -0.57, -0.24) with increased polar stress strain index (38%). Results suggest that despite football training relating to increases in bone characteristics in male academy footballers, the specific training variables promoting adaptation over a 12-week period may vary. Further studies conducted over a longer period are required to fully elucidate the time-course of how certain football-specific training characteristics influence bone structural properties.
Collapse
Affiliation(s)
- Ian Varley
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Craig Sale
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover SP11 8HJ, UK
| | - John G Morris
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Caroline Sunderland
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Chris Saward
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
3
|
Li ZR, Ma YJ, Zhuang J, Tao XC, Guo CY, Liu ST, Zhu RR, Wang JX, Fang L. Ditangquan exercises based on safe-landing strategies prevent falls and injury among older individuals with sarcopenia. Front Med (Lausanne) 2022; 9:936314. [PMID: 36052330 PMCID: PMC9424729 DOI: 10.3389/fmed.2022.936314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background Sarcopenia is the age-related loss of skeletal muscle mass and function; it is a risk factor for falls among older individuals. Few studies have focused on training such individuals to adopt a safe-landing strategy that would protect them from fall-related injuries. Ditangquan is a traditional Chinese martial art comprising movements that conform to the principles of safe landing. This study aims to investigate the effectiveness of Ditangquan in preventing fall-related injuries among older individuals with sarcopenia. Methods A total of 70 participants (21 males and 49 females with sarcopenia) between 60 and 80 years of age were recruited from three local communities and randomly assigned to the Ditangquan exercise group (DG) or the control group (CG) in a 1:1 ratio. Three times a week for 24 weeks, both the DG and CG received an hour of conventional exercise and an hour of Ditangquan exercise based on safe landing. Primary outcomes were the modified falls efficacy scale (MFES), the number of falls, and fall injuries; the secondary outcome was the Timed Up & Go (TUG) test. Results The DG had significantly fewer falls (1 vs. 8, P = 0.028) and fall injuries (0 vs. 6, P = 0.025) than the CG. Furthermore, at the end of the study, the DG had a significantly improved MFES (mean difference: 32.17 scores; 95% CI: 21.32, 43.02; P <0.001) and TUGT (mean difference: −4.94 s; 95% CI: −7.95, −1.93; P = 0.002) as compared with the CG. Conclusion Ditangquan exercise based on the safe-landing strategy effectively improves the functional mobility of the elderly, reduces the occurrence of falls and injuries, and increases the individual's confidence in preventing falls.
Collapse
Affiliation(s)
- Zhen-rui Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-jing Ma
- Department of Rehabilitation, Shanghai East Hospital, Shanghai, China
| | - Jie Zhuang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xun-chen Tao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao-yang Guo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-ting Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ran-ran Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-xiang Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lei Fang
| |
Collapse
|
4
|
El-Kotob R, Craven BC, Thabane L, Papaioannou A, Adachi JD, Giangregorio LM. Exploring changes in bone mass in individuals with a chronic spinal cord injury. Osteoporos Int 2021; 32:759-767. [PMID: 33089353 DOI: 10.1007/s00198-020-05705-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022]
Abstract
UNLABELLED People experience rapid bone loss shortly after a spinal cord injury (SCI), but the long-term bone changes are yet to be confirmed. This study showed that trabecular bone may have reached a steady state, whereas cortical bone continued to decline in people with a chronic SCI (mean time post injury: 15.5 ± 10 years). INTRODUCTION (1) To explore changes in bone [primary measure: trabecular volumetric bone mineral density (vBMD); secondary measures: cortical vBMD, cortical thickness, cortical cross-sectional area (CSA), and polar moment of inertia] over 2 years in individuals with a chronic spinal cord injury (SCI). (2) To explore whether muscle density changes were potential correlates of the observed bone changes. METHODS This study is a secondary data analysis of a prospective, observational study involving 70 people with a chronic SCI (≥ 2 years post injury). The study included 4 strata of participants with diverse impairments: (1) Paraplegia (T1-T12) motor complete American Spinal Injury Association Impairment Scale (AIS) A/B (n = 23), (2) Paraplegia motor incomplete AIS C/D (n = 11), (3) Tetraplegia (C2-C8) AIS A/B (n = 22), and (4) Tetraplegia AIS C/D (n = 14). Peripheral quantitative computed tomography scans were taken at the 4% (distal tibia), 38% (diaphyseal tibia), and 66% (muscle cross-sectional area) tibia sites by measuring from the distal to proximal tibia starting at the inferior border of the medial malleolus. The tibia sites were assessed annually over a span of 2 years. Comparisons were made using a paired-samples t test and simple linear regression was used to adjust for sex, time post injury, and bisphosphonate use. RESULTS We observed no changes in trabecular vBMD at the 4% tibia site, but there was a statistically significant decline in cortical vBMD, cortical thickness, and CSA at the 38% tibia site. Changes in muscle density were not associated with the decreases observed in cortical bone. CONCLUSION Our findings suggest that individuals with chronic SCI (mean duration of injury: 15.5 ± 10 years) may have reached a plateau in bone loss with respect to trabecular bone, but cortical bone loss can continue well into the chronic stages.
Collapse
Affiliation(s)
- R El-Kotob
- Deparment of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M4G 3V9, Canada.
| | - B C Craven
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M4G 3V9, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - L Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - A Papaioannou
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - J D Adachi
- Department of Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - L M Giangregorio
- Deparment of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, N2J 0E2, Canada
| |
Collapse
|
5
|
Kehrig AM, Björkman KM, Muhajarine N, Johnston JD, Kontulainen SA. Moderate to vigorous physical activity and impact loading independently predict variance in bone strength at the tibia but not at the radius in children. Appl Physiol Nutr Metab 2019; 44:326-331. [DOI: 10.1139/apnm-2018-0406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives of this study were (i) to assess whether daily minutes of moderate to vigorous physical activity (MVPA) or vigorous physical activity (VPA) and impact counts (acceleration peaks ≥3.9g) independently predict variance in bone strength in children and youth and (ii) to estimate bone strength gain associated with increases in daily MVPA, VPA, or impact counts. We recorded 7-day activity of 49 participants (mean age 11.0 years, SD 1.7) using accelerometers and estimated radius and tibia bone strength using peripheral quantitative computed tomography. We used linear regression models adjusted for sex, body mass, and muscle area to address our objectives. Daily MVPA (mean 50 min, SD 23) and VPA (mean 17 min, SD 11) or impacts (mean 71 counts, SD 59) did not predict variance in radius strength. Daily VPA (β = 0.24) predicted variance in tibia strength at the distal and shaft sites, and shaft strength was also predicted by MVPA (β = 0.20) and impact counts (β = 0.21). Our models estimated a 3%–6%, 4%, or 4%–11% gain in tibia strength after increasing daily MVPA by 10–20 min, VPA by 5 min, or impacts by 30–100 counts, respectively. In conclusion, daily minutes of MVPA or VPA and impact counts are independent predictors of tibia but not radius strength. Objective recording of activities associated with forearm bone strength and trials testing the efficacy of increasing daily MVPA, VPA, and related impacts on bone strength development in children and youth are warranted.
Collapse
Affiliation(s)
- Anthony M. Kehrig
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Kelsey M. Björkman
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Nazeem Muhajarine
- Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - James D. Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Saija A. Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| |
Collapse
|
6
|
The application of finite element modelling based on clinical pQCT for classification of fracture status. Biomech Model Mechanobiol 2018; 18:245-260. [PMID: 30293203 DOI: 10.1007/s10237-018-1079-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Fracture risk assessment using dual-energy X-ray absorptiometry (DXA) frequently fails to diagnose osteoporosis amongst individuals who later experience fragility fractures. Hence, more reliable techniques that improve the prediction of fracture risk are needed. In this study, we evaluated a finite element (FE) modelling framework based on clinical peripheral quantitative computed tomography (pQCT) imaging of the tibial epiphysis and diaphysis to predict the stiffness at these locations in compression, shear, torsion and bending. The ability of these properties to identify a group of women who had recently sustained a low-trauma fracture from an age- and weight-matched control group was determined and compared to clinical pQCT and DXA properties and structural properties based on composite beam theory. The predicted stiffnesses derived from the FE models and composite beam theory were significantly different (p < 0.05) between the control and fracture groups, whereas no meaningful differences were observed using DXA and for the stress-strain indices (SSIs) derived using pQCT. The diagnostic performance of each property was assessed by the odds ratio (OR) and the area under the receiver operating curve (AUC), and both were greatest for the FE-predicted shear stiffness (OR 16.09, 95% CI 2.52-102.56, p = 0.003) (AUC: 0.80, 95% CI 0.67-0.93). The clinical pQCT variable total density (ρtot) and a number of structural and FE-predicted variables had a similar probability of correct classification between the control and fracture groups (i.e. ORs and AUCs with mean values greater than 5.00 and 0.80, respectively). In general, the diagnostic characteristics were lower for variables derived using DXA and for the SSIs (i.e. ORs and AUCs with mean values of 1.65-2.98 and 0.64-0.71, respectively). For all properties considered, the trabecular-dominant tibial epiphysis exhibited enhanced classification characteristics, as compared to the cortical-dominant tibial diaphysis. The results of this study demonstrate that bone properties may be derived using FE modelling that have the potential to enhance fracture risk assessment using conventional pQCT or DXA instruments in clinical settings.
Collapse
|
7
|
Cervinka T, Giangregorio L, Sievanen H, Cheung AM, Craven BC. Peripheral Quantitative Computed Tomography: Review of Evidence and Recommendations for Image Acquisition, Analysis, and Reporting, Among Individuals With Neurological Impairment. J Clin Densitom 2018; 21:563-582. [PMID: 30196052 DOI: 10.1016/j.jocd.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/07/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
In 2015, the International Society for Clinical Densitometry (ISCD) position statement regarding peripheral quantitative computed tomography (pQCT) did not recommend routine use of pQCT, in clinical settings until consistency in image acquisition and analysis protocols are reached, normative studies conducted, and treatment thresholds identified. To date, the lack of consensus-derived recommendations regarding pQCT implementation remains a barrier to implementation of pQCT technology. Thus, based on description of available evidence and literature synthesis, this review recommends the most appropriate pQCT acquisition and analysis protocols for clinical care and research purposes, and recommends specific measures for diagnosis of osteoporosis, assigning fracture risk, and monitoring osteoporosis treatment effectiveness, among patients with neurological impairment. A systematic literature search of MEDLINE, EMBASE©, CINAHL, and PubMed for available pQCT studies assessing bone health was carried out from inception to August 8th, 2017. The search was limited to individuals with neurological impairment (spinal cord injury, stroke, and multiple sclerosis) as these groups have rapid and severe regional declines in bone mass. Of 923 references, we identified 69 that met review inclusion criteria. The majority of studies (n = 60) used the Stratec XCT 2000/3000 pQCT scanners as reflected in our evaluation of acquisition and analysis protocols. Overall congruence with the ISCD Official Positions was poor. Only 11% (n = 6) studies met quality reporting criteria for image acquisition and 32% (n = 19) reported their data analysis in a format suitable for reproduction. Therefore, based on current literature synthesis, ISCD position statement standards and the authors' expertise, we propose acquisition and analysis protocols at the radius, tibia, and femur sites using Stratec XCT 2000/3000 pQCT scanners among patients with neurological impairment for clinical and research purposes in order to drive practice change, develop normative datasets and complete future meta-analysis to inform fracture risk and treatment efficacy evaluation.
Collapse
Affiliation(s)
- T Cervinka
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada.
| | - L Giangregorio
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - H Sievanen
- Bone Research Group, UKK Institute, Tampere, Finland
| | - A M Cheung
- Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - B C Craven
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Tegola LL, Mattera M, Cornacchia S, Cheng X, Guglielmi G. Diagnostic imaging of two related chronic diseases: Sarcopenia and Osteoporosis. J Frailty Sarcopenia Falls 2018; 3:138-147. [PMID: 32300703 PMCID: PMC7155344 DOI: 10.22540/jfsf-03-138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia and osteoporosis are two major health problems worldwide, responsible for a serious clinical and financial burden due to the increasing life expectancy. Both when presented as a single entity and, in particular, in the form of “osteosarcopenia”, they lead to an important increased risk of falls, fractures, hospitalization and mortality. In dealing with these two pathological conditions, it is important to understand that between bone and muscle there is not only a functional correlation but also a close relationship in the development and in maintenance, which is well expressed by the concept of “bone-muscle unit”. This close relationship agrees with the existence of a linear association between sarcopenia and osteoporosis, in particular in elderly population. It is mandatory, in the clinical assessment of both diseases, to do an early diagnosis or to delay as far as possible the appearance of an established form in order to prevent the onset of complications. The aim of this review is to present the different imaging modalities available for a non-invasive investigation of bone and muscle mass and quality in osteoporosis and sarcopenia, with their application and limitations.
Collapse
Affiliation(s)
- Luciana La Tegola
- Università degli Studi di Foggia, Department of Radiology, Viale Luigi Pinto, 1. Foggia, Italy
| | - Maria Mattera
- Università degli Studi di Foggia, Department of Radiology, Viale Luigi Pinto, 1. Foggia, Italy
| | | | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Giuseppe Guglielmi
- Università degli Studi di Foggia, Department of Radiology, Viale Luigi Pinto, 1. Foggia, Italy.,Ospedale Casa Sollievo della Sofferenza, Department of Radiology, Viale Cappuccini, 1. San Giovanni Rotondo, Italy
| |
Collapse
|
9
|
Gibbs JC, Brown ZM, Wong AKO, Craven BC, Adachi JD, Giangregorio LM. Measuring Marrow Density and Area Using Peripheral Quantitative Computed Tomography at the Tibia: Precision in Young and Older Adults and Individuals With Spinal Cord Injury. J Clin Densitom 2018; 21:269-280. [PMID: 28359675 DOI: 10.1016/j.jocd.2017.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The objective of this study was to compare the test-retest precision error for peripheral quantitative computed tomography (pQCT)-derived marrow density and marrow area segmentation at the tibia using 3 software packages. A secondary analysis of pQCT data in young adults (n = 18, mean ± standard deviation 25.4 ± 3.2 yr), older adults (n = 47, 71.8 ± 8.2 yr), and individuals with spinal cord injury (C1-T12 American Spinal Injury Association Impairment Scale, classes A-C; n = 19, 43.5 ± 8.6 yr) was conducted. Repeat scans of the tibial shaft (66%) were performed using pQCT (Stratec XCT2000). Test-retest precision errors (root mean square standard deviation and root mean square coefficient of variation [RMSCV%]) for marrow density (mg/cm3) and marrow area (mm2) were reported for the watershed-guided manual segmentation method (SliceOmatic version 4.3 [Sliceo-WS]) and the 2 threshold-based edge detection methods (Stratec version 6.0 [Stratec-TB] and BoneJ version 1.3.14 [BoneJ-TB]). Bland-Altman plots and 95% limits of agreement were computed to evaluate test-retest discrepancies within and between methods of analysis and subgroups. RMSCV% for marrow density segmentation was >5% for all methods across subgroups (Stratec-TB: 12.2%-28.5%, BoneJ-TB: 14.5%-25.2%, and Sliceo-WS: 10.9%-23.0%). RMSCV% for marrow area segmentation was within 5% for all methods across subgroups (Stratec-TB: 1.9%-4.4%, BoneJ-TB: 2.6%-5.1%, and Sliceo-WS: 2.4%-4.5%), except using BoneJ-TB in older adults. Intermethod discrepancies in marrow density appeared to be present across the range of marrow density values and did not differ by subgroup. Intermethod discrepancies varied to a greater extent for marrow area and were found to be more frequently at mid- to higher-range values for those with spinal cord injury. Precision error for pQCT-derived marrow density segmentation exceeded 5% for all methods of analysis across a range of bone mineral densities and fat infiltration, whereas precision error for marrow area segmentation ranged from 2% to 5%. Further investigation is necessary to determine alternative acquisition and analysis methods for pQCT-derived marrow segmentation.
Collapse
Affiliation(s)
- Jenna C Gibbs
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | - Zachary M Brown
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Andy K O Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Centre of Excellence in Skeletal Health Assessment, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Arthritis Program, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - B Catharine Craven
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Lora M Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
10
|
Nishiyama KK, Agarwal S, Kepley A, Rosete F, Hu Y, Guo XE, Keating CL, DiMango EA, Shane E. Adults with cystic fibrosis have deficits in bone structure and strength at the distal tibia despite similar size and measuring standard and relative sites. Bone 2018; 107:181-187. [PMID: 29154969 DOI: 10.1016/j.bone.2017.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/25/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
Individuals with cystic fibrosis (CF) have lower bone mineral density (BMD) by DXA and are at higher risk of fracture than healthy controls. However, the 2-dimensional measurement of areal BMD (aBMD) provided by DXA is influenced by bone size and the true extent of the bone deficit is unclear. Our objective was to use high-resolution peripheral quantitative computed tomography (HR-pQCT) and individual trabecula segmentation (ITS) analysis to compare volumetric BMD (vBMD), microarchitecture and estimated strength at the distal radius and tibia in 26 young adults with CF and 26 controls matched for age, gender, and race. To assess the effect of limb length and minimize the confounding effects of size on HR-pQCT outcomes, we scanned participants at both the standard fixed HR-pQCT measurement sites and at a subject-specific relative site that varied according to limb length. CF participants did not differ significantly in age, height, weight, or BMI from controls. Ulnar and tibial lengths were 9mm shorter in CF patients, though differences were not significant. CF patients had significantly lower BMI-adjusted aBMD by DXA at the lumbar spine (8.9%, p<0.01), total hip (11.5%, p<0.01) and femoral neck (14.5%, p<0.01), but not at the forearm. At the fixed radius site, thickness of trabecular plates and torsional stiffness were significantly lower in CF participants than controls. At the relative radius site, only torsional stiffness was significantly lower in CF participants. At the tibia, total, trabecular and cortical vBMD were significantly lower at both fixed and relative sites in CF participants, with fewer, more widely-spaced trabecular plates, lower trabecular connectivity, and lower axial and torsional stiffness. Our results confirm that aBMD is lower at the spine and hip in young adults with CF, independent of BMI and body size. We also conclude that vBMD and stiffness are lower at the weight-bearing tibia. The pathogenesis of these differences in bone density and strength at the tibia appear to be related to trabecular drop-out and reduced trabecular connectivity and to be independent of differences in limb length, as assessed by scanning participants at both standard and relative sites. We concluded that significant deficits in bone structure and strength persist in young adults with CF, despite advances in care that permit them to attain relatively normal height and weight.
Collapse
Affiliation(s)
- Kyle K Nishiyama
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, United States
| | - Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, United States.
| | - Anna Kepley
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, United States
| | - Fernando Rosete
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, United States.
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| | - Claire L Keating
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University, New York, NY, United States.
| | - Emily A DiMango
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University, New York, NY, United States.
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, United States.
| |
Collapse
|
11
|
Mattera M, Reginelli A, Bartollino S, Russo C, Barile A, Albano D, Mauri G, Messina C, Cappabianca S, Guglielmi G. Imaging of metabolic bone disease. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:197-207. [PMID: 29350648 PMCID: PMC6179066 DOI: 10.23750/abm.v89i1-s.7023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/25/2022]
Abstract
Osteoporosis is the most important metabolic bone disease, with a wide distribution among the elderly. It is characterized by low bone mass and micro architectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. Identify bone weakening with an appropriate and accurate use of diagnostic imaging is of critical importance in the diagnosis and follow-up of osteoporotic patients. The aim of this review is to evaluate the detection rates of the different imaging modalities in the evaluation of bone strength, in the assessment of fracture risk and in the management of fragility fractures. (www.actabiomedica.it)
Collapse
|
12
|
Craven BC, Giangregorio LM, Alavinia SM, Blencowe LA, Desai N, Hitzig SL, Masani K, Popovic MR. Evaluating the efficacy of functional electrical stimulation therapy assisted walking after chronic motor incomplete spinal cord injury: effects on bone biomarkers and bone strength. J Spinal Cord Med 2017; 40:748-758. [PMID: 28929919 PMCID: PMC5778938 DOI: 10.1080/10790268.2017.1368961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To determine the efficacy of functional electrical stimulation therapy assisted walking (FES-T) compared to a conventional aerobic and resistance training (CONV) with respect to bone biomarkers and lower extremity bone strength outcomes among adults with chronic motor incomplete spinal cord injury (SCI). DESIGN Parallel group randomized controlled trial ( www.clinicaltrials.gov - NCT0020196819). Site: Tertiary academic rehabilitation centre in Canada. METHODS Adults with chronic (≥18 months) motor incomplete SCI (C2-T12 AIS C-D) were consented and randomized to FES-T or CONV training for 45 minutes thrice-weekly for 4 months. Osteocalcin (OC), β-cross laps (CTX) and sclerostin were assessed at baseline, and 4 months. Similarly, total hip, distal femur and proximal tibia region bone mineral density (BMD) via DXA (4500A, Hologic Inc. Waltham, MA, USA) and tibia bone quality via pQCT (Stratec XCT-2000, Mezintecknik, Pforzheim, Germany) were assessed at baseline, 4, and 12 months. Between group differences were analyzed using repeated measures general linear models. RESULTS Thirty-four participants (17 FES-T, 17 CONV) consented and were randomized, 27 participants completed the 4-month intervention and 12-month outcome assessments. Participants in the FES-T arm had a decrease in CTX and a significant increase in OC at intervention completion (P<0.05). Significant biomarker changes were not observed in the CONV group. No within or between group differences from baseline were observed in sclerostin or bone strength. CONCLUSIONS Four months of FES-T improved bone turnover (increase in OC and decrease in CTX) but not bone strength among individuals with chronic SCI. Future, long term FES-T may augment lower extremity bone strength.
Collapse
Affiliation(s)
- B. Catharine Craven
- Toronto Rehabilitation Institute - UHN, Toronto, ON, Canada,Department of Medcine, University of Toronto, Toronto, ON, Canada,University of Waterloo, Waterloo, ON, Canada,Correspondence to: B. Catharine Craven, BA, MD, MSc, FRCPC, University Health Network, Toronto Rehab, Lyndhurst Centre, 206J-520 Sutherland Drive, Toronto, ON M4G 3V9 Canada.
| | - Lora M. Giangregorio
- Toronto Rehabilitation Institute - UHN, Toronto, ON, Canada,University of Waterloo, Waterloo, ON, Canada
| | | | | | - Naaz Desai
- Toronto Rehabilitation Institute - UHN, Toronto, ON, Canada
| | - Sander L. Hitzig
- Toronto Rehabilitation Institute - UHN, Toronto, ON, Canada,Sunnybrook Research Institute - Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kei Masani
- Toronto Rehabilitation Institute - UHN, Toronto, ON, Canada,Institute of Biomaterials and Biomedical Engineering BBME, University of Toronto, Toronto, ON, Canada
| | - Milos R. Popovic
- Toronto Rehabilitation Institute - UHN, Toronto, ON, Canada,Institute of Biomaterials and Biomedical Engineering BBME, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Baker JF, Long J, Mostoufi-Moab S, Denburg M, Jorgenson E, Sharma P, Zemel BS, Taratuta E, Ibrahim S, Leonard MB. Muscle Deficits in Rheumatoid Arthritis Contribute to Inferior Cortical Bone Structure and Trabecular Bone Mineral Density. J Rheumatol 2017; 44:1777-1785. [PMID: 28916544 DOI: 10.3899/jrheum.170513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is associated with muscle loss, osteoporosis, and fracture. We examined associations between skeletal muscle mass, strength, and quality and trabecular and cortical bone deficits in patients with RA and healthy controls. METHODS Participants, ages 18-75 years, completed whole-body dual-energy x-ray absorptiometry and peripheral quantitative computed tomography (pQCT) of the tibia to quantify appendicular lean mass and fat mass indices (ALMI, FMI), muscle density at the lower leg, trabecular bone density, and cortical bone thickness. Age-, sex-, and race-specific Z scores were calculated based on distributions in controls. Associations between body composition and pQCT bone outcomes were assessed in patients with RA and controls. Linear regression analyses assessed differences in bone outcomes after considering differences in body mass index (BMI) and body composition. RESULTS The sample consisted of 112 patients with RA (55 men) and 412 controls (194 men). Compared to controls, patients with RA had greater BMI Z score (p < 0.001), lower ALMI Z score after adjustment for FMI (p = 0.02), lower muscle strength Z score (p = 0.01), and lower muscle density Z score (p < 0.001). Among RA, ALMI Z scores were positively associated with trabecular density [β: 0.29 (0.062-0.52); p = 0.01] and cortical thickness [β: 0.33 (0.13-0.53; p = 0.002]. Associations were similar in controls. Bone outcomes were inferior in patients with RA after adjusting for BMI, but similar to controls when adjusting for body composition. Radiographic damage and higher adiponectin levels were independently associated with inferior bone outcomes. CONCLUSION Patients with RA exhibit deficits in cortical bone structure and trabecular density at the tibia and a preserved functional muscle-bone unit. A loss of mechanical loading may contribute to bone deficits.
Collapse
Affiliation(s)
- Joshua F Baker
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA. .,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University.
| | - Jin Long
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Sogol Mostoufi-Moab
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Michele Denburg
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Erik Jorgenson
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Prerna Sharma
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Babette S Zemel
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Elena Taratuta
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Said Ibrahim
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| | - Mary B Leonard
- From the Division of Rheumatology, and Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center; Department of Epidemiology, Biostatistics, and Informatics, and the Department of Radiology, University of Pennsylvania; Department of Pediatrics, and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Stanford University, Palo Alto, California, USA.,J.F. Baker, MD, MSCE, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center, Division of Rheumatology, and the Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; J. Long, PhD, Department of Pediatrics, Stanford University; S. Mostoufi-Moab, MD, MSCE, Department of Pediatrics, Children's Hospital of Philadelphia; M. Denburg, MD, MSCE, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Department of Pediatrics, and the Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia; E. Jorgenson, MPH, Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania; P. Sharma, BA, Division of Rheumatology, Corporal Michael J. Crescenz VA Medical Center; B.S. Zemel, PhD, Department of Pediatrics, Children's Hospital of Philadelphia; E. Taratuta, MD, Department of Radiology, University of Pennsylvania; S. Ibrahim, MD, MPH, MBA, Center for Health Equity Research and Promotion, Philadelphia VA Medical Center; M.B. Leonard, MD, MSCE, Department of Pediatrics, Stanford University
| |
Collapse
|
14
|
de Charry C, Boutroy S, Ellouz R, Duboeuf F, Chapurlat R, Follet H, Pialat JB. Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone. Osteoporos Int 2016; 27:3073-82. [PMID: 27121345 DOI: 10.1007/s00198-016-3609-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Clinical cone beam computed tomography (CBCT) was compared to high-resolution peripheral quantitative computed tomography (HR-pQCT) for the assessment of ex vivo radii. Strong correlations were found for geometry, volumetric density, and trabecular structure. Using CBCT, bone architecture assessment was feasible but compared to HR-pQCT, trabecular parameters were overestimated whereas cortical ones were underestimated. INTRODUCTION HR-pQCT is the most widely used technique to assess bone microarchitecture in vivo. Yet, this technology has been only applicable at peripheral sites, in only few research centers. Clinical CBCT is more widely available but quantitative assessment of the bone structure is usually not performed. We aimed to compare the assessment of bone structure with CBCT (NewTom 5G, QR, Verona, Italy) and HR-pQCT (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland). METHODS Twenty-four distal radius specimens were scanned with these two devices with a reconstructed voxel size of 75 μm for Newtom 5G and 82 μm for XtremeCT, respectively. A rescaling-registration scheme was used to define the common volume of interest. Cortical and trabecular compartments were separated using a semiautomated double contouring method. Density and microstructure were assessed with the HR-pQCT software on both modality images. RESULTS Strong correlations were found for geometry parameters (r = 0.98-0.99), volumetric density (r = 0.91-0.99), and trabecular structure (r = 0.94-0.99), all p < 0.001. Correlations were lower for cortical microstructure (r = 0.80-0.89), p < 0.001. However, absolute differences were observed between modalities for all parameters, with an overestimation of the trabecular structure (trabecular number, 1.62 ± 0.37 vs. 1.47 ± 0.36 mm(-1)) and an underestimation of the cortical microstructure (cortical porosity, 3.3 ± 1.3 vs. 4.4 ± 1.4 %) assessed on CBCT images compared to HR-pQCT images. CONCLUSIONS Clinical CBCT devices are able to analyze large portions of distal bones with good spatial resolution and limited irradiation. However, compared to dedicated HR-pQCT, the assessment of microarchitecture by NewTom 5G dental CBCT showed some discrepancies, for density measurements mainly. Further technical developments are required to reach optimal assessment of bone characteristics.
Collapse
Affiliation(s)
- C de Charry
- Université de Lyon, Lyon, France
- Department of Radiology, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | | | | | | | - R Chapurlat
- Université de Lyon, Lyon, France
- INSERM UMR 1033, Lyon, France
- Department of Rheumatology, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - J B Pialat
- Université de Lyon, Lyon, France.
- Department of Radiology, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.
- INSERM UMR 1033, Lyon, France.
| |
Collapse
|
15
|
Giangregorio LM, Gibbs JC, Craven BC. Measuring muscle and bone in individuals with neurologic impairment; lessons learned about participant selection and pQCT scan acquisition and analysis. Osteoporos Int 2016; 27:2433-46. [PMID: 27026329 DOI: 10.1007/s00198-016-3572-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Peripheral quantitative computed tomography (pQCT) can be used to examine bone strength outcomes and muscle size and fatty infiltration. Our research team and others have used it to examine bone loss after spinal cord injury (SCI). However, the high prevalence of restricted lower extremity range of motion, spasticity, edema, excessive muscle atrophy, or severe osteoporosis necessitates changes to standard protocols for screening, positioning during scan acquisition, and analysis methods. This manuscript outlines the challenges that we experienced using pQCT in individuals with SCI, and provides solutions, ones that may also be applicable when using pQCT in individuals with other chronic conditions or in older adults. Suggestions for participant screening, positioning individuals for scanning while in a wheelchair, scan site selection, need for attendant assistance, and considerations in the presence of secondary complications, such as contracture, spasticity, and paralysis, are presented. In the presence of very low bone mineral density or severe muscle atrophy, the default analysis modes provided by the manufacturer may not provide valid estimates of bone or muscle indices; we propose alternates. We have used watershed segmentation methods to determine muscle size and density based on lower precision error compared to threshold-based edge-detection segmentation, particularly for adults with SCI, where more fatty infiltration was present. By presenting our "lessons learned," we hope to reduce the learning curve for researchers using pQCT in the future.
Collapse
Affiliation(s)
- L M Giangregorio
- Department of Kinesiology, University of Waterloo, 200 University Avenue W-BMH 1109, Waterloo, ON, Canada.
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
- Research Scientist, Schlegel-UW Research Institute of Aging, Waterloo, ON, Canada.
| | - J C Gibbs
- Department of Kinesiology, University of Waterloo, 200 University Avenue W-BMH 1109, Waterloo, ON, Canada
| | - B C Craven
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Leonard MB, Shults J, Long J, Baldassano RN, Brown JK, Hommel K, Zemel BS, Mahboubi S, Whitehead KH, Herskovitz R, Lee D, Rausch J, Rubin CT. Effect of Low-Magnitude Mechanical Stimuli on Bone Density and Structure in Pediatric Crohn's Disease: A Randomized Placebo-Controlled Trial. J Bone Miner Res 2016; 31:1177-88. [PMID: 26821779 PMCID: PMC4891301 DOI: 10.1002/jbmr.2799] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 01/29/2023]
Abstract
Pediatric Crohn's Disease (CD) is associated with low trabecular bone mineral density (BMD), cortical area, and muscle mass. Low-magnitude mechanical stimulation (LMMS) may be anabolic. We conducted a 12-month randomized double-blind placebo-controlled trial of 10 minutes daily exposure to LMMS (30 Hz frequency, 0.3 g peak-to-peak acceleration). The primary outcomes were tibia trabecular BMD and cortical area by peripheral quantitative CT (pQCT) and vertebral trabecular BMD by QCT; additional outcomes included dual-energy X-ray absorptiometry (DXA) whole body, hip and spine BMD, and leg lean mass. Results were expressed as sex-specific Z-scores relative to age. CD participants, ages 8 to 21 years with tibia trabecular BMD <25th percentile for age, were eligible and received daily cholecalciferol (800 IU) and calcium (1000 mg). In total, 138 enrolled (48% male), and 121 (61 active, 60 placebo) completed the 12-month trial. Median adherence measured with an electronic monitor was 79% and did not differ between arms. By intention-to-treat analysis, LMMS had no significant effect on pQCT or DXA outcomes. The mean change in spine QCT trabecular BMD Z-score was +0.22 in the active arm and -0.02 in the placebo arm (difference in change 0.24 [95% CI 0.04, 0.44]; p = 0.02). Among those with >50% adherence, the effect was 0.38 (95% CI 0.17, 0.58, p < 0.0005). Within the active arm, each 10% greater adherence was associated with a 0.06 (95% CI 0.01, 1.17, p = 0.03) greater increase in spine QCT BMD Z-score. Treatment response did not vary according to baseline body mass index (BMI) Z-score, pubertal status, CD severity, or concurrent glucocorticoid or biologic medications. In all participants combined, height, pQCT trabecular BMD, and cortical area and DXA outcomes improved significantly. In conclusion, LMMS was associated with increases in vertebral trabecular BMD by QCT; however, no effects were observed at DXA or pQCT sites. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mary B. Leonard
- Departments of Pediatrics and Medicine, Stanford University, Stanford, CA
| | - Justine Shults
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Jin Long
- Departments of Pediatrics and Medicine, Stanford University, Stanford, CA
| | - Robert N. Baldassano
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | | | - Kevin Hommel
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Babette S. Zemel
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Soroosh Mahboubi
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Krista Howard Whitehead
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Rita Herskovitz
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Dale Lee
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Joseph Rausch
- Department of Pediatrics, Cincinnati Children's Hospital and Medical Center, University of Cincinnati, Cincinnati, OH
| | - Clinton T. Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| |
Collapse
|
17
|
Cervinka T, Sievänen H, Lala D, Cheung AM, Giangregorio L, Hyttinen J. A new algorithm to improve assessment of cortical bone geometry in pQCT. Bone 2015; 81:721-730. [PMID: 26428659 DOI: 10.1016/j.bone.2015.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/31/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is now considered the leading imaging modality in bone research. However, access to HR-pQCT is limited and image acquisition is mainly constrained only for the distal third of appendicular bones. Hence, the conventional pQCT is still commonly used despite inaccurate threshold-based segmentation of cortical bone that can compromise the assessment of whole bone strength. Therefore, this study addressed whether the use of an advanced image processing algorithm, called OBS, can enhance the cortical bone analysis in pQCT images and provide similar information to HR-pQCT when the same volumes of interest are analyzed. Using pQCT images of European Forearm Phantom (EFP), and pQCT and HR-pQCT images of the distal tibia from 15 cadavers, we compared the results from the OBS algorithm with those obtained from common pQCT analyses, HR-pQCT manual analysis (considered as a gold standard) and common HR-pQCT analysis dual threshold technique.We found that the use of OBS segmentation method for pQCT image analysis of EFP data did not result in any improvement but reached similar performance in cortical bone delineation as did HR-pQCT image analyses. The assessments of cortical cross-sectional bone area and thickness by OBS algorithm were overestimated by less than 4% while area moments of inertia were overestimated by ~5–10%, depending on reference HR-pQCT analysis method. In conclusion, this study showed that the OBS algorithm performed reasonably well and it offers a promising practical tool to enhance the assessment of cortical bone geometry in pQCT.
Collapse
Affiliation(s)
- Tomas Cervinka
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; Institute of Bioscience and Medical Technology (BioMediTech), Tampere, Finland.
| | - Harri Sievänen
- Bone Research Group, UKK Institute, Kaupinpuistonkatu 1, 33500 Tampere, Finland.
| | - Deena Lala
- Department of Health and Rehabilitation Sciences, Western University, London, Canada.
| | - Angela M Cheung
- Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Canada.
| | - Lora Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; Institute of Bioscience and Medical Technology (BioMediTech), Tampere, Finland.
| |
Collapse
|
18
|
Mündermann A, Payer N, Felmet G, Riehle H. Comparison of volumetric bone mineral density in the operated and contralateral knee after anterior cruciate ligament and reconstruction: A 1-year follow-up study using peripheral quantitative computed tomography. J Orthop Res 2015; 33:1804-10. [PMID: 26123943 DOI: 10.1002/jor.22962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/03/2015] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to quantify changes in volumetric bone mineral density (vBMD) in the tibial plateau of the operated and contralateral leg measured using peripheral quantitative computed tomography (pQCT) before and 3, 6, and 12 months after anterior cruciate ligament (ACL) reconstruction. The ACL was reconstructed with a hamstring tendon autograft using press-fit fixation. pQCT measurements of the proximal tibia were obtained in 61 patients after ACL reconstruction, and total, cortical, and trabecular vBMD were calculated. vBMD in the operated leg decreased from baseline to 3 months (-12% [total], -11% [cortical], and -12.6% [trabecular]; p<0.001) and remained below baseline for 12 months after surgery (6 months: -9.5%, -9.4%, and -9.6%, p<0.001; 12 months: -8%, -5%, and -11%, p<0.001). vBMD in the contralateral leg was slightly reduced only 6 months after surgery. Including age and sex as covariates into the analysis did not affect the results. ACL reconstruction contributed to loss in bone mineral density within the first year after surgery. The role of factors such as time of weight-bearing, joint mechanics, post-traumatic inflammatory reactions, or genetic predisposition in modulating the development of posttraumatic knee osteoarthritis after ACL injury should be further elucidated.
Collapse
Affiliation(s)
- Annegret Mündermann
- Department of Orthopaedics, University Hospital Basel, Basel, Switzerland.,Division of Sport Science, University of Konstanz, Konstanz, Germany
| | - Nina Payer
- Division of Sport Science, University of Konstanz, Konstanz, Germany
| | - Gernot Felmet
- ARTICO Sport Clinic, Villingen-Schwenningen, Germany
| | - Hartmut Riehle
- Division of Sport Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Gibbs JC, Craven BC, Moore C, Thabane L, Adachi JD, Giangregorio LM. Muscle Density and Bone Quality of the Distal Lower Extremity Among Individuals with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2015; 21:282-93. [PMID: 26689693 DOI: 10.1310/sci2104-282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Understanding the related fates of muscle density and bone quality after chronic spinal cord injury (SCI) is an important initial step in determining endocrine-metabolic risk. OBJECTIVE To examine the associations between muscle density and indices of bone quality at the distal lower extremity of adults with chronic SCI. METHODS A secondary data analysis was conducted in 70 adults with chronic SCI (C2-T12; American Spinal Injury Association Impairment Scale [AIS] A-D; ≥2 years post injury). Muscle density and cross-sectional area (CSA) and bone quality indices (trabecular bone mineral density [TbBMD] at the distal tibia [4% site] and cortical thickness [CtTh], cortical area [CtAr], cortical BMD [CtBMD], and polar moment of inertia [PMI] at the tibial shaft [66% site]) were measured using peripheral quantitative computed tomography. Calf lower extremity motor score (cLEMS) was used as a clinical measure of muscle function. Multivariable linear regression analyses were performed to determine the strength of the muscle-bone associations after adjusting for confounding variables (sex, impairment severity [AIS A/B vs AIS C/D], duration of injury, and wheelchair use). RESULTS Muscle density was positively associated with TbBMD (b = 0.85 [0.04, 1.66]), CtTh (b = 0.02 [0.001, 0.034]), and CtBMD (b = 1.70 [0.71, 2.69]) (P < .05). Muscle CSA was most strongly associated with CtAr (b = 2.50 [0.12, 4.88]) and PMI (b = 731.8 [161.7, 1301.9]) (P < .05), whereas cLEMS was most strongly associated with TbBMD (b = 7.69 [4.63, 10.76]) (P < .001). CONCLUSIONS Muscle density and function were most strongly associated with TbBMD at the distal tibia in adults with chronic SCI, whereas muscle size was most strongly associated with bone size and geometry at the tibial shaft.
Collapse
Affiliation(s)
- Jenna C Gibbs
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - B Catharine Craven
- Lyndhurst Centre, University Health Network-Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Cameron Moore
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.,Lyndhurst Centre, University Health Network-Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Lehana Thabane
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Adachi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lora M Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.,Lyndhurst Centre, University Health Network-Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Schlegel Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Weatherholt AM, Avin KG, Hurd AL, Cox JL, Marberry ST, Santoni BG, Warden SJ. Peripheral Quantitative Computed Tomography Predicts Humeral Diaphysis Torsional Mechanical Properties With Good Short-Term Precision. J Clin Densitom 2015; 18:551-9. [PMID: 25454307 PMCID: PMC4425635 DOI: 10.1016/j.jocd.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022]
Abstract
Peripheral quantitative computed tomography (pQCT) is a popular tool for noninvasively estimating bone mechanical properties. Previous studies have demonstrated that pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remain unknown. The aim of the present study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [I(P)] and polar strength-strain index [SSI(P)]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing 6 repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSI(P) both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSI(P) at the midshaft humerus were <1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans.
Collapse
Affiliation(s)
- Alyssa M Weatherholt
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA
| | - Keith G Avin
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA; Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA
| | - Andrea L Hurd
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA
| | - Jacob L Cox
- Phillip Spiegel Orthopaedic Research Laboratory, Foundation for Orthopaedic Research and Education, Tampa, FL, USA
| | - Scott T Marberry
- Phillip Spiegel Orthopaedic Research Laboratory, Foundation for Orthopaedic Research and Education, Tampa, FL, USA
| | - Brandon G Santoni
- Phillip Spiegel Orthopaedic Research Laboratory, Foundation for Orthopaedic Research and Education, Tampa, FL, USA
| | - Stuart J Warden
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA; Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
21
|
Avitabile CM, Goldberg DJ, Zemel BS, Brodsky JL, Dodds K, Hayden-Rush C, Whitehead KK, Goldmuntz E, Rychik J, Leonard MB. Deficits in bone density and structure in children and young adults following Fontan palliation. Bone 2015; 77:12-6. [PMID: 25882907 PMCID: PMC4447577 DOI: 10.1016/j.bone.2015.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Survival of patients with congenital heart disease has improved such that there are now more adults than children living with these conditions. Complex single ventricle congenital heart disease requiring Fontan palliation is associated with multiple risk factors for impaired bone accrual. Bone density and structure have not been characterized in these patients. METHODS Tibia peripheral quantitative computed tomography (pQCT) was used to assess trabecular and cortical volumetric bone mineral density (vBMD), cortical dimensions, and calf muscle area in 43 Fontan participants (5-33 years old), a median of 10 years following Fontan palliation. pQCT outcomes were converted to sex- and race-specific Z-scores relative to age based on >700 healthy reference participants. Cortical dimensions and muscle area were further adjusted for tibia length. RESULTS Height Z-scores were lower in Fontan compared to reference participants (mean ± SD: -0.29 ± 1.00 vs. 0.25 ± 0.93, p < 0.001); BMI Z-scores were similar (0.16 ± 0.88 vs. 0.35 ± 1.02, p = 0.1). Fontan participants had lower trabecular vBMD Z-scores (-0.85 ± 0.96 vs. 0.01 ± 1.02, p < 0.001); cortical vBMD Z-scores were similar (-0.17 ± 0.98 vs. 0.00 ± 1.00, p = 0.27). Cortical dimensions were reduced with lower cortical area (-0.59 ± 0.84 vs. 0.00 ± 0.88, p<0.001) and periosteal circumference (-0.50 ± 0.82 vs. 0.00 ± 0.84, p < 0.001) Z-scores, compared to reference participants. Calf muscle area Z-scores were lower in the Fontan participants (-0.45 ± 0.98 vs. 0.00 ± 0.96, p = 0.003) and lower calf muscle area Z-scores were associated with smaller periosteal circumference Z-scores (R = 0.62, p < 0.001). Musculoskeletal deficits were not associated with age, Fontan characteristics, parathyroid hormone or vitamin D levels. CONCLUSIONS Children and young adults demonstrate low trabecular vBMD, cortical structure and muscle area following Fontan. Muscle deficits were associated with smaller periosteal dimensions. Future studies should determine the fracture implications of these deficits and identify interventions to promote musculoskeletal development.
Collapse
Affiliation(s)
- Catherine M Avitabile
- Division of Cardiology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - David J Goldberg
- Division of Cardiology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Babette S Zemel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jill L Brodsky
- Mid-Hudson Medical Group, 30 Columbia Street, Poughkeepsie, NY 12601, USA
| | - Kathryn Dodds
- Division of Cardiology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Christina Hayden-Rush
- Division of Cardiology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kevin K Whitehead
- Division of Cardiology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Jack Rychik
- Division of Cardiology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Mary B Leonard
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Division of Nephrology, Children's Hospital of Philadelphia, 34(th) and Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Lee DY, Wetzsteon RJ, Zemel BS, Shults J, Organ JM, Foster BJ, Herskovitz RM, Foerster DL, Leonard MB. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res 2015; 30:575-83. [PMID: 25264231 PMCID: PMC4532328 DOI: 10.1002/jbmr.2375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
Measures of muscle mass or size are often used as surrogates of forces acting on bone. However, chronic diseases may be associated with abnormal muscle force relative to muscle size. The muscle-bone unit was examined in 64 children and adolescents with new-onset Crohn's disease (CD), 54 with chronic kidney disease (CKD), 51 treated with glucocorticoids for nephrotic syndrome (NS), and 264 healthy controls. Muscle torque was assessed by isometric ankle dynamometry. Calf muscle cross-sectional area (CSA) and tibia cortical section modulus (Zp) were assessed by quantitative CT. Log-linear regression was used to determine the relations among muscle CSA, muscle torque, and Zp, adjusted for tibia length, age, Tanner stage, sex, and race. Muscle CSA and muscle torque-relative-to-muscle CSA were significantly lower than controls in advanced CKD (CSA -8.7%, p = 0.01; torque -22.9%, p < 0.001) and moderate-to-severe CD (CSA -14.1%, p < 0.001; torque -7.6%, p = 0.05), but not in NS. Zp was 11.5% lower in advanced CKD (p = 0.005) compared to controls, and this deficit was attenuated to 6.7% (p = 0.05) with adjustment for muscle CSA. With additional adjustment for muscle torque and body weight, Zp was 5.9% lower and the difference with controls was no longer significant (p = 0.09). In participants with moderate-to-severe CD, Zp was 6.8% greater than predicted (p = 0.01) given muscle CSA and torque deficits (R(2) = 0.92), likely due to acute muscle loss in newly-diagnosed patients. Zp did not differ in NS, compared with controls. In conclusion, muscle torque relative to muscle CSA was significantly lower in CKD and CD, compared with controls, and was independently associated with Zp. Future studies are needed to determine if abnormal muscle strength contributes to progressive bone deficits in chronic disease, independent of muscle area. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Dale Y. Lee
- Department of Pediatrics, Children’s Hospital of Philadelphia, 34 Street and Civic Center Blvd., CHOP North Room 868, Philadelphia, PA 19104, USA
| | - Rachel J. Wetzsteon
- Department of Pediatrics, Children’s Hospital of Philadelphia, 34 Street and Civic Center Blvd., CHOP North Room 868, Philadelphia, PA 19104, USA
| | - Babette S. Zemel
- Department of Pediatrics, Children’s Hospital of Philadelphia, 34 Street and Civic Center Blvd., CHOP North Room 868, Philadelphia, PA 19104, USA
| | - Justine Shults
- Department of Pediatrics, Children’s Hospital of Philadelphia, 34 Street and Civic Center Blvd., CHOP North Room 868, Philadelphia, PA 19104, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Jason M. Organ
- Department of Anatomy and Cell Biology, Indiana University, 635 Barnhill Drive, MS 5035, Indianapolis, Indiana 46202
| | - Bethany J. Foster
- Department of Pediatrics, Montreal Children’s Hospital, 2300 Tupper St., H3H 1P3, Montreal, Quebec, Canada
| | - Rita M. Herskovitz
- Department of Pediatrics, Children’s Hospital of Philadelphia, 34 Street and Civic Center Blvd., CHOP North Room 868, Philadelphia, PA 19104, USA
| | - Debbie L. Foerster
- Department of Pediatrics, Children’s Hospital of Philadelphia, 34 Street and Civic Center Blvd., CHOP North Room 868, Philadelphia, PA 19104, USA
| | - Mary B. Leonard
- Department of Pediatrics, Children’s Hospital of Philadelphia, 34 Street and Civic Center Blvd., CHOP North Room 868, Philadelphia, PA 19104, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Rantalainen T, Duckham RL, Suominen H, Heinonen A, Alén M, Korhonen MT. Tibial and fibular mid-shaft bone traits in young and older sprinters and non-athletic men. Calcif Tissue Int 2014; 95:132-40. [PMID: 24925060 DOI: 10.1007/s00223-014-9881-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/23/2014] [Indexed: 01/01/2023]
Abstract
High impact loading is known to prevent some of the age-related bone loss but its effects on the density distribution of cortical bone are relatively unknown. This study examined the effects of age and habitual sprinting on tibial and fibular mid-shaft bone traits (structural, cortical radial and polar bone mineral density distributions). Data from 67 habitual male sprinters aged 19-39 and 65-84 years, and 60 non-athletic men (referents) aged 21-39 and 65-80 years are reported. Tibial and fibular mid-shaft bone traits (strength strain index SSI, cortical density CoD, and polar and radial cortical density distributions) were assessed with peripheral quantitative computed tomography. Analysis of covariance (ANCOVA) adjusted for height and body mass indicated that the sprinters had 21 % greater tibial SSI (P < 0.001) compared to the referents, with no group × age-group interaction (P = 0.54). At the fibula no group difference or group × age-group interaction was identified (P = 0.12-0.81). For tibial radial density distribution ANCOVA indicated no group × radial division (P = 0.50) or group × age-group × division interaction (P = 0.63), whereas an age × radial division interaction was observed (P < 0.001). For polar density distribution, no age-group × polar sector (P = 0.21), group × polar sector (P = 0.46), or group × age-group × polar sector interactions were detected (P = 0.15). Habitual sprint training appears to maintain tibial bone strength, but not radial cortical density distribution into older age. Fibular bone strength appeared unaffected by habitual sprinting.
Collapse
Affiliation(s)
- Timo Rantalainen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland,
| | | | | | | | | | | |
Collapse
|
24
|
Cervinka T, Sievänen H, Hyttinen J, Rittweger J. Bone loss patterns in cortical, subcortical, and trabecular compartments during simulated microgravity. J Appl Physiol (1985) 2014; 117:80-8. [PMID: 24812642 DOI: 10.1152/japplphysiol.00021.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Disuse studies provide a useful model for bone adaptation. A direct comparison of these studies is, however, complicated by the different settings used for bone analysis. Through pooling and reanalysis of bone data from previous disuse studies, we determined bone loss and recovery in cortical, subcortical, and trabecular compartments and evaluated whether the study design modulated skeletal adaptation. Peripheral quantitative tomographic (pQCT) images from control groups of four disuse studies with a duration of 24, 35, 56, and 90 days were reanalyzed using a robust threshold-free segmentation algorithm. The pQCT data were available from 27 young healthy men at baseline, and at specified intervals over disuse and reambulation phases. The mean maximum absolute bone loss (mean ± 95% CI) was 6.1 ± 4.5 mg/mm in cortical, 2.4 ± 1.6 mg/mm in subcortical, and 9.8 ± 9.1 mg/mm in trabecular compartments, after 90 days of bed rest. The percentage changes in all bone compartments were, however, similar. During the first few weeks after onset of reambulation, the bone loss rate was systematically greater in the cortical than in the trabecular compartment (P < 0.002), and this was observed in all studies except for the longest study. We conclude that disuse-induced bone losses follow similar patterns irrespective of study design, and the largest mean absolute bone loss occurs in the cortical compartment, but apparently only during the first 60 days. With longer study duration, trabecular loss may become more prominent.
Collapse
Affiliation(s)
- Tomas Cervinka
- Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland; Institute of Bioscience and Medical Technology, Tampere, Finland;
| | | | - Jari Hyttinen
- Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland; Institute of Bioscience and Medical Technology, Tampere, Finland
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; and Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
25
|
Iyer SP, Nikkel LE, Nishiyama KK, Dworakowski E, Cremers S, Zhang C, McMahon DJ, Boutroy S, Liu XS, Ratner LE, Cohen DJ, Guo XE, Shane E, Nickolas TL. Kidney transplantation with early corticosteroid withdrawal: paradoxical effects at the central and peripheral skeleton. J Am Soc Nephrol 2014; 25:1331-41. [PMID: 24511131 DOI: 10.1681/asn.2013080851] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of early corticosteroid withdrawal (ECSW) protocols after kidney transplantation has become common, but the effects on fracture risk and bone quality are unclear. We enrolled 47 first-time adult transplant recipients managed with ECSW into a 1-year study to evaluate changes in bone mass, microarchitecture, biomechanical competence, and remodeling with dual energy x-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT), parathyroid hormone (PTH) levels, and bone turnover markers obtained at baseline and 3, 6, and 12 months post-transplantation. Compared with baseline, 12-month areal bone mineral density by DXA did not change significantly at the spine and hip, but it declined significantly at the 1/3 and ultradistal radii (2.2% and 2.9%, respectively; both P<0.001). HRpQCT of the distal radius revealed declines in cortical area, density, and thickness (3.9%, 2.1%, and 3.1%, respectively; all P<0.001), trabecular density (4.4%; P<0.001), and stiffness and failure load (3.1% and 3.5%, respectively; both P<0.05). Findings were similar at the tibia. Increasing severity of hyperparathyroidism was associated with increased cortical losses. However, loss of trabecular bone and bone strength were most severe at the lowest and highest PTH levels. In summary, ECSW was associated with preservation of bone mineral density at the central skeleton; however, it was also associated with progressive declines in cortical and trabecular bone density at the peripheral skeleton. Cortical decreases related directly to PTH levels, whereas the relationship between PTH and trabecular bone decreases was bimodal. Studies are needed to determine whether pharmacologic agents that suppress PTH will prevent cortical and trabecular losses and post-transplant fractures.
Collapse
Affiliation(s)
- Sapna P Iyer
- Department of Medicine, Kaiser Permanente Medical Center, Oakland, California
| | - Lucas E Nikkel
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York
| | | | | | | | | | | | - Stephanie Boutroy
- Institut National de la Santé et de la Recherche Médicale U1033, University of Lyon, Lyon, France
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lloyd E Ratner
- Department of Surgery, Columbia University Medical Center, New York, New York
| | | | - X Edward Guo
- School of Engineering, Department of Biomedical Engineering, Columbia University, New York, New York
| | | | | |
Collapse
|
26
|
Duckham RL, Baxter-Jones ADG, Johnston JD, Vatanparast H, Cooper D, Kontulainen S. Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? J Bone Miner Res 2014; 29:479-86. [PMID: 23907819 DOI: 10.1002/jbmr.2055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022]
Abstract
The long-term benefits of habitual physical activity during adolescence on adult bone structure and strength are poorly understood. We investigated whether physically active adolescents had greater bone size, density, content, and estimated bone strength in young adulthood when compared to their peers who were inactive during adolescence. Peripheral quantitative computed tomography (pQCT) was used to measure the tibia and radius of 122 (73 females) participants (age mean ± SD, 29.3 ± 2.3 years) of the Saskatchewan Pediatric Bone Mineral Accrual Study (PBMAS). Total bone area (ToA), cortical density (CoD), cortical area (CoA), cortical content (CoC), and estimated bone strength in torsion (SSIp ) and muscle area (MuA) were measured at the diaphyses (66% tibia and 65% radius). Total density (ToD), trabecular density (TrD), trabecular content (TrC), and estimated bone strength in compression (BSIc ) were measured at the distal ends (4%). Participants were grouped by their adolescent physical activity (PA) levels (inactive, average, and active) based on mean PA Z-scores obtained from serial questionnaire assessments completed during adolescence. We compared adult bone outcomes across adolescent PA groups in each sex using analysis of covariance followed by post hoc pairwise comparisons with Bonferroni adjustments. When adjusted for adult height, MuA, and PA, adult males who were more physically active than their peers in adolescence had 13% greater adjusted torsional bone strength (SSIp , p < 0.05) and 10% greater adjusted ToA (p < 0.05) at the tibia diaphysis. Females who were more active in adolescence had 10% larger adjusted CoA (p < 0.05), 12% greater adjusted CoC (p < 0.05) at the tibia diaphysis, and 3% greater adjusted TrC (p < 0.05) at the distal tibia when compared to their inactive peers. Benefits to tibia bone size, content, and strength in those who were more active during adolescence seemed to persist into young adulthood, with greater ToA and SSIp in males, and greater CoA, CoC, and TrC in females.
Collapse
Affiliation(s)
- Rachel L Duckham
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM. Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int 2014; 25:177-85. [PMID: 23812595 PMCID: PMC5096939 DOI: 10.1007/s00198-013-2419-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/08/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED In this cross-sectional study, we found that areal bone mineral density (aBMD) at the knee and specific tibia bone geometry variables are associated with fragility fractures in men and women with chronic spinal cord injury (SCI). INTRODUCTION Low aBMD of the hip and knee regions have been associated with fractures among individuals with chronic motor complete SCI; however, it is unclear whether these variables can be used to identify those at risk of fracture. In this cross-sectional study, we examined whether BMD and geometry measures are associated with lower extremity fragility fractures in individuals with chronic SCI. METHODS Adults with chronic [duration of injury ≥ 2 years] traumatic SCI (C1-L1 American Spinal Cord Injury Association Impairment Scale A-D) reported post injury lower extremity fragility fractures. Dual-energy X-ray absorptiometry (DXA) was used to measure aBMD of the hip, distal femur, and proximal tibia regions, while bone geometry at the tibia was assessed using peripheral quantitative computed tomography (pQCT). Logistic regression and univariate analyses were used to identify whether clinical characteristics or bone geometry variables were associated with fractures. RESULTS Seventy individuals with SCI [mean age (standard deviation [SD]), 48.8 (11.5); 20 females] reported 19 fragility fractures. Individuals without fractures had significantly greater aBMD of the hip and knee regions and indices of bone geometry. Every SD decrease in aBMD of the distal femur and proximal tibia, trabecular volumetric bone mineral density, and polar moment of inertia was associated with fracture prevalence after adjusting for motor complete injury (odds ratio ranged from 3.2 to 6.1). CONCLUSION Low knee aBMD and suboptimal bone geometry are significantly associated with fractures. Prospective studies are necessary to confirm the bone parameters reported to predict fracture risk in individuals with low bone mass and chronic SCI.
Collapse
Affiliation(s)
- D Lala
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Lala D, Cheung AM, Lynch CL, Inglis D, Gordon C, Tomlinson G, Giangregorio L. Measuring apparent trabecular structure with pQCT: a comparison with HR-pQCT. J Clin Densitom 2014; 17:47-53. [PMID: 23567093 DOI: 10.1016/j.jocd.2013.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
We evaluated how comparable peripheral quantitative computed tomography (pQCT) measurements of cortical thickness, density, and apparent trabecular structure at the ultradistal tibia were with those measured with high-resolution pQCT (HR-pQCT). We also examined whether the accuracy of the pQCT-based trabecular and cortical measurements improved with reductions in slice thickness from the standard 2.2mm to 1.1 and 0.6mm. We immersed 15 dry tibia specimens in saline in a sealed cylinder and scanned 22.5mm from the distal tibia plateau using pQCT and HR-pQCT. pQCT underestimated cortical thickness by Stratec (CThStratec) and trabecular spacing (Tb.Sp) by 21.4% and 72.9%, whereas bone volume to total volume (BV/TV) and cortical density (CDen) were overestimated by 265.8% and 13.1%, respectively. Measurements of trabecular volumetric bone mineral density, trabecular area, total area, cortical thickness by custom software were comparable, but for CThStratec, Tb.Sp, BV/TV, and CDen, the differences between imaging devices varied with magnitude of the estimate. We recommend that researchers or clinicians interested in using pQCT to measure apparent trabecular structure or cortical thickness at the epiphyses, or in comparing findings from different devices, be aware of the differences between HR-pQCT and pQCT.
Collapse
Affiliation(s)
- Deena Lala
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Toronto Rehabilitation Institute-University Health Network, Lyndhurst Centre, Toronto, ON, Canada
| | - Angela M Cheung
- Department of Medicine and Medical Imaging, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada
| | - Cheryl L Lynch
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Toronto Rehabilitation Institute-University Health Network, Lyndhurst Centre, Toronto, ON, Canada
| | - Dean Inglis
- Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
| | - Chris Gordon
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| | - George Tomlinson
- Department of Medicine and Medical Imaging, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Lora Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Toronto Rehabilitation Institute-University Health Network, Lyndhurst Centre, Toronto, ON, Canada.
| |
Collapse
|
29
|
Moon RJ, Gilbert RD, Page A, Murphy L, Taylor P, Cooper C, Dennison EM, Davies JH. Children with nephrotic syndrome have greater bone area but similar volumetric bone mineral density to healthy controls. Bone 2014; 58:108-13. [PMID: 24145304 PMCID: PMC4968633 DOI: 10.1016/j.bone.2013.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/17/2013] [Accepted: 10/14/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glucocorticoid use has been associated with an increased fracture risk and reduced bone mineral density (BMD), particularly in the trabecular compartment. However the contribution of the underlying inflammatory disease process to these outcomes is poorly understood. Childhood nephrotic syndrome (NS) typically follows a relapsing-remitting course often requiring recurrent courses of glucocorticoids, but with low systemic inflammation during remission. NS therefore represents a useful clinical model to investigate the effects of glucocorticoids on BMD and bone geometry in childhood. METHODS Children with NS were compared to age and sex matched healthy controls. Body composition and areal BMD (whole body, lumbar spine and hip) were assessed by DXA. Peripheral quantitative computed tomography (pQCT) scans were obtained at metaphyseal (4%) and diaphyseal (66%) sites of the tibia to determine volumetric BMD and bone cross-sectional geometry. Lifetime cumulative glucocorticoid exposure was calculated from medical records. RESULTS 29 children with NS (55% male, age 10.7±3.1years) were compared to 29 healthy controls (55% male, age 11.0±3.0years). The children with NS were of similar height SDS to controls (p=0.28), but were heavier (0.65±1.28SDS vs -0.04±0.89SDS, p=0.022) and had greater body fat percentage SDS (0.31±1.01 vs -0.52±1.10, p=0.008). Tibial trabecular and cortical vBMD were similar between the two groups but bone cross-sectional area (CSA) was significantly greater in children with NS at both the metaphysis (954±234mm(2) vs 817±197mm(2), p=0.002) and diaphysis (534.9±162.7mm(2) vs 463.2±155.5mm(2), p=0.014). Endosteal and periosteal circumferences were greater in children with NS than controls (both p<0.01), resulting in reduced cortical thickness (2.4±0.7mm vs 2.8±0.7mm, p=0.018), but similar cortical CSA (p=0.22). The differences in cortical geometry were not statistically significant when weight was included as a confounding factor. There were no associations between cumulative steroid exposure, duration of NS or number of relapses and any bone parameter. CONCLUSIONS Tibial bone CSA is increased in children with NS. We speculate that this is a compensatory response to increased body weight. Defects in trabecular BMD were not identified in this cohort of children with NS.
Collapse
Affiliation(s)
- RJ Moon
- Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
- MRC Lifecourse Epidemiology Unit, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - RD Gilbert
- Paediatric Nephrology, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - A Page
- Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - L Murphy
- Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - P Taylor
- Osteoporosis Centre, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - EM Dennison
- MRC Lifecourse Epidemiology Unit, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - JH Davies
- Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
30
|
Howarth SJ, Giangregorio LM, Callaghan JP. Development of an equation for calculating vertebral shear failure tolerance without destructive mechanical testing using iterative linear regression. Med Eng Phys 2013; 35:1212-20. [PMID: 23337706 DOI: 10.1016/j.medengphy.2012.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 11/30/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Equations used to determine vertebral failure tolerances without the need for destructive testing are useful for scaling applied sub-maximal forces during in vitro repetitive loading studies. However, existing equations that use vertebral bone density and morphology for calculating compressive failure tolerance are unsuitable for calculating vertebral shear failure tolerance since the primary site of failure is the pars interarticularis and not the vertebral body. Therefore, this investigation developed new equations for non-destructively determining vertebral shear failure tolerance from morphological and/or bone density measures. Shear failure was induced in 40 porcine cervical vertebral joints (20 C3-C4 and 20 C5-C6) by applying a constant posterior displacement to the caudal vertebra at 0.15 mm/s. Prior to destructive testing, morphology and bone density of the posterior elements were made with digital calipers, X-rays, and peripheral quantitative computed tomography. Iterative linear regression identified mathematical relationships between shear failure tolerance, and morphological and bone density measurements. Along with vertebral level, pars interarticularis length and lamina height from the cranial vertebra, and inferior facet height from the caudal vertebra collectively explained 61.8% of shear failure tolerance variance. Accuracy for this relationship, estimated using the same group of specimens, was 211.9 N or 9.8% of the measured shear failure tolerance.
Collapse
Affiliation(s)
- Samuel J Howarth
- Department of Graduate Education and Research Programs, Canadian Memorial Chiropractic College, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Frank AW, Labas MC, Johnston JD, Kontulainen SA. Site-specific variance in radius and tibia bone strength as determined by muscle size and body mass. Physiother Can 2013; 64:292-301. [PMID: 23729966 DOI: 10.3138/ptc.2010-40bh] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE To investigate the predictive ability of muscle cross-sectional area (MCSA) and body mass on bone mineral content, compressive bone strength index (BSIc), and the polar stress-strain index (SSIp) of the forearms and lower legs of middle-aged adults. METHODS A total of 53 healthy adults (37 male, 16 female; mean age 50.4; SD 2.1 y) were scanned with peripheral quantitative computed tomography (pQCT) to measure radius and tibia total and cortical bone mineral content, BSIc, SSIp, and forearm and lower-leg MCSA (BSIc: 4% distal; SSIp and MCSA at 65% and 66% radius and tibia shaft sites, respectively). Multiple regression models adjusted for sex and height were used to assess the relative variance in radius or tibia bone outcomes predicted by body mass and/or forearm or lower-leg MCSA. RESULTS Forearm MCSA independently predicted total bone-mineral content, BSIc, and SSIp in radius (r partial=0.59, 0.56, 0.42). Body mass was a negative predictor of radius BSIc (r partial=-0.32) and did not predict other radius outcomes when both body mass and MCSA were forced in the models. In the lower leg shaft, MCSA, and body mass predicted bone content and strength similarly when independently added to the models with sex and height. CONCLUSIONS Forearm MCSA was a dominant predictor of radius bone content and estimated strength. In the tibia, both body mass and lower-leg MCSA contributed to predicting bone content and estimated strength.
Collapse
|
32
|
Duckham RL, Frank AW, Johnston JD, Olszynski WP, Kontulainen SA. Monitoring time interval for pQCT-derived bone outcomes in postmenopausal women. Osteoporos Int 2013; 24:1917-22. [PMID: 23344257 DOI: 10.1007/s00198-012-2242-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED Evidence of measurement precision, annual changes and monitoring time interval is essential when designing and interpreting longitudinal studies. Despite the precise measures, small annual changes in bone properties led to monitoring time intervals (MTIs) of 2-6 years in peripheral quantitative computed tomography (pQCT)-derived radial and tibial bone area, density, and estimated strength in postmenopausal women. INTRODUCTION The purpose of the study was to determine the precision error, annual change, and MTI in bone density, area, and strength parameters in postmenopausal women. METHODS Postmenopausal women (n = 114) from the Saskatoon cohort of the Canadian Multicentre Osteoporosis Study had annual pQCT scans of the distal and shaft sites of the radius and tibia for 2 years. Median annualized rates of percent change and the MTI were calculated for bone density, area, and strength parameters. Root mean squared coefficients of variation (CV%) were calculated from duplicate scans in a random subgroup of 35 postmenopausal women. RESULTS CV% ranged from 1.4 to 6.1 % at the radius and 0.7 to 2.1 % at the tibia. MTIs for the distal radius were 3 years for total bone density (ToD) and 4 years for total bone cross sectional area (ToA), trabecular area, and bone strength index. At the diaphyseal radius, MTI was 3 years for ToA, 5 years for cortical density, and 6 years for polar stress strain index (SSIp). Similarly, MTI for total and trabecular density was 3 years at the distal tibia. At the diaphyseal tibia, MTI for ToA was 3 years and SSIp 4 years. CONCLUSION MTI for longitudinal studies in older postmenopausal women should be at least 2-6 years at the radius and tibia, with specific monitoring of the total and trabecular area, total density, and bone strength at the radius and total and trabecular density, total area, and bone strength at the tibia.
Collapse
Affiliation(s)
- R L Duckham
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | |
Collapse
|
33
|
Giangregorio L, Lala D, Hummel K, Gordon C, Craven BC. Measuring apparent trabecular density and bone structure using peripheral quantitative computed tomography at the tibia: precision in participants with and without spinal cord injury. J Clin Densitom 2013; 16:139-46. [PMID: 22981715 DOI: 10.1016/j.jocd.2012.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/23/2022]
Abstract
The objective of the study was to investigate the precision of standard outcomes obtained using peripheral quantitative computed tomography as well as apparent trabecular structure measures in adults with and without spinal cord injury (SCI). Twelve individuals with SCI, mean (standard deviation [SD]) 20 (13)yrs postinjury and mean (SD) age 44 (9)yrs, and 21 individuals without SCI (mean [SD] age: 27 [5]yrs) participated. Repeat scans of tibia epiphysis (4%) and shaft (66%) were performed using a Stratec XCT-2000 (Stratec Medizintechnik, Pforzheim, Germany). Bone mineral density and geometry variables (e.g., cortical thickness, bone area, polar moment of inertia) were derived with manufacturer's software. The following apparent trabecular structure variables were determined using custom software: average trabecular thickness (TrTh) (mm), trabecular spacing (TrSp) (mm), and trabecular number (TrN) (1/mm); average hole size (HA) and maximum hole size (HM) (mm(2)); connectivity index (CI); cortical thickness (CTh) (mm); bone volume to total volume (BVTV) ratio. Root mean square standard deviation and root mean square coefficient of variation (RMSCV; root mean square coefficient of variation percent [RMSCV%]) were calculated. The RMSCV% for all standard bone mineral density and geometry variables was ≤2% except for total area (4% site), where precision was 3.8%. RMSCV% for bone structure variables were as follows: CTh 5.1, TrTh 1.7, TrN 1.9, TrSp 2.6, HA 9.5, HM 20.1, CI 5.1, and BVTV 1.4. Precision for bone density and geometry was excellent across a range of bone mineral densities. RMSCVs for some apparent trabecular structure variables were comparable to that of standard variables. The RMSCV for others may necessitate larger studies to detect between-group differences.
Collapse
Affiliation(s)
- Lora Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | | | |
Collapse
|
34
|
Ural A, Bruno P, Zhou B, Shi XT, Guo XE. A new fracture assessment approach coupling HR-pQCT imaging and fracture mechanics-based finite element modeling. J Biomech 2013; 46:1305-11. [PMID: 23497802 DOI: 10.1016/j.jbiomech.2013.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 11/29/2022]
Abstract
A new fracture assessment approach that combines HR-pQCT imaging with fracture mechanics-based finite element modeling was developed to evaluate distal radius fracture load. Twenty distal radius images obtained from postmenopausal women (fracture, n=10; nonfracture, n=10) were processed to obtain a cortical and a whole bone model for each subject. The geometrical properties of each model were evaluated and the corresponding fracture load was determined under realistic fall conditions using cohesive finite element modeling. The results showed that the whole bone fracture load can be estimated based on the cortical fracture load for nonfracture (R(2)=0.58, p=0.01) and pooled data (R(2)=0.48, p<0.001) but not for the fracture group. The portion of the whole bone fracture load carried by the cortical bone increased with increasing cortical fracture load (R(2)≥0.5, p<0.05) indicating that a more robust cortical bone carries a larger percentage of whole bone fracture load. Cortical thickness was found to be the best predictor of both cortical and whole bone fracture load for all groups (R(2) range: 0.49-0.96, p<0.02) with the exception of fracture group whole bone fracture load showing the predictive capability of cortical geometrical properties in determining whole bone fracture load. Fracture group whole bone fracture load was correlated with trabecular thickness (R(2)=0.4, p<0.05) whereas the nonfracture and the pooled group did not show any correlation with the trabecular parameters. In summary, this study introduced a new modeling approach that coupled HR-pQCT imaging with fracture mechanics-based finite element simulations, incorporated fracture toughness and realistic fall loading conditions in the models, and showed the significant contribution of the cortical compartment to the overall fracture load of bone. Our results provide more insight into the fracture process in bone and may lead to improved fracture load predictions.
Collapse
Affiliation(s)
- Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA.
| | | | | | | | | |
Collapse
|
35
|
Guglielmi G, di Chio F, Vergini MRD, La Porta M, Nasuto M, Di Primio LA. Early diagnosis of vertebral fractures. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2013; 10:15-8. [PMID: 23858304 PMCID: PMC3710003 DOI: 10.11138/ccmbm/2013.10.1.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vertebral fractures are a common clinical entity, caused by trauma or related to osteoporosis (benign). Their recognition is especially important in the post-menopausal female population but also important is their differentiation from pathological (malignant) fractures (1). A vertebral fracture is evidenced by vertebral body deformity or reduction in vertebral body height beyond a certain threshold value in the absence of bone discontinuity. For prognosis and treatment it is extremely important to recognize the cause of the fracture. In contrast to fractures that occur in other locations, vertebral fractures often go unrecognized in the acute phase as the pain may be transient and radiographic and evaluation of the spine may be difficult (2). Objective measurement of the vertebral deformity provides invaluable information to the interpreting physician and helps grade fracture severity. The recognition and diagnosis of vertebral fractures can be performed using additional diagnostic tools.
Collapse
Affiliation(s)
- Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy
- Department of Radiology, Scientific Institute Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | | | | | - Michele La Porta
- Department of Radiology, “T. Masselli-Mascia” Hospital, San Severo, (FG), Italy
| | | | | |
Collapse
|
36
|
Gregson CL, Sayers A, Lazar V, Steel S, Dennison EM, Cooper C, Smith GD, Rittweger J, Tobias JH. The high bone mass phenotype is characterised by a combined cortical and trabecular bone phenotype: findings from a pQCT case-control study. Bone 2013; 52:380-8. [PMID: 23103330 PMCID: PMC3526774 DOI: 10.1016/j.bone.2012.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 08/26/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022]
Abstract
High bone mass (HBM), detected in 0.2% of DXA scans, is characterised by a mild skeletal dysplasia largely unexplained by known genetic mutations. We conducted the first systematic assessment of the skeletal phenotype in unexplained HBM using pQCT in our unique HBM population identified from screening routine UK NHS DXA scans. pQCT measurements from the mid and distal tibia and radius in 98 HBM cases were compared with (i) 65 family controls (constituting unaffected relatives and spouses), and (ii) 692 general population controls. HBM cases had substantially greater trabecular density at the distal tibia (340 [320, 359] mg/cm(3)), compared to both family (294 [276, 312]) and population controls (290 [281, 299]) (p<0.001 for both, adjusted for age, gender, weight, height, alcohol, smoking, malignancy, menopause, steroid and estrogen replacement use). Similar results were obtained at the distal radius. Greater cortical bone mineral density (cBMD) was observed in HBM cases, both at the midtibia and radius (adjusted p<0.001). Total bone area (TBA) was higher in HBM cases, at the distal and mid tibia and radius (adjusted p<0.05 versus family controls), suggesting greater periosteal apposition. Cortical thickness was increased at the mid tibia and radius (adjusted p<0.001), implying reduced endosteal expansion. Together, these changes resulted in greater predicted cortical strength (strength strain index [SSI]) in both tibia and radius (p<0.001). We then examined relationships with age; tibial cBMD remained constant with increasing age amongst HBM cases (adjusted β -0.01 [-0.02, 0.01], p=0.41), but declined in family controls (-0.05 [-0.03, -0.07], p<0.001) interaction p=0.002; age-related changes in tibial trabecular BMD, CBA and SSI were also divergent. In contrast, at the radius HBM cases and controls showed parallel age-related declines in cBMD and trabecular BMD. HBM is characterised by increased trabecular BMD and by alterations in cortical bone density and structure, leading to substantial increments in predicted cortical bone strength. In contrast to the radius, neither trabecular nor cortical BMD declined with age in the tibia of HBM cases, suggesting attenuation of age-related bone loss in weight-bearing limbs contributes to the observed bone phenotype.
Collapse
Key Words
- hbm, high bone mass
- nhs, national health service
- pqct, peripheral quantitative computed tomography
- oa, osteoarthritis
- l1, 1st lumbar vertebra
- cbmd, cortical bone mineral density
- tbmd, trabecular bone mineral density
- tba, total bone area
- cba, cortical bone area
- ssi, strength strain index
- sd, standard deviation
- pve, partial volume effect
- high bone mass
- pqct
- cortical
- trabecular
- age
- bmd
Collapse
Affiliation(s)
- Celia L. Gregson
- Musculoskeletal Research Unit, University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
- Corresponding author at: Musculoskeletal Research Unit, University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK. Fax: + 44 117 3235936.
| | - Adrian Sayers
- School of Social and Community Based Medicine, University of Bristol, Canynge Hall, 39 Whately Road, Bristol BS8 2PS, UK
| | - Victor Lazar
- Centre for Magnetic Resonance Investigations, Hull and East Yorkshire NHS Trust, Anlaby Road, Hull HU3 2JZ, UK
| | - Sue Steel
- Hull and East Yorkshire NHS Trust, Anlaby Road, Hull HU3 2JZ, UK
| | - Elaine M. Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - George Davey Smith
- MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE). School of Social and Community Based Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jörn Rittweger
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, All Saints Building, All Saints Manchester M15 6BH, UK
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Jon H. Tobias
- Musculoskeletal Research Unit, University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
37
|
Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, Shults J, Leonard MB. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. J Clin Endocrinol Metab 2012; 97:3584-92. [PMID: 22865901 PMCID: PMC3674298 DOI: 10.1210/jc.2012-2393] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Children with acute lymphoblastic leukemia (ALL) are at risk for impaired bone accrual. This peripheral quantitative computed tomography study assessed changes in bone mineral density (BMD) and structure after completion of ALL treatment. METHODS Fifty ALL participants, ages 5-22 yr, were enrolled within 2 yr (median 0.8 yr) after completing ALL therapy. Tibia peripheral quantitative computed tomography scans were performed at enrollment and 12 months later. Age-, sex-, and race-specific Z-scores for trabecular BMD (TrabBMD), cortical BMD (CortBMD), and cortical area (CortArea) were generated based on more than 650 reference participants. Multivariable linear regression models examined determinants of changes in Z-scores. RESULTS At enrollment, mean TrabBMD (-1.03±1.34) and CortBMD (-0.84±1.05) Z-scores were low (both P<0.001) compared with reference participants. TrabBMD and CortBMD Z-scores increased to -0.58±1.41 and -0.51±0.91 over 1 yr, respectively (both P<0.001). Changes in cortical outcomes varied according to the interval since completion of therapy. Among those enrolled less than 6 months after therapy, CortArea Z-scores increased and CortBMD Z-scores decreased (both P<0.01). Among those enrolled 6 months or more after therapy, CortArea Z-scores did not change and CortBMD Z-scores increased (P<0.01). Changes in CortArea and CortBMD Z-scores were inversely associated (r=-0.32, P<0.001). Cumulative glucocorticoid exposure, leukemia risk status, and antimetabolite chemotherapy were not associated with outcomes. CONCLUSION TrabBMD was low after completion of ALL therapy and improved significantly. Early increases in cortical dimensions were associated with declines in CortBMD; however, participants further from ALL therapy demonstrated stable cortical dimensions and increases in CortBMD, potentially reflecting the time necessary to mineralize newly formed bone.
Collapse
Affiliation(s)
- Sogol Mostoufi-Moab
- Department of Pediatrics, The Children's Hospital of Philadelphia, and Department of Biostatistics and Epidemiology, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cervinka T, Hyttinen J, Sievänen H. Threshold-free automatic detection of cortical bone geometry by peripheral quantitative computed tomography. J Clin Densitom 2012; 15:413-421. [PMID: 22572529 DOI: 10.1016/j.jocd.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
An accurate assessment of bone strength is an important goal in clinical bone research. For appropriate information on bone strength, precise segmentation of actual cross-sectional bone geometry is needed. In this article, we introduce an automatic, simple, and fast approach for reliable segmentation of cortical bone cross-sectional area based on the outer boundary detection and subsequent shrinking (OBS) procedure. Using repeated in vivo peripheral quantitative computed tomography (pQCT) images of distal tibia from 25 subjects, we compared new segmentation results with those obtained from commonly applied simple density thresholds and from a recent advanced analysis based on distance regularized level set evolution (DRLSE). Manual segmentation of cortical bone done by 3 independent evaluators was considered a gold standard. The new approach showed nearly 50% less variation in error compared with threshold-based analysis in conjunction with a recently introduced statistical preprocessing method and agreed well with results obtained from manual segmentation. The DRLSE segmentation resulted consistently in ~15% mean overestimation of all geometrical traits with a similar variation of data as obtained from the OBS method. In conclusion, the OBS method improved assessment of all observed measures of cortical geometry and can enhance the cortical bone analysis of pQCT images in clinical research studies.
Collapse
Affiliation(s)
- Tomas Cervinka
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland; BioMediTech, Tampere, Finland.
| | - Jari Hyttinen
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland; BioMediTech, Tampere, Finland
| | - Harri Sievänen
- Bone Research Group, UKK Institute, Tampere, Finland; Pirkanmaa Hospital District, Science Center, Tampere, Finland
| |
Collapse
|
39
|
Lala D, Cheung AM, Gordon C, Giangregorio L. Comparison of cortical bone measurements between pQCT and HR-pQCT. J Clin Densitom 2012; 15:275-81. [PMID: 22542223 DOI: 10.1016/j.jocd.2012.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 11/15/2022]
Abstract
The primary purpose of this study was to determine the accuracy of tibial cortical thickness measurements derived from peripheral quantitative computed tomography (pQCT) with analysis based on the circular ring model, using high-resolution peripheral quantitative computed tomography (HR-pQCT) (isotopic voxel size of 82 μm) as a gold standard. The secondary objective was to evaluate whether the accuracy of the pQCT-based estimates of cortical thickness (CTh), cortical area (CoA), cortical density (CDen), and total area (TotA) improve with alterations of voxel size from the standard 0.5-0.2mm. Fifteen dry tibia specimens were immersed in saline in a sealed cylinder and scanned 22.5mm from the distal tibia plateau using pQCT and HR-pQCT. pQCT yielded higher values for CTh and CDen and lower values for CoA. The differences between imaging techniques increased as the average CTh increased. No systematic bias was observed for CDen, CoA, and TotA. Similar differences were found between pQCT with voxel size 0.2mm and HR-pQCT. Significant correlations were observed for CTh (R=0.97, p ≤ 0.0001), CDen (R=0.99, p ≤ 0.0001), CoA (R=0.98, p ≤ 0.0001), and TotA (R=1.0, p ≤ 0.0001) when pQCT- and HR-pQCT-derived values were compared irrespective of which voxel size was used. Measurement variability between the imaging techniques was evident. Future studies aimed at examining cortical structure with pQCT should note that there are differences between the 2 techniques.
Collapse
Affiliation(s)
- Deena Lala
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
West SL, Jamal SA. Determination of bone architecture and strength in men and women with stage 5 chronic kidney disease. Semin Dial 2012; 25:397-402. [PMID: 22686655 DOI: 10.1111/j.1525-139x.2012.01096.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fractures are common in men and women with dialysis-dependent chronic kidney disease (stage 5D CKD) and are associated with substantial morbidity and mortality. The clinical utility of dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT), noninvasive measures of bone mass and architecture that reflect fracture risk in healthy men and women, is uncertain in patients with stage 5D CKD. This review will outline the epidemiology and etiology of fractures and will summarize the published data that describe the association between fractures, bone mass, and bone strength in stage 5D CKD. Fracture risk assessment in stage 5D CKD is complicated as the etiology of fractures is multifactorial and includes impairments in bone quantity and quality. Cross-sectional data suggest that bone density by DXA is lower among stage 5D CKD patients with fractures compared with those without, and that this may be particularly true at cortical sites. However, DXA does not capture bone microarchitecture and cannot differentiate between cortical and trabecular bone. Some, but not all studies, that measure cortical and trabecular bone by pQCT in stage 5D CKD, demonstrate a preferential decrease in cortical bone; however, these studies are limited by small sample sizes and cross-sectional study design. No studies have reported on longitudinal relationships between bone architecture, strength, and incident fractures in patients with stage 5D CKD. Further research is needed to identify noninvasive measures of bone strength that can be used for fracture risk assessment in stage 5D CKD.
Collapse
Affiliation(s)
- Sarah L West
- Department of Exercise Sciences, University of Toronto, Women's College Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Ural A, Zioupos P, Buchanan D, Vashishth D. Evaluation of the influence of strain rate on Colles' fracture load. J Biomech 2012; 45:1854-7. [PMID: 22560644 DOI: 10.1016/j.jbiomech.2012.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/17/2022]
Abstract
Colles' fracture, a transverse fracture of the distal radius bone, is one of the most frequently observed osteoporotic fractures resulting from low energy or traumatic events, associated with low and high strain rates, respectively. Although experimental studies on Colles' fracture were carried out at various loading rates ranging from static to impact loadings, there is no systematic study in the literature that isolates the influence of strain rate on Colles' fracture load. In order to provide a better understanding of fracture risk, the current study combines experimental material property measurements under varying strain rates with computational modeling and presents new information on the effect of strain rate on Colles' fracture. The simulation results showed that Colles' fracture load decreased with increasing strain rate with a steeper change in lower strain rates. Specifically, strain rate values (0.29s(-1)) associated with controlled falling without fracture corresponded to a 3.7% reduction in the fracture load. On the other hand, the reduction in the fracture load was 34% for strain rate of 3.7s(-1) reported in fracture inducing impact cadaver experiments. Further increase in the strain rate up to 18s(-1) led to an additional 22% reduction. The most drastic reduction in fracture load occurs at strain rates corresponding to the transition from controlled to impact falling. These results are particularly important for the improvement of fracture risk assessment in the elderly because they identify a critical range of loading rates (10-50mm/s) that can dramatically increase the risk of Colles' fracture.
Collapse
Affiliation(s)
- Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| | | | | | | |
Collapse
|
42
|
Jamal SA, West SL, Miller PD. Fracture risk assessment in patients with chronic kidney disease. Osteoporos Int 2012; 23:1191-8. [PMID: 21901475 DOI: 10.1007/s00198-011-1781-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Fractures are common in patients with chronic kidney disease (CKD) and associated with substantially high morbidity and mortality. Bone mass measurements are commonly used to assess fracture risk in the general population, but the utility of these measurements in patients with CKD, and specifically among those on hemodialysis, is unclear. This review will outline the epidemiology and etiology of fractures in patients with CKD with a particular emphasis on men and women on hemodialysis. As well, we will summarize the published data, which describes the association between risk factors for fracture (including bone mass measurements, biochemical markers of mineral metabolism, and muscle strength) and fractures in patients with CKD. Patients with CKD suffer from fractures due to impairments in bone quantity, bone quality, and abnormalities of neuromuscular function. There is a paucity of evidence on the associations between bone quality, bone turnover markers, neuromuscular function, and fractures in patients with CKD. Furthermore, the complex etiology of fractures combined with the technical limitations of bone mineral density testing, both by dual energy X-ray absorptiometry (DXA) and by peripheral quantitative tomography (pQCT), limits the clinical utility of bone mass measurements for fracture prediction in CKD; this is particularly true among patients with stages 4 and 5 CKD. Further prospective studies to identify noninvasive measures of bone strength that can be used for fracture risk assessment are needed.
Collapse
Affiliation(s)
- S A Jamal
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
43
|
Guglielmi G, Muscarella S, Bazzocchi A. Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics 2012; 31:1343-64. [PMID: 21918048 DOI: 10.1148/rg.315105712] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteoporosis is the most common of all metabolic bone disorders. It is characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fractures. Because of the increasing aging of the world population, the number of persons affected by osteoporosis is also increasing. Complications related to osteoporosis can create social and economic burdens. For these reasons, the early diagnosis of osteoporosis is crucial. Conventional radiography allows qualitative and semiquantitative evaluation of osteoporosis, whereas other imaging techniques allow quantification of bone loss (eg, dual-energy x-ray absorptiometry and quantitative computed tomography [CT]), assessment for the presence of fractures (morphometry), and the study of bone properties (ultrasonography). In recent years, new imaging modalities such as micro-CT and high-resolution magnetic resonance imaging have been developed in an attempt to help diagnose osteoporosis in its early stages, thereby reducing social and economic costs and preventing patient suffering. The correct diagnosis of osteoporosis results in better management in terms of prevention and adequate pharmacologic or surgical treatment.
Collapse
|
44
|
Edwards WB, Troy KL. Simulating Distal Radius Fracture Strength Using Biomechanical Tests: A Modeling Study Examining the Influence of Boundary Conditions. J Biomech Eng 2011; 133:114501. [DOI: 10.1115/1.4005428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Distal radius fracture strength has been quantified using in vitro biomechanical testing. These tests are frequently performed using one of two methods: (1) load is applied directly to the embedded isolated radius or (2) load is applied through the hand with the wrist joint intact. Fracture loads established using the isolated radius method are consistently 1.5 to 3 times greater than those for the intact wrist method. To address this discrepancy, a validated finite element modeling procedure was used to predict distal radius fracture strength for 22 female forearms under boundary conditions simulating the isolated radius and intact wrist method. Predicted fracture strength was highly correlated between methods (r = 0.94; p < 0.001); however, intact wrist simulations were characterized by significantly reduced cortical shell load carriage and increased stress and strain concentrations. These changes resulted in fracture strength values less than half those predicted for the isolated radius simulations (2274 ± 824 N for isolated radius, 1124 ± 375 N for intact wrist; p < 0.001). The isolated radius method underestimated the mechanical importance of the trabecular compartment compared to the more physiologically relevant intact wrist scenario. These differences should be borne in mind when interpreting the physiologic importance of mechanical testing and simulation results.
Collapse
Affiliation(s)
- W. Brent Edwards
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Karen L. Troy
- Department of Kinesiology and Nutrition and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
45
|
Ducher G, Turner AI, Kukuljan S, Pantano KJ, Carlson JL, Williams NI, De Souza MJ. Obstacles in the optimization of bone health outcomes in the female athlete triad. Sports Med 2011; 41:587-607. [PMID: 21688870 DOI: 10.2165/11588770-000000000-00000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the 'female athlete triad'. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture. This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging. Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.
Collapse
Affiliation(s)
- Gaele Ducher
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
An evaluation of the muscle-bone unit theory among individuals with chronic spinal cord injury. Spinal Cord 2011; 50:147-52. [PMID: 21894164 DOI: 10.1038/sc.2011.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Cross-sectional observation. OBJECTIVES To explore the association between muscle size and function, and indices of bone strength among a sample of adults with chronic spinal cord injury (SCI). SETTING Ontario, Canada. METHODS Sixty-five participants (n=47 men) with chronic SCI (C1-T12 American Spinal Injury Association Impairment Scale (AIS) A-D) were recruited, mean±s.d. age 49.4±12.8 years and years post-injury 14.3±10.7. Muscle cross-sectional area (CSA) and indices of bone strength at the distal tibia and tibia shaft were measured by peripheral quantitative computed tomography. Muscle CSA was multiplied by tibia length to obtain muscle-bending moment (MBM), a surrogate of torque. Plantar flexor components of the lower-extremity motor scores (pf-LEMS) were used as clinical measures of muscle function. Pearson's correlations (r) were used to determine the strength of relationships. RESULTS Correlations were found between MBM and indices of bone strength at the distal tibia and tibia shaft (r=0.44-0.56), as well as between pf-LEMS and indices of bone strength at the distal tibia and tibia shaft (r=0.37-0.71). pf-LEMS had a stronger association with bone variables at the distal tibia compared with MBM (r=0.6 vs r=0.4). All relationships between muscle and bone remained significant when controlling for the duration of injury. CONCLUSION It appears that lower limb muscle size and function are more strongly correlated with bone strength indices at the distal tibia than at the tibia shaft among individuals with SCI. The relationships between muscle and bone are clinically important, as muscle CSA and strength (motor scores) are potentially amenable to rehabilitation intervention(s).
Collapse
|
47
|
Rinaldi G, Wisniewski CA, Setty NG, Leboff MS. Peripheral quantitative computed tomography: optimization of reproducibility measures of bone density, geometry, and strength at the radius and tibia. J Clin Densitom 2011; 14:367-73. [PMID: 21723765 DOI: 10.1016/j.jocd.2011.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the reproducibility for in vivo measurements at the radius and tibia for trabecular and cortical parameters, bone geometry, and bone strength indices with the peripheral quantitative computed tomography (pQCT) XCT 3000. We performed 3 repeated scans within 2mo at the radius (N=18) and tibia (N=16) on healthy, premenopausal women, aged 22-35 yrs and report precision measures including %coefficient of variation (%CV) and least significant changes (LSCs). For the radius, we studied 2 sections (4% and 33% of total length) and for the tibia, 3 sections (4%, 38%, and 66% of total length). Reproducibility for radius at 33% and tibia at every site was good (%CV ranged from 0.02% to 2.19%). The precision error for the distal 4% radius was, however, higher. The reproducibility at the distal radius improved when we considered only the scans with a change of ± 10mm(2) in the radius total area at this site (%CV from 0.87% to 2.25%). This study showed that, when follow-up measurements are carefully obtained, pQCT yields excellent reproducibility at both the radius and tibia. These precision errors, in conjunction with changes in LSC for the pQCT measures, are useful for research and potential clinical applications.
Collapse
Affiliation(s)
- Giulia Rinaldi
- Department of Medical and Surgical Sciences, University of Padova, Italy
| | | | | | | |
Collapse
|
48
|
Buchanan D, Ural A. Finite element modeling of the influence of hand position and bone properties on the Colles' fracture load during a fall. J Biomech Eng 2010; 132:081007. [PMID: 20670056 DOI: 10.1115/1.4001681] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Distal forearm fracture is one of the most frequently observed osteoporotic fractures, which may occur as a result of low energy falls such as falls from a standing height and may be linked to the osteoporotic nature of the bone, especially in the elderly. In order to prevent the occurrence of radius fractures and their adverse outcomes, understanding the effect of both extrinsic and intrinsic contributors to fracture risk is essential. In this study, a nonlinear fracture mechanics-based finite element model is applied to human radius to assess the influence of extrinsic factors (load orientation and load distribution between scaphoid and lunate) and intrinsic bone properties (age-related changes in fracture properties and bone geometry) on the Colles' fracture load. Seven three-dimensional finite element models of radius were created, and the fracture loads were determined by using cohesive finite element modeling, which explicitly represented the crack and the fracture process zone behavior. The simulation results showed that the load direction with respect to the longitudinal and dorsal axes of the radius influenced the fracture load. The fracture load increased with larger angles between the resultant load and the dorsal axis, and with smaller angles between the resultant load and longitudinal axis. The fracture load also varied as a function of the load ratio between the lunate and scaphoid, however, not as drastically as with the load orientation. The fracture load decreased as the load ratio (lunate/scaphoid) increased. Multiple regression analysis showed that the bone geometry and the load orientation are the most important variables that contribute to the prediction of the fracture load. The findings in this study establish a robust computational fracture risk assessment method that combines the effects of intrinsic properties of bone with extrinsic factors associated with a fall, and may be elemental in the identification of high fracture risk individuals as well as in the development of fracture prevention methods including protective falling techniques. The additional information that this study brings to fracture identification and prevention highlights the promise of fracture mechanics-based finite element modeling in fracture risk assessment.
Collapse
Affiliation(s)
- Drew Buchanan
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Fractures are common in patients with chronic kidney disease (CKD) and are associated with substantial morbidity and mortality. Bone mass measurements are commonly used to assess fracture risk in the general population, but the utility of these measurements in patients with CKD is unclear. RECENT FINDINGS This review will outline the epidemiology and etiology of fractures in patients with CKD. Also, we will summarize the published data that describe the association between bone mass measurements and fracture in patients with CKD. SUMMARY Patients with CKD suffer from fractures due to impairments in bone quantity, bone quality, and abnormalities of neuromuscular function. The complex etiology of fractures combined with the technical limitations of bone mineral density testing, both by dual energy X-ray absorptiometry and by peripheral quantitative computed tomography, limits the clinical utility of bone mass measurements for fracture prediction in CKD; this is particularly true among patients with stages 4 and 5 CKD. As such, clinicians should not routinely order bone mineral density testing in patients with CKD. Further research, to determine whether bone mineral density together with other noninvasive measures to assess bone strength can predict fracture, is needed.
Collapse
|
50
|
Liu D, Burrows M, Egeli D, McKay H. Site specificity of bone architecture between the distal radius and distal tibia in children and adolescents: An HR-pQCT study. Calcif Tissue Int 2010; 87:314-23. [PMID: 20725826 DOI: 10.1007/s00223-010-9405-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/23/2010] [Indexed: 11/27/2022]
Abstract
High-resolution quantitative computerized tomography permits evaluation of site specific differences in bone architecture. The purpose of this study was to compare bone architecture between distal radius and distal tibia. We present bone architecture at the distal radius and distal tibia in 151 male and 172 female participants, as follows: total bone area (mm(2)), total bone density (mg HA/cm(3)), trabecular bone density (mg HA/cm(3)), cortical bone density (mg HA/cm(3)), cortical thickness (μm), trabecular number (1/mm), trabecular thickness (μm), and trabecular separation (μm). We evaluated differences in and correlations between bone variables (absolute values) across sites. We calculated individual z scores and used regression to assess discordance between sites. In pubertal and postpubertal male and female participants, absolute values of total bone area, cortical bone density, cortical thickness, and trabecular thickness were significantly lower at the radius compared with the tibia (P < 0.01). Absolute values for trabecular bone density were significantly lower at the radius compared with the tibia in postpubertal male and female participants (P < 0.01). Absolute values for trabecular separation was significantly lower at the radius compared with the tibia in pubertal female participants (P < 0.01). Bone architecture was moderately to highly correlated between sites (r = 0.34-0.85). There was discordance between z scores at the radius and tibia within male participants (pubertal R (2) between 36 and 64%; postpubertal R (2) between 22 and 77%) and female participants (pubertal R (2) between 10 and 44%; postpubertal R (2) between 25 and 62%). In conclusion, it is vital to evaluate bone architecture at the specific skeletal site of interest.
Collapse
Affiliation(s)
- Danmei Liu
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|