1
|
Murray AA, Erlandson MC. Tibial cortical and trabecular variables together can pinpoint the timing of impact loading relative to menarche in premenopausal females. Am J Hum Biol 2021; 34:e23711. [PMID: 34878660 DOI: 10.1002/ajhb.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Though relationships between limb bone structure and mechanical loading have provided fantastic opportunities for understanding the lives of prehistoric adults, the lives of children remain poorly understood. Our aim was to determine whether or not adult tibial skeletal variables retain information about childhood/adolescent loading, through assessing relationships between cortical and trabecular bone variables and the timing of impact loading relative to menarche in premenopausal adult females. METHODS Peripheral quantitative computed tomography was used to quantify geometric and densitometric variables from the proximal tibial diaphysis (66% location) and distal epiphysis (4% location) among 81 nulliparous young adult female controls and athletes aged 19-33 years grouped according to intensity of impact loading both pre- and post-menarche: (1) Low:Low (Controls); (2) High:Low; (3) High:High; (4) Moderate:Moderate; (5) Low:Moderate. ANCOVA was used to compare properties among the groups adjusted for age, stature, and body mass. RESULTS Significant increases in diaphyseal total cross-sectional area and strength-strain index were documented among groups with any pre-menarcheal impact loading relative to groups with none, regardless of post-menarcheal loading history (p < .01). In contrast, significantly elevated distal trabecular volumetric bone mineral density was only documented among groups with recent post-menarcheal loading relative to groups with none, regardless of pre-menarcheal impact loading history (p < .01). CONCLUSIONS The consideration of diaphyseal cortical bone geometric and epiphyseal trabecular bone densitometric variables together within the tibia can identify variation in pre-menarcheal and post-menarcheal impact loading histories among premenopausal adult females.
Collapse
Affiliation(s)
- Alison A Murray
- Department of Anthropology, University of Victoria, Victoria, Canada
| | - Marta C Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
2
|
Adolescent Sport Participation and Age at Menarche in Relation to Midlife Body Composition, Bone Mineral Density, Fitness, and Physical Activity. J Clin Med 2020; 9:jcm9123797. [PMID: 33255351 PMCID: PMC7760316 DOI: 10.3390/jcm9123797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the associations of competitive sport participation in adolescence and age at menarche (AAM) with body composition, femoral neck bone mineral density (BMD), physical performance, and physical activity (PA) in middle-aged women. 1098 women aged 47–55 years formed the sample of this retrospective study. Participants self-reported their PA level at age 13–16 years and AAM. The protocol also included dual-energy X-ray absorptiometry, physical performance tests, and accelerometer-measured PA. Participants were divided into three groups according to their PA level at the age of 13–16 (no exercise, regular PA, and competitive sport) and according to their AAM (≤12, 13, and ≥14 years). After adjusting for potential confounding factors, participation in competitive sport at age 13–16 was associated with higher midlife lean mass and BMD, and better physical performance compared to groups with no exercise or regular PA. Individuals with AAM ≥ 14 years had lower midlife BMI and fat mass than participants in the other AAM groups and pre- and perimenopausal women with AAM ≥ 14 years had lower BMD than those with AAM ≤ 12. The findings indicate that participation in competitive sport in adolescence is associated with healthier body composition, higher BMD, and better physical performance in midlife, but BMD might be impaired if menarche occurs late.
Collapse
|
3
|
Structural Strength Benefits Observed at the Hip of Premenarcheal Gymnasts Are Maintained Into Young Adulthood 10 Years After Retirement From the Sport. Pediatr Exerc Sci 2017; 29:476-485. [PMID: 28661717 DOI: 10.1123/pes.2017-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE Premenarcheal female gymnasts have been consistently found to have greater bone mass and structural advantages. However, little is known about whether these structural advantages are maintained after the loading stimulus is removed. Therefore, the purpose of this study was to investigate the structural properties at the hip after long-term retirement from gymnastics. METHODS Structural properties were derived from dual-energy X-ray absorptiometry scans using the hip structural analysis program for the same 24 gymnasts and 21 nongymnasts both in adolescence (8-15 y) and adulthood (22-30 y). Structural measures were obtained at the narrow neck, intertrochanter, and femoral shaft and included cross-sectional area, section modulus, and buckling ratio. Multivariate analysis of covariance was used to assess differences between groups in bone measures while controlling for size, age, maturity, and physical activity. RESULTS Gymnasts were found to have structural advantages at the narrow neck in adolescence (16% greater cross-sectional area, 17% greater section modulus, and 25% lower buckling ratio) and 14 years later (13% greater cross-sectional area and 26% lower buckling ratio). Benefits were also found at the intertrochanter and femoral shaft sites in adolescence and adulthood. CONCLUSION Ten years after retirement from gymnastics, former gymnasts' maintained significantly better hip bone structure than females who did not participate in gymnastics during growth.
Collapse
|
4
|
Scerpella TA, Bernardoni B, Wang S, Rathouz PJ, Li Q, Dowthwaite JN. Site-specific, adult bone benefits attributed to loading during youth: A preliminary longitudinal analysis. Bone 2016; 85:148-59. [PMID: 26826335 PMCID: PMC4947934 DOI: 10.1016/j.bone.2016.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/21/2015] [Accepted: 01/24/2016] [Indexed: 11/28/2022]
Abstract
We examined site-specific bone development in relation to childhood and adolescent artistic gymnastics exposure, comparing up to 10years of prospectively acquired longitudinal data in 44 subjects, including 31 non-gymnasts (NON) and 13 gymnasts (GYM) who participated in gymnastics from pre-menarche to ≥1.9years post-menarche. Subjects underwent annual regional and whole-body DXA scans; indices of bone geometry and strength were calculated. Anthropometrics, physical activity, and maturity were assessed annually, coincident with DXA scans. Non-linear mixed effect models centered growth in bone outcomes at menarche and adjusted for menarcheal age, height, and non-bone fat-free mass to evaluate GYM-NON differences. A POST-QUIT variable assessed the withdrawal effect of quitting gymnastics. Curves for bone area, mass (BMC), and strength indices were higher in GYM than NON at both distal radius metaphysis and diaphysis (p<0.0001). At the femoral neck, greater GYM BMC (p<0.01), narrower GYM endosteal diameter (p<0.02), and similar periosteal width (p=0.09) yielded GYM advantages in narrow neck cortical thickness and buckling ratio (both p<0.001; lower BR indicates lower fracture risk). Lumbar spine and sub-head BMC were greater in GYM than NON (p<0.036). Following gymnastics cessation, GYM slopes increased for distal radius diaphysis parameters (p≤0.01) and for narrow neck BR (p=0.02). At the distal radius metaphysis, GYM BMC and compressive strength slopes decreased, as did slopes for lumbar spine BMC, femoral neck BMC, and narrow neck cortical thickness (p<0.02). In conclusion, advantages in bone mass, geometry, and strength at multiple skeletal sites were noted across growth and into young adulthood in girls who participated in gymnastics loading to at least 1.9years post-menarche. Following gymnastics cessation, advantages at cortical bone sites improved or stabilized, while advantages at corticocancellous sites stabilized or diminished. Additional longitudinal observation is necessary to determine whether residual loading benefits enhance lifelong skeletal strength.
Collapse
Affiliation(s)
- Tamara A Scerpella
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave, 6th floor, Madison, WI 53705, USA; Musculoskeletal Science Research Center, Institute for Human Performance, SUNY Upstate Medical University, Rm. 3202, 505 Irving Ave., Syracuse, NY 13210, USA.
| | - Brittney Bernardoni
- University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53726, USA
| | - Sijian Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA
| | - Paul J Rathouz
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA
| | - Quefeng Li
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA
| | - Jodi N Dowthwaite
- Musculoskeletal Science Research Center, Institute for Human Performance, SUNY Upstate Medical University, Rm. 3202, 505 Irving Ave., Syracuse, NY 13210, USA; Department of Exercise Science, Syracuse University, 201 Women's Building, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Relationships between self-reported lifetime physical activity, estimates of current physical fitness, and aBMD in adult premenopausal women. Arch Osteoporos 2015; 10:34. [PMID: 26424470 DOI: 10.1007/s11657-015-0239-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/21/2015] [Indexed: 02/03/2023]
Abstract
UNLABELLED Osteoporosis is common, and physical activity is important in its prevention and treatment. Of the categories of historical physical activity (PA) examined, we found that weight-bearing and very hard physical activity had the strongest relationships with areal bone mineral density (aBMD) throughout growth and into adulthood, while for measures of strength, only grip strength proved to be an independent predictor of aBMD. PURPOSE/INTRODUCTION To examine relationships between aBMD (total body, lumbar spine, proximal femur, tibial shaft, distal radius) and estimates of historical PA, current strength, and cardiovascular fitness in adult premenopausal women. METHODS One hundred fifty-two adult premenopausal women (40 ± 9.6 years) undertook aBMD (dual-energy X-ray absorptiometry (DXA)) and completed surveys to estimate historical physical activity representative of three decades (Kriska et al. [1]), while subsets underwent functional tests of isokinetic strength (hamstrings and quadriceps), grip strength (hand dynamometer), and maximum oxygen uptake (MaxV02; cycle ergometer). Historical PA was characterized by demand (metabolic equivalents, PA > 3 METS; PA > 7 METS) and type (weight-bearing; high impact). RESULTS Significant positive independent predictors varied by decade and site, with weight-bearing exercise and PA > 3 METS significant for the tibial shaft (10-19 decade) and only PA > 7 METS significant for the final two decades (20-29 and 30-39 years; total body and total hip). A significant negative correlation between high impact activity and tibial shaft aBMD appeared for the final decade. For strength measures, only grip strength was an independent predictor (total body, total hip), while MaxV02 provided a significant independent prediction for the tibial shaft. CONCLUSIONS Past PA > 7 METS was positively associated with aBMD, and such activity should probably constitute a relatively high proportion of all weekly PA to positively affect aBMD. The findings warrant more detailed investigations in a prospective study, specifically also investigating the potentially negative effects of high impact PA on tibial aBMD.
Collapse
|
6
|
Jackowski SA, Baxter-Jones ADG, Gruodyte-Raciene R, Kontulainen SA, Erlandson MC. A longitudinal study of bone area, content, density, and strength development at the radius and tibia in children 4-12 years of age exposed to recreational gymnastics. Osteoporos Int 2015; 26:1677-90. [PMID: 25740207 DOI: 10.1007/s00198-015-3041-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 01/14/2015] [Indexed: 12/01/2022]
Abstract
UNLABELLED This study investigated the long-term relationship between the exposure to childhood recreational gymnastics and bone measures and bone strength parameters at the radius and tibia. It was observed that individuals exposed to recreational gymnastics had significantly greater total bone content and area at the distal radius. No differences were observed at the tibia. INTRODUCTION This study investigated the relationship between exposure to early childhood recreational gymnastics with bone measures and bone strength development at the radius and tibia. METHODS One hundred twenty seven children (59 male, 68 female) involved in either recreational gymnastics (gymnasts) or other recreational sports (non-gymnasts) between 4 and 6 years of age were recruited. Peripheral quantitative computed tomography (pQCT) scans of their distal and shaft sites of the forearm and leg were obtained over 3 years, covering the ages of 4-12 years at study completion. Multilevel random effects models were constructed to assess differences in the development of bone measures and bone strength measures between those exposed and not exposed to gymnastics while controlling for age, limb length, weight, physical activity, muscle area, sex, and hours of training. RESULTS Once age, limb length, weight, muscle area, physical activity, sex, and hours of training effects were controlled, it was observed that individuals exposed to recreational gymnastics had significantly greater total bone area (18.0 ± 7.5 mm(2)) and total bone content (6.0 ± 3.0 mg/mm) at the distal radius (p < 0.05). This represents an 8-21 % benefit in ToA and 8-15 % benefit to ToC from 4 to 12 years of age. Exposure to recreational gymnastics had no significant effect on bone measures at the radius shaft or at the tibia (p > 0.05). CONCLUSIONS Exposure to early life recreational gymnastics provides skeletal benefits to distal radius bone content and area. Thus, childhood recreational gymnastics exposure may be advantageous to bone development at the wrist.
Collapse
Affiliation(s)
- S A Jackowski
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK, S7N5B2, Canada
| | - A D G Baxter-Jones
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK, S7N5B2, Canada.
| | | | - S A Kontulainen
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK, S7N5B2, Canada
| | - M C Erlandson
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK, S7N5B2, Canada
| |
Collapse
|
7
|
Jackowski SA, Kontulainen SA, Cooper DML, Lanovaz JL, Beck TJ, Baxter-Jones ADG. Adolescent physical activity and bone strength at the proximal femur in adulthood. Med Sci Sports Exerc 2015; 46:736-44. [PMID: 24002345 DOI: 10.1249/mss.0000000000000154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Physical activity (PA) enhances bone structural strength at the proximal femur in adolescence, but whether these benefits are maintained into early adulthood remains unknown. The purpose of this study was to investigate whether males and females, described as active, average, and inactive during adolescence, display differences in structural strength at the proximal femur in early adulthood (20-30 yr). METHODS One hundred four participants (55 males and 49 females) from the Pediatric Bone Mineral Accrual Study (PBMAS) were categorized into adolescent PA groupings (inactive, average, and active) using the Physical Activity Questionnaire for Adolescents. Cross-sectional area and section modulus (Z) at the narrow neck, intertrochanter, and femoral shaft (S) sites of the proximal femur were assessed using hip structural analysis in young adulthood from femoral neck dual-energy x-ray absorptiometry scans. Group differences were assessed using ANCOVA, controlling for adult height (Ht), adult weight (Wt), adolescent bone geometry, sex, percentage adult total body lean tissue (LTM%), and adult PA levels. RESULTS Active adolescents had significantly greater adjusted bone geometric measures at all sites than their inactive classified peers during adolescence (P < 0.05). In adulthood, when adjusted for Ht, Wt, adolescent bone geometry, sex, LTM%, and adult PA levels, adolescent participants categorized as active had significantly greater adjusted adult bone geometric measures at the proximal femur than adult participants who were classified as inactive during adolescence (P < 0.05). CONCLUSIONS Skeletal advantages associated with adolescence activity appear to confer greater geometric bone structural strength at the proximal femur in young adulthood.
Collapse
Affiliation(s)
- Stefan A Jackowski
- 1College of Kinesiology, University of Saskatchewan, Saskatoon, SK, CANADA; 2Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, CANADA; and 3Department of Medical Imaging, John Hopkins University Baltimore, MD
| | | | | | | | | | | |
Collapse
|
8
|
Nasri R, Hassen Zrour S, Rebai H, Neffeti F, Najjar MF, Bergaoui N, Mejdoub H, Tabka Z. Combat sports practice favors bone mineral density among adolescent male athletes. J Clin Densitom 2015; 18:54-9. [PMID: 24176431 DOI: 10.1016/j.jocd.2013.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/08/2013] [Accepted: 09/11/2013] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the impact of combat sports practice on bone mineral density (BMD) and to analyze the relationship between bone parameters and anthropometric measurements, bone markers, and activity index (AI). In other words, to detect the most important determinant of BMD in the adolescent period among combat sports athletes. Fifty athletes engaged in combat sports, mean age 17.1±0.2 yr, were compared with 30 sedentary subjects who were matched for age, height, and pubertal stage. For all subjects, the whole-body BMD, lumbar spine BMD (L2-L4), and BMD in the pelvis, arms, and legs was measured by dual-energy X-ray absorptiometry, and anthropometric measurements were evaluated. Daily calcium intake, bone resorption, and formation markers were measured. BMD measurements were greater in the combat sports athletes than in the sedentary group (p<0.01). Weight, body mass index, and lean body mass were significantly correlated with BMD in different sites. Daily calcium consumption lower than daily calcium intake recommended in both athletes and sedentary group. AI was strongly correlated with all BMD measurements particularly with the whole body, legs, and arms. Negative correlations were observed between bone markers and BMD in different sites. The common major predictor of BMD measurements was AI (p<0.0001). AI associated to lean body mass determined whole-body BMD until 74%. AI explained both BMD in arms and L2-L4 at 25%. AI associated to height can account for 63% of the variance in BMD legs. These observations suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the AI. Children and adolescents should be encouraged to participate in combat sports to maximize their bone accrual.
Collapse
Affiliation(s)
- Raouf Nasri
- Laboratory of Physiology and Functional Explorations, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia.
| | | | - Haithem Rebai
- Laboratory of Physiology and Functional Explorations, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| | - Fadoua Neffeti
- Biochemistry and Toxicology Laboratory, Monastir Teaching Hospital, Monastir, Tunisia
| | - Mohamed Fadhel Najjar
- Biochemistry and Toxicology Laboratory, Monastir Teaching Hospital, Monastir, Tunisia
| | - Naceur Bergaoui
- Rheumatology Department, Monastir Teaching Hospital, Monastir, Tunisia
| | - Hafedh Mejdoub
- Research Laboratory of Protein Sequencer, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Zouhair Tabka
- Laboratory of Physiology and Functional Explorations, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| |
Collapse
|
9
|
Malina RM, Baxter-Jones ADG, Armstrong N, Beunen GP, Caine D, Daly RM, Lewis RD, Rogol AD, Russell K. Role of intensive training in the growth and maturation of artistic gymnasts. Sports Med 2014; 43:783-802. [PMID: 23743792 PMCID: PMC3751410 DOI: 10.1007/s40279-013-0058-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Short stature and later maturation of youth artistic gymnasts are often attributed to the effects of intensive training from a young age. Given limitations of available data, inadequate specification of training, failure to consider other factors affecting growth and maturation, and failure to address epidemiological criteria for causality, it has not been possible thus far to establish cause–effect relationships between training and the growth and maturation of young artistic gymnasts. In response to this ongoing debate, the Scientific Commission of the International Gymnastics Federation (FIG) convened a committee to review the current literature and address four questions: (1) Is there a negative effect of training on attained adult stature? (2) Is there a negative effect of training on growth of body segments? (3) Does training attenuate pubertal growth and maturation, specifically, the rate of growth and/or the timing and tempo of maturation? (4) Does training negatively influence the endocrine system, specifically hormones related to growth and pubertal maturation? The basic information for the review was derived from the active involvement of committee members in research on normal variation and clinical aspects of growth and maturation, and on the growth and maturation of artistic gymnasts and other youth athletes. The committee was thus thoroughly familiar with the literature on growth and maturation in general and of gymnasts and young athletes. Relevant data were more available for females than males. Youth who persisted in the sport were a highly select sample, who tended to be shorter for chronological age but who had appropriate weight-for-height. Data for secondary sex characteristics, skeletal age and age at peak height velocity indicated later maturation, but the maturity status of gymnasts overlapped the normal range of variability observed in the general population. Gymnasts as a group demonstrated a pattern of growth and maturation similar to that observed among short-, normal-, late-maturing individuals who were not athletes. Evidence for endocrine changes in gymnasts was inadequate for inferences relative to potential training effects. Allowing for noted limitations, the following conclusions were deemed acceptable: (1) Adult height or near adult height of female and male artistic gymnasts is not compromised by intensive gymnastics training. (2) Gymnastics training does not appear to attenuate growth of upper (sitting height) or lower (legs) body segment lengths. (3) Gymnastics training does not appear to attenuate pubertal growth and maturation, neither rate of growth nor the timing and tempo of the growth spurt. (4) Available data are inadequate to address the issue of intensive gymnastics training and alterations within the endocrine system.
Collapse
Affiliation(s)
- Robert M Malina
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 2014; 111:5337-42. [PMID: 24706816 DOI: 10.1073/pnas.1321605111] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The skeleton shows greatest plasticity to physical activity-related mechanical loads during youth but is more at risk for failure during aging. Do the skeletal benefits of physical activity during youth persist with aging? To address this question, we used a uniquely controlled cross-sectional study design in which we compared the throwing-to-nonthrowing arm differences in humeral diaphysis bone properties in professional baseball players at different stages of their careers (n = 103) with dominant-to-nondominant arm differences in controls (n = 94). Throwing-related physical activity introduced extreme loading to the humeral diaphysis and nearly doubled its strength. Once throwing activities ceased, the cortical bone mass, area, and thickness benefits of physical activity during youth were gradually lost because of greater medullary expansion and cortical trabecularization. However, half of the bone size (total cross-sectional area) and one-third of the bone strength (polar moment of inertia) benefits of throwing-related physical activity during youth were maintained lifelong. In players who continued throwing during aging, some cortical bone mass and more strength benefits of the physical activity during youth were maintained as a result of less medullary expansion and cortical trabecularization. These data indicate that the old adage of "use it or lose it" is not entirely applicable to the skeleton and that physical activity during youth should be encouraged for lifelong bone health, with the focus being optimization of bone size and strength rather than the current paradigm of increasing mass. The data also indicate that physical activity should be encouraged during aging to reduce skeletal structural decay.
Collapse
|
11
|
Duckham RL, Baxter-Jones ADG, Johnston JD, Vatanparast H, Cooper D, Kontulainen S. Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? J Bone Miner Res 2014; 29:479-86. [PMID: 23907819 DOI: 10.1002/jbmr.2055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022]
Abstract
The long-term benefits of habitual physical activity during adolescence on adult bone structure and strength are poorly understood. We investigated whether physically active adolescents had greater bone size, density, content, and estimated bone strength in young adulthood when compared to their peers who were inactive during adolescence. Peripheral quantitative computed tomography (pQCT) was used to measure the tibia and radius of 122 (73 females) participants (age mean ± SD, 29.3 ± 2.3 years) of the Saskatchewan Pediatric Bone Mineral Accrual Study (PBMAS). Total bone area (ToA), cortical density (CoD), cortical area (CoA), cortical content (CoC), and estimated bone strength in torsion (SSIp ) and muscle area (MuA) were measured at the diaphyses (66% tibia and 65% radius). Total density (ToD), trabecular density (TrD), trabecular content (TrC), and estimated bone strength in compression (BSIc ) were measured at the distal ends (4%). Participants were grouped by their adolescent physical activity (PA) levels (inactive, average, and active) based on mean PA Z-scores obtained from serial questionnaire assessments completed during adolescence. We compared adult bone outcomes across adolescent PA groups in each sex using analysis of covariance followed by post hoc pairwise comparisons with Bonferroni adjustments. When adjusted for adult height, MuA, and PA, adult males who were more physically active than their peers in adolescence had 13% greater adjusted torsional bone strength (SSIp , p < 0.05) and 10% greater adjusted ToA (p < 0.05) at the tibia diaphysis. Females who were more active in adolescence had 10% larger adjusted CoA (p < 0.05), 12% greater adjusted CoC (p < 0.05) at the tibia diaphysis, and 3% greater adjusted TrC (p < 0.05) at the distal tibia when compared to their inactive peers. Benefits to tibia bone size, content, and strength in those who were more active during adolescence seemed to persist into young adulthood, with greater ToA and SSIp in males, and greater CoA, CoC, and TrC in females.
Collapse
Affiliation(s)
- Rachel L Duckham
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones ADG. Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. J Bone Miner Res 2012; 27:2298-305. [PMID: 22714629 DOI: 10.1002/jbmr.1689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Young female gymnasts have greater bone strength compared to controls; although possibly due to selection into gymnastics, it is thought that their loading activity during growth increases their bone mass, influencing both bone geometry and architecture. If such bone mass and geometric adaptations are maintained, this may potentially decrease the risk of osteoporosis and risk of fracture later in life. However, there is limited evidence of the persisting benefit of gymnastic exercise during growth on adult bone geometric parameters. Therefore, the purpose of this study was to determine whether adult bone geometry, volumetric density, and estimated strength were greater in retired gymnasts compared to controls, 10 years after retirement from the sport. Bone geometric and densitometric parameters, measured by peripheral quantitative computed tomography (pQCT) at the radius and tibia, were compared between 25 retired female gymnasts and 22 controls, age range 22 to 30 years, by multivariate analysis of covariance (covariates: age, height, and muscle cross-sectional area). Retired gymnasts had significantly greater adjusted total and trabecular area (16%), total and trabecular bone mineral content (BMC) (18% and 22%, respectively), and estimated strength (21%) at the distal radius (p < 0.05) than controls. Adjusted total and cortical area and BMC, medullary area, and estimated strength were also significantly greater (13% to 46%) in retired gymnasts at the 30% and 65% radial shaft sites (p < 0.05). At the distal tibia, retired gymnasts had 12% to 13% greater total and trabecular BMC and volumetric bone mineral density as well as 21% greater estimated strength; total and cortical BMC and estimated strength were also greater at the tibial shaft (8%, 11%, and 10%, respectively) (p < 0.05). Former female gymnasts have significantly better geometric and densitometric properties, as well as estimated strength, at the radius and tibia 10 years after retirement from gymnastics compared to females who did not participate in gymnastics in childhood and adolescence.
Collapse
Affiliation(s)
- Marta C Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Burt LA, Greene DA, Ducher G, Naughton GA. Skeletal adaptations associated with pre-pubertal gymnastics participation as determined by DXA and pQCT: a systematic review and meta-analysis. J Sci Med Sport 2012; 16:231-9. [PMID: 22951266 DOI: 10.1016/j.jsams.2012.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/20/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022]
Abstract
UNLABELLED Participation in gymnastics prior to puberty offers an intriguing and unique model, particularly in girls. The individuality comes from both upper and lower limbs being exposed to high mechanical loading through year long intensive training programs, initiated at a young age. Studying this unique model and the associated changes in musculoskeletal health during growth is an area of specific interest. Previous reviews on gymnastics participation and bone health have been broad; and not limited to a particular maturation period, such as pre-puberty. OBJECTIVES To determine the difference in skeletal health between pre-pubertal girls participating in gymnastics compared with non-gymnasts. DESIGN Meta-analysis. METHODS Following a systematic search, 17 studies were included in this meta-analysis. All studies used dual-energy X-ray absorptiometry to assess bone mineral density and bone mineral content. In addition, two studies included peripheral quantitative computed tomography. RESULTS Following the implementation of a random effects model, gymnasts were found to have greater bone properties than non-gymnasts. The largest difference in bone health between gymnasts and non-gymnasts was observed in peripheral quantitative computed tomography-derived volumetric bone mineral density at the distal radius (d=1.06). CONCLUSIONS Participation in gymnastics during pre-pubertal growth was associated with skeletal health benefits, particularly to the upper body.
Collapse
Affiliation(s)
- Lauren A Burt
- Centre of Physical Activity Across the Lifespan, Australian Catholic University, Australia.
| | | | | | | |
Collapse
|
14
|
Burt LA, Naughton GA, Greene DA, Courteix D, Ducher G. Non-elite gymnastics participation is associated with greater bone strength, muscle size, and function in pre- and early pubertal girls. Osteoporos Int 2012; 23:1277-86. [PMID: 21660556 DOI: 10.1007/s00198-011-1677-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/11/2011] [Indexed: 11/26/2022]
Abstract
UNLABELLED Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. INTRODUCTION The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. METHODS Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. RESULTS HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. CONCLUSION Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.
Collapse
Affiliation(s)
- L A Burt
- Centre of Physical Activity Across the Lifespan, Australian Catholic University, Locked Bag 2002, 2135 Strathfield, NSW, Australia.
| | | | | | | | | |
Collapse
|
15
|
Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones ADG. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res 2012; 27:104-10. [PMID: 21956460 DOI: 10.1002/jbmr.514] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/08/2011] [Accepted: 08/29/2011] [Indexed: 11/11/2022]
Abstract
Sports that impact-load the skeleton during childhood and adolescence increase determinants of bone strength such as bone mineral content and density; however, it is unclear if this benefit is maintained after retirement from the sport. The purpose of this study was to assess whether the previously reported higher bone mass in a group of premenarcheal gymnasts was still apparent 10 years after the cessation of participation and withdrawal of the gymnastics loading stimulus. In 1995, 30 gymnasts 8 to 15 years of age were measured and compared with 30 age-matched nongymnasts. Twenty-five former gymnasts and 22 nongymnasts were measured again 14 years later (2009 to 2010). Gymnasts had been retired from gymnastics training and competition for an average of 10 years. Total body (TB), lumbar spine (LS), and femoral neck (FN) bone mineral content (BMC) was assessed at both measurement occasions by dual-energy X-ray absorptiometry (DXA). Multivariate analysis of covariance (MANCOVA) was used to compare former gymnasts' and nongymnasts' BMC while controlling for differences in body size and maturation (covariates: age, height, weight, and years from menarche [1995] or age at menarche [2009 to 2010]). Premenarcheal gymnasts (measured in 1995) had significantly greater size-adjusted TB, LS, and FN BMC (p < 0.05) (15%, 17%, and 12%, respectively) than nongymnasts. Ten years after retirement, gymnasts had maintained similar size-adjusted TB, LS, and FN BMC differences (p < 0.05) (13%, 19%, and 13%, respectively) when compared with nongymnasts. Bone mass benefits in premenarcheal gymnasts were still apparent even after long-term (10 years) removal of the gymnastics loading stimulus.
Collapse
Affiliation(s)
- Marta C Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Dowthwaite JN, Rosenbaum PF, Scerpella TA. Mechanical loading during growth is associated with plane-specific differences in vertebral geometry: A cross-sectional analysis comparing artistic gymnasts vs. non-gymnasts. Bone 2011; 49:1046-54. [PMID: 21839871 PMCID: PMC3200503 DOI: 10.1016/j.bone.2011.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/27/2011] [Accepted: 07/21/2011] [Indexed: 11/20/2022]
Abstract
Lumbar spine geometry, density and indices of bone strength were assessed relative to menarche status, using artistic gymnastics exposure during growth as a model of mechanical loading. Paired posteroanterior (pa) and supine lateral (lat) DXA scans of L3 for 114 females (60 ex/gymnasts and 54 non-gymnasts) yielded output for comparison of paired (palat) versus standard pa and lat outcomes. BMC, areal BMD, vertebral body dimensions, bone mineral apparent density (BMAD), axial compressive strength (IBS) and a fracture risk index were evaluated, modeling vertebral body geometry as an ellipsoid cylinder. Two-factor ANCOVA tested statistical effects of gymnastic exposure, menarche status and their interaction, adjusting for age and height as appropriate. Compared to non-gymnasts, ex/gymnasts exhibited greater paBMD, paBMC, paWidth, pa Cross-sectional area (CSA), paVolume, latBMD, latBMAD, palatCSA and palatIBS (p<0.05). Non-gymnasts exhibited greater latDepth/paWidth, latBMC/paBMC, latVHeight, latArea and Fracture Risk Index. Using ellipsoid vertebral geometric models, no significant differences were detected for pa or palat BMAD. In contrast, cuboid model results (Carter et al., 1992) suggested erroneous ex/gymnast paBMAD advantages, resulting from invalid assumptions of proportional variation in linear skeletal dimensions. Gymnastic exposure was associated with shorter, wider vertebral bodies, yielding greater axial compressive strength and lower fracture risk, despite no BMAD advantage. Our results suggest the importance of plane-specific vertebral geometric adaptation to mechanical loading during growth. Paired scan output provides a more accurate assessment of this adaptation than pa or lat plane scans alone.
Collapse
Affiliation(s)
- Jodi N. Dowthwaite
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, U.S.A. Phone: 001-315-464-9981; Fax: 001-315-464-6638
| | - Paula F. Rosenbaum
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, NY, U.S.A. Phone: 001-315-464-464-4430; Fax:001-315-464-4429
| | - Tamara A. Scerpella
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, U.S.A. Phone: 001-315-464-9981; Fax: 001-315-464-6638
| |
Collapse
|
17
|
Scerpella TA, Dowthwaite JN, Rosenbaum PF. Sustained skeletal benefit from childhood mechanical loading. Osteoporos Int 2011; 22:2205-10. [PMID: 20838772 PMCID: PMC3209532 DOI: 10.1007/s00198-010-1373-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/11/2010] [Indexed: 11/26/2022]
Abstract
SUMMARY Preliminary prospective, longitudinal results suggest that pre-menarcheal exposure to artistic gymnastics is associated with greater radius BMC, aBMD, and projected area throughout growth and into early adulthood, more than 4 years after activity cessation. Any loss of benefit associated with de-training appears to be temporary. INTRODUCTION Mechanical loading may enhance bone accrual during growth, but prospective evidence of benefit retention is limited. This prospective, longitudinal cohort study tests whether gymnastics is linked to distal radius advantages during growth and four or more years post-training cessation. METHODS Semi-annually, female ex/gymnasts and non-gymnasts underwent height and weight measurements; questionnaires assessed calcium intake, physical activity, and maturation. Annual dual energy X-ray absorptiometry scans (Hologic QDR 4500W) measured total body fat-free mass, skull areal density (aBMD), and bone mineral content (BMC); forearm scans measured ultradistal and 1/3 radius area, BMC, and aBMD. Analysis inclusion criteria were: (1) achievement of gynecological age >4 years and (2) for gymnasts, >2 years of pre-menarcheal training (>6 h/week), ceasing between 0.5 year pre-menarche and 1 year post-menarche. Hierarchical linear modeling (HLM v6.0) evaluated outcomes for ex/gymnasts versus non-gymnasts; a slope/intercept discontinuity evaluated de-training effects. RESULTS Data from 14 non-gymnasts and six ex/gymnasts represented outcomes from 4 years pre-menarche to 9 years post-menarche. All adjusted distal radius parameters were higher in ex/gymnasts than non-gymnasts (p < 0.02). Ultradistal BMC, ultradistal aBMD, and 1/3 aBMD temporarily decreased with gymnastic cessation (p < 0.04); ultradistal area, 1/3 area, and 1/3 BMC did not change significantly. Skull outcomes did not differ between groups or change with activity cessation. CONCLUSION Gymnastic exposure during childhood and early puberty is associated with greater radius bone mass, size, and aBMD. Despite brief de-training losses in density and mass, significant skeletal benefits are manifested throughout growth and at least 4 years beyond activity cessation into early adulthood.
Collapse
Affiliation(s)
- T A Scerpella
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 1685 Highland Avenue, 6th Floor, Madison, WI 53705-2281, USA
| | | | | |
Collapse
|
18
|
Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Baxter-Jones ADG. Bone mineral accrual in 4- to 10-year-old precompetitive, recreational gymnasts: a 4-year longitudinal study. J Bone Miner Res 2011; 26:1313-20. [PMID: 21308773 DOI: 10.1002/jbmr.338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Competitive female gymnasts have greater bone mineral measures than nongymnasts. However, less is known about the effect of recreational and/or precompetitive gymnastics participation on bone development. The purpose of this study was to investigate whether the differences previously reported in the skeleton of competitive female gymnasts are also demonstrated in young children with a current or past participation history in recreational or precompetitive gymnastics. One hundred and sixty-three children (30 gymnasts, 61 ex-gymnasts, and 72 nongymnasts) between 4 and 6 years of age were recruited and measured annually for 4 years (not all participants were measured at every occasion). Total-body (TB), lumbar spine (LS), and femoral neck (FN) bone mineral content (BMC) were measured by dual-energy X-ray absorptiometry (DXA). Multilevel random-effects models were constructed and used to predict differences in TB, LS, and FN BMC between groups while controlling for differences in body size, physical activity, and diet. Gymnasts had 3% more TB and 7% more FN BMC than children participating in other recreational sports at year 4 (p < .05). No differences were found at the LS between groups, and there were no differences between ex-gymnasts' and nongymnasts' bone parameters (p > .05). These findings suggest that recreational and precompetitive gymnastics participation is associated with greater BMC. This is important because beginner gymnastics skills are attainable by most children and do not require a high level of training. Low-level gymnastics skills can be implemented easily into school physical education programs, potentially affecting skeletal health.
Collapse
Affiliation(s)
- Marta C Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
19
|
Erlandson MC, Kontulainen SA, Baxter-Jones ADG. Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporos Int 2011; 22:75-84. [PMID: 20458575 DOI: 10.1007/s00198-010-1263-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
UNLABELLED Young recreational and precompetitive gymnasts had, on average, 23% greater bone strength at the wrist compared to children participating in other recreational sports. Recreational gymnastics involves learning basic movement patterns and general skill development and as such can easily be implemented into school physical education programs potentially impacting skeletal health. INTRODUCTION Competitive gymnasts have greater bone mass, density, and estimated strength. The purpose of this study was to investigate whether the differences reported in the skeleton of competitive gymnasts are also apparent in young recreational and precompetitive gymnasts. METHODS One hundred twenty children (29 gymnasts, 46 ex-gymnasts, and 45 non-gymnasts) between 4 and 9 years of age (mean = 6.8 ± 1.3) were measured. Bone mass, density, structure, and estimated strength were determined using peripheral quantitative computed tomography at the distal (4%) and shaft (65%, 66%) sites in the radius and tibia. Total body, hip, and spine bone mineral content (BMC) was assessed using dual energy X-ray absorptiometry. Analysis of covariance (covariates of sex, age and height) was used to investigate differences in total bone content (ToC), total bone density (ToD), total bone area (ToA), and estimated strength (BSI) at the distal sites and ToA, cortical content (CoC), cortical density (CoD), cortical area (CoA), cortical thickness, medullary area, and estimated strength (SSIp) at the shaft sites. RESULTS Gymnasts and ex-gymnasts had 5% greater adjusted total body BMC and 6-25% greater adjusted ToC, ToD, and BSI at the distal radius compared to non-gymnasts (p < 0.05). Ex-gymnasts had 7-11% greater CoC and CoA at the radial shaft and 5-8% greater CoC and SSIp at the tibial shaft than gymnasts and non-gymnasts. Ex-gymnasts also had 12-22% greater ToC and BSI at the distal tibia compared to non-gymnasts (p < 0.05). CONCLUSION This data suggests that recreational and precompetitive gymnastics participation is associated with greater bone strength.
Collapse
Affiliation(s)
- M C Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
20
|
Ducher G, Eser P, Hill B, Bass S. History of amenorrhoea compromises some of the exercise-induced benefits in cortical and trabecular bone in the peripheral and axial skeleton: a study in retired elite gymnasts. Bone 2009; 45:760-7. [PMID: 19573632 DOI: 10.1016/j.bone.2009.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/25/2009] [Accepted: 06/20/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND Female gymnasts frequently present with overt signs of hypoestrogenism, such as late menarche or menstrual dysfunction. The objective was to investigate the impact of history of amenorrhoea on the exercise-induced skeletal benefits in bone geometry and volumetric density in retired elite gymnasts. SUBJECTS AND METHODS 24 retired artistic gymnasts, aged 17-36 years, who had been training for at least 15 h/week at the peak of their career and had been retired for 3-18 years were recruited. They had not been engaged in more than 2 h/week of regular physical activity since retirement. Former gymnasts who reported history of amenorrhoea ('AME', n=12: either primary or secondary amenorrhoea) were compared with former gymnasts ('NO-AME', n=12) and controls ('C', n=26) who did not report history of amenorrhoea. Bone mineral content (BMC), total bone area (ToA) and total volumetric density (ToD) were measured by pQCT at the radius and tibia (4% and 66%). Trabecular volumetric density (TrD) and bone strength index (BSI) were measured at the 4% sites. Cortical area (CoA), cortical thickness (CoTh), medullary area (MedA), cortical volumetric density (CoD), stress-strain index (SSI) and muscle and fat area were measured at the 66% sites. Spinal BMC, areal BMD and bone mineral apparent density (BMAD) were measured by DXA. RESULTS Menarcheal age was delayed in AME when compared to NO-AME (16.4+/-0.5 years vs. 13.3+/-0.4 years, p<0.001). No differences were detected between AME and C for height-adjusted spinal BMC, aBMD and BMAD, TrD and BSI at the distal radius and tibia, CoA at the proximal radius, whereas these parameters were greater in NO-AME than C (p<0.05-0.005). AME had lower TrD and BSI at the distal radius, and lower spinal BMAD than NO-AME (p<0.05) but they had greater ToA at the distal radius (p<0.05). CONCLUSION Greater spinal BMC, aBMD and BMAD as well as trabecular volumetric density and bone strength in the peripheral skeleton were found in former gymnasts without a history of menstrual dysfunction but not in those who reported either primary or secondary amenorrhoea. History of amenorrhoea may have compromised some of the skeletal benefits associated with high-impact gymnastics training.
Collapse
Affiliation(s)
- G Ducher
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Faculty of Health, Medicine, Nursing and Behavioural Sciences, Deakin University, 221 Burwood Highway, Burwood 3125 VIC, Australia.
| | | | | | | |
Collapse
|
21
|
Ducher G, Bass SL. Exercise during growth: Compelling evidence for the primary prevention of osteoporosis? ACTA ACUST UNITED AC 2007. [DOI: 10.1138/20070263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|