1
|
Alfieri F, Veneziano A, Panetta D, Salvadori PA, Amson E, Marchi D. The relationship between primate distal fibula trabecular architecture and arboreality, phylogeny and size. J Anat 2025; 246:907-935. [PMID: 39840527 PMCID: PMC12079769 DOI: 10.1111/joa.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025] Open
Abstract
The fibula, despite being traditionally overlooked compared to the femur and the tibia, has recently received attention in primate functional morphology due to its correlation with the degree of arboreality (DOA). Highlighting further fibular features that are associated with arboreal habits would be key to improving palaeobiological inferences in fossil specimens. Here we present the first investigation on the trabecular bone structure of the primate fibula, focusing on the distal epiphysis, across a vast array of species. We collected μCT data on the distal fibula for 21 species of primates, with representatives from most of the orders, and we employed a recently developed approach implemented in the R package 'indianaBones' to isolate the entire trabecular bone underlying an epiphysis or articular facet. After extracting both traditional trabecular parameters and novel topological indices, we tested for the posited relationship between trabecular bone and DOA. To disentangle this effect from others related to body size and phylogenetic relationship, we included a body mass proxy as covariate and employed phylogenetic comparative methods. We ran univariate/multivariate and exploratory/inferential statistical analyses. The trabecular structure of the fibular distal epiphysis in primates does not appear to be associated with the DOA. Instead, it is strongly affected by body mass and phylogenetic relationships. Although we identified some minor trends related to human bipedalism, our findings overall discourage, at this stage, the study of distal fibula trabecular bone to infer arboreal behaviors in extinct primates. We further found that body size distribution is strongly related to phylogeny, an issue preventing us from unravelling the influence of the two factors and that we believe can potentially affect future comparative analyses of primates. Overall, our results add to previous evidence of how trabecular traits show variable correlation with locomotor aspects, size and phylogenetic history across the primate skeleton, thus outlining a complex scenario in which a network of interconnected factors affects the morphological evolution of primates. This work may represent a starting point for future studies, for example, focusing on the effect of human bipedalism on distal fibula trabecular bone, or aiming to better understand the effects of body size and phylogenetic history on primate morphological evolution.
Collapse
Affiliation(s)
- Fabio Alfieri
- Institute of Ecology and Evolution, Universität BernBernSwitzerland
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Institut für Biologie, Humboldt Universität Zu BerlinBerlinGermany
- Museum Für NaturkundeLeibniz‐Institut Für Evolutions Und BiodiversitätsforschungBerlinGermany
| | - Alessio Veneziano
- Departament d'Enginyeria MecànicaUniversitat Rovira i VirgiliTarragonaSpain
| | | | | | - Eli Amson
- Staatliches Museum für NaturkundeStuttgartGermany
| | - Damiano Marchi
- Department of BiologyUniversità di PisaPisaItaly
- Centre for the Exploration of the Deep Human JourneyUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
2
|
Cavazzoni G, Dall’Ara E, Palanca M. Microstructure of the human metastatic vertebral body. Front Endocrinol (Lausanne) 2025; 15:1508504. [PMID: 39835261 PMCID: PMC11743553 DOI: 10.3389/fendo.2024.1508504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Bone spinal metastases disrupt the bone homeostasis, inducing a local imbalance in the bone formation and/or resorption, with consequent loss of the structural optimisation of the vertebrae and increase of the risk of fracture. Little is known about the microstructure of the metastatic tissue, the microstructure of the tissue surrounding the lesion, and how it does compare with vertebrae with no lesions observed on the biomedical images. A comprehensive assessment of the microstructural properties of the entire vertebral body can be obtained with micro computed tomography. In this study, we evaluated to what extent the vertebral body is affected by the presence of a metastatic lesion, the properties of the metastatic lesions, and whether the tissue surrounding the lesion has microstructural features similar to those of healthy tissue. Methods A total of 30 metastatic vertebrae, including lytic (N = 12), blastic (N = 10), and mixed (N = 8) metastases, and 20 control vertebrae with no visible lesions on computed tomography were scanned using micro computed tomography (voxel size = 39 mm). The images were segmented and analysed to evaluate the microstructural properties in the entire vertebral body, in the lesion, and in the bone surrounding the lesion. Results The microstructural properties evaluated on the entire vertebral bodies showed remarkable differences between metastatic and control vertebral bodies (p < 0.034) in terms of bone volume fraction, trabecular thickness, degree of anisotropy, connectivity density, and trabecular pattern factor. On the other hand, when the tissue surrounding the lesion was considered, no differences were found between metastatic and control vertebral bodies, except for differences in the degree of anisotropy (p = 0.008). All microstructural parameters measured in the regions including the lytic or the blastic metastases significantly differed (p < 0.001) from those in the tissues surrounding the lesions. The lytic lesions minimally affected the regions closest to the metastases, with significant differences only in the connectivity density. On the other hand, blastic metastases also affected the trabecular separation, the bone surface density, and the connectivity density in the closest tissue surrounding the lesion. Discussion Most of the microstructural features of the trabecular bone in metastatic vertebrae were locally affected by lytic and blastic metastases, whereas the surrounding tissue showed a microstructure similar to that of adjacent vertebrae without visible lesions.
Collapse
Affiliation(s)
- Giulia Cavazzoni
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Zheng Z, Fan Y, Zhang J, Wang J, Li Z. Cedrol alleviates postmenopausal osteoporosis in rats through inhibiting the activation of the NF-κB signaling pathway. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00921-3. [PMID: 38814422 DOI: 10.1007/s11626-024-00921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Pharmacological studies have shown that Cedrol (CE) exhibits extensive biological activities, including anti-inflammatory and analgesic. Moreover, it can inhibit the NF-κB pathway and the expression of various associated proteins. This study aimed to investigate the role of CE in postmenopausal osteoporosis. The results showed that intragastric administration of CE (10 and 20 mg/kg) significantly improved the bone microstructure damage and increased bone mineral density, trabecular bone volume, and bone trabecular thickness in ovariectomized (OVX) rats (p < 0.05). CE treatment additionally made a well-organized arrangement of bone trabeculae and improved its thickness and density. Compared with the OVX group, the levels of tartrate-resistant acid phosphatase from 5b and C-terminal telopeptide of type I collagen were significantly reduced by 42.75% and 49.27% in the OVX + CE rats (p < 0.05). TRAP staining visually showed that the number of osteoclasts in the femur tissue of CE-treated rats was less than that of the OVX group. The expressions of nuclear factor of activated T-cells, cytoplasmic 1, acid phosphatase 5, and cathepsin K in OVX + CE rats were significantly decreased by 51.61%, 46.07%, and 50.34% compared to the OVX group (p < 0.01). In addition, CE intervention effectively reduced the phosphorylation levels of P65 and IκBα and inhibited the NF-κB signaling pathway. Meanwhile, CE diminished the number of multinucleated osteoclasts induced by receptor activator for nuclear factor-κB ligand and hindered cell fusion as well as nuclear translocation of osteoclast precursor cells P65. In conclusion, CE inhibits osteoclastogenesis by suppressing the activation of the NF-κB signaling pathway, thereby alleviating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China.
| | - Ying Fan
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jingyun Zhang
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jian Wang
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Zhenyu Li
- Department of Nursing, Liaoning Vocational College of Medicine, Shenyang, China
| |
Collapse
|
4
|
The nanoformula of zoledronic acid and calcium carbonate targets osteoclasts and reverses osteoporosis. Biomaterials 2023; 296:122059. [PMID: 36848779 DOI: 10.1016/j.biomaterials.2023.122059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Osteoporosis is known as an imbalance in bone catabolism and anabolism. Overactive bone resorption causes bone mass loss and increased incidence of fragility fractures. Antiresorptive drugs are widely used for osteoporosis treatment, and their inhibitory effects on osteoclasts (OCs) have been well established. However, due to the lack of selectivity, their off-target and side effects often bring suffering to patients. Herein, an OCs' microenvironment-responsive nanoplatform HA-MC/CaCO3/ZOL@PBAE-SA (HMCZP) is developed, consisting of succinic anhydride (SA)-modified poly(β-amino ester) (PBAE) micelle, calcium carbonate shell, minocycline-modified hyaluronic acid (HA-MC) and zoledronic acid (ZOL). Results indicate that HMCZP, as compared with the first-line therapy, could more effectively inhibit the activity of mature OCs and significantly reverse the systemic bone mass loss in ovariectomized mice. In addition, the OCs-targeted capacity of HMCZP makes it therapeutically efficient at sites of severe bone mass loss and allows it to reduce the adverse effects of ZOL, such as acute phase reaction. High-throughput RNA sequencing (RNA-seq) reveals that HMCZP could down-regulate a critical osteoporotic target, tartrate-resistant acid phosphatase (TRAP), as well as other potential therapeutical targets for osteoporosis. These results suggest that an intelligent nanoplatform targeting OCs is a promising strategy for osteoporosis therapy.
Collapse
|
5
|
Vafaeefar M, Moerman KM, Kavousi M, Vaughan TJ. A morphological, topological and mechanical investigation of gyroid, spinodoid and dual-lattice algorithms as structural models of trabecular bone. J Mech Behav Biomed Mater 2023; 138:105584. [PMID: 36436405 DOI: 10.1016/j.jmbbm.2022.105584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
In this study, we evaluate the performance of three algorithms as computational models of trabecular bone architecture, through systematic evaluation of morphometric, topological, and mechanical properties. Here, we consider the widely-used gyroid lattice structure, the recently-developed spinodoid structure and a structure similar to Voronoi lattices introduced here as the dual-lattice. While all computational models were calibrated to recreate the trabecular tissue volume (e.g. BV/TV), it was found that both the gyroid- and spinodoid-based structures showed substantial differences in many other morphometric and topological parameters and, in turn, showed lower effective mechanical properties compared to trabecular bone. The newly-developed dual-lattice structures better captured both morphometric parameters and mechanical properties, despite certain differences being evident their topological configuration compared to trabecular bone. Still, these computational algorithms provide useful platforms to investigate trabecular bone mechanics and for designing biomimetic structures, which could be produced through additive manufacturing for applications that include bone substitutes, scaffolds and porous implants. Furthermore, the software for the creation of the structures has been added to the open source toolbox GIBBON and is therefore freely available to the community.
Collapse
Affiliation(s)
- Mahtab Vafaeefar
- Biomechanics Research Centre (BioMEC) and Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Kevin M Moerman
- Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Majid Kavousi
- Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC) and Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Yamada S, Fukasawa K, Suzuki Y, Takahashi Y, Todoh M, Tadano S. The role of geometrical features of the microarchitecture in the cancellous stiffness of the bovine femoral bone. Med Eng Phys 2022; 105:103823. [DOI: 10.1016/j.medengphy.2022.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
|
7
|
|
8
|
BENNACEUR H, RAMTANI S, OUTTAS T, BOUKHAROUBA T. NONLOCAL CONTINUUM ADAPTIVE ELASTIC BONE-COLUMN BUCKLING MODEL. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is well argued that stability-initiated failure dominates, especially in older bone, because of the instability of single trabeculae which is prone to inelastic buckling at stresses far less than expected for strength-based failure. It is also well known that when several horizontal struts have disappeared, trabecula fails due to compression-buckling load. In this contribution, our main goal is to improve, from theoretical point of view, the mechanistic understanding of bone buckling failure which is known to be at the core of important clinical problems. For that and with respect to previous works, an attempt is made in order to establish a simplified adaptive-beam buckling model, formulated within the context of the nonlocal adaptive continuum mechanics, from which numerical computations were performed in order to get a better knowledge about bone-column buckling mechanism affected by both bone density and bone density gradient distributions restricted to Euler–Bernoulli beam theory. An attempt is made to compare the experimental data with the response of our simplified model. For that, controlled buckling tests of single trabeculae were carried out from three medial tibia end sections (knee joint).
Collapse
Affiliation(s)
- H. BENNACEUR
- Université de Batna, Laboratoire Mécanique des Structures et Matériaux, Département de Mécanique, Faculté des Sciences de l’Ingénieur, Avenue Chahid Boukhlouf 05000, Batna, Algerie
| | - S. RAMTANI
- Université Sorbonne Paris Nord, Laboratoire CSPBAT/LBPS — UMR 7244 CNRS, Institut Galilée, 99, Avenue J.B. Clément. 93430 Villetaneuse, France
| | - T. OUTTAS
- Université de Batna, Laboratoire Mécanique des Structures et Matériaux, Département de Mécanique, Faculté des Sciences de l’Ingénieur, Avenue Chahid Boukhlouf 05000, Batna, Algerie
| | - T. BOUKHAROUBA
- Université des Sciences et de la Technologie, Houari Boumediene-USTHB, Laboratoire de Mécanique Avancée — LMA, BP. 32, El-Alia 16111 Bab-Ezzouar, Alger, Algerie
| |
Collapse
|
9
|
Bue M, Hanberg P, Thomassen MB, Tøttrup M, Thillemann TM, Søballe K, Birke-Sørensen H. Microdialysis for the Assessment of Intervertebral Disc and Vertebral Cancellous Bone Metabolism in a Large Porcine Model. In Vivo 2020; 34:527-532. [PMID: 32111750 DOI: 10.21873/invivo.11804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM It remains challenging to evaluate the in vivo pathophysiological biochemical characteristics in spine tissue, due to lack of an applicable model and feasible methods. The aim of this study was to apply microdialysis for the assessment of basic metabolites from the C3-C4 intervertebral disc, C3 vertebral cancellous bone and subcutaneous adipose tissue in a large porcine model. MATERIALS AND METHODS In 7 pigs, glucose, pyruvate, lactate and glycerol concentrations were evaluated in an 8-hour sampling period. RESULTS The mean lactate/pyruvate (L/P) ratios for the intervertebral disc and vertebral cancellous bone were comparable and exceeded the ischemic cut-off value of 25 for the entire sampling interval. For subcutaneous adipose tissue, the L/P ratio was below the ischemic cut-off. CONCLUSION This exploratory study confirms previous findings of ischemia in bone and the intervertebral disc. This encourages new microdialysis study designs in spine tissue employing large porcine models to create new knowledge and a greater understanding of the metabolism and pathogenesis in spine tissue.
Collapse
Affiliation(s)
- Mats Bue
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark .,Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark.,Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Maja B Thomassen
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Tøttrup
- Department of Orthopaedic Surgery, Aalborg University Hospital, Farsø, Denmark
| | - Theis M Thillemann
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kjeld Søballe
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
10
|
Kirby M, Morshed AH, Gomez J, Xiao P, Hu Y, Guo XE, Wang X. Three-dimensional rendering of trabecular bone microarchitecture using a probabilistic approach. Biomech Model Mechanobiol 2020; 19:1263-1281. [DOI: 10.1007/s10237-020-01286-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/03/2020] [Indexed: 11/29/2022]
|
11
|
Three-dimensional morphometric properties of rod- and plate-like trabeculae in adolescent cancellous bone. J Orthop Translat 2017; 12:26-35. [PMID: 29662776 PMCID: PMC5866498 DOI: 10.1016/j.jot.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Background/Objective Despite many researches have been carried out on the three-dimensional microarchitecture of cancellous bone, the morphometric properties of rod and plate trabeculae in adolescent cancellous bone have not yet been investigated. This study aimed to investigate three-dimensional morphometric properties of rod- and plate-like trabeculae in normal adolescent cancellous bone, and to compare them with adult cancellous bones to reveal morphometric changes from adolescence to adult life to obtain more insight into the subchondral bone adaptations during development and growth. Methods This study included 23 normal human proximal tibiae. These tibiae were divided into three groups: adolescents (9–17 years, n = 6), young adults (18–24 years, n = 9), and adults (25–30 years, n = 8). From each tibia, six cubic cancellous bone samples (dimensions 8 × 8 × 8 mm3) were sawed from each medial and lateral condyle, yielding a total of 276 samples. These samples were scanned using micro computed tomography leading to three-dimensional cubic voxel sizes of 10.5 × 10.5 × 10.5 μm3. The morphometric parameters of individual rod- and plate-like trabeculae were calculated and compared among three age groups. Results Significant differences in some morphometric parameters were revealed. The mean longitudinal length of rods was significantly greater in the adolescents than in the young adults. Plate volume density showed an increasing trend with age, although not significant. Trabeculae were more plate-like in adolescents in the medial condyle of adolescents than in the lateral condyle, and changed towards more plate-like trabeculae in the adults. The single best predictor for the mechanical properties was apparent density. Apparent density alone explained 59% variations in Young’s modulus, 77% in ultimate stress and 34% in failure energy, respectively (all p < 0.01). Morphometric parameters might improve this prediction. Conclusion In conclusion, this study has reported for the first time the morphometric parameters of rod- and plate-like trabeculae in adolescent proximal tibial cancellous bone, which will improve our understanding of morphometric changes in individual trabeculae during development and growth. Furthermore, separate analysis of individual rods and plates may also help reveal disease-related morphometric changes beyond bone mineral density. The translational potential of this article A thorough quantification of individual trabeculae during development and growth may help understand disease-related 3-D morphometric changes beyond bone mineral density.
Collapse
|
12
|
Ramos-Infante SJ, Pérez MA. In vitro and in silico characterization of open-cell structures of trabecular bone. Comput Methods Biomech Biomed Engin 2017; 20:1562-1570. [DOI: 10.1080/10255842.2017.1390086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. J. Ramos-Infante
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| | - M. A. Pérez
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| |
Collapse
|
13
|
Wen XX, Yu HL, Yan YB, Zong CL, Ding HJ, Ma XY, Wang TS, Lei W. Influence of the shape of the micro-finite element model on the mechanical properties calculated from micro-finite element analysis. Exp Ther Med 2017; 14:1744-1748. [PMID: 28810645 DOI: 10.3892/etm.2017.4709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/21/2017] [Indexed: 11/05/2022] Open
Abstract
Assessing the biomechanical properties of trabecular bone is of major biological and clinical significance for the research of bone diseases, fractures and their treatments. Micro-finite element (µFE) models are becoming increasingly popular for investigating the biomechanical properties of trabecular bone. The shapes of µFE models typically include cube and cylinder. Whether there are differences between cubic and cylindrical µFE models has not yet been studied. In the present study, cubic and cylindrical µFE models of human vertebral trabecular bone were constructed. A 1% strain was prescribed to the model along the superior-inferior direction. E values were calculated from these models, and paired t-tests were performed to determine whether these were any differences between E values obtained from cubic and cylindrical models. The results demonstrated that there were no statistically significant differences in the E values between cubic and cylindrical models, and there were no significant differences in Von Mises stress distributions between the two models. These findings indicated that, to construct µFE models of vertebral trabecular bone, cubic or cylindrical models were both feasible. Choosing between the cubic or cylindrical µFE model is dependent upon the specific study design.
Collapse
Affiliation(s)
- Xin-Xin Wen
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Hai-Long Yu
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of PLA, Rescue Center of Severe Wound and Trauma of PLA, Shenyang, Liaoning 110016, P.R. China
| | - Ya-Bo Yan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chun-Lin Zong
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hai-Jiao Ding
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xiang-Yu Ma
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Tian-Sheng Wang
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
14
|
Trabecular Microstructure and Damage Affect Cement Leakage From the Basivertebral Foramen During Vertebral Augmentation. Spine (Phila Pa 1976) 2017; 42:E939-E948. [PMID: 28098744 DOI: 10.1097/brs.0000000000002073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study on cadaver specimens. OBJECTIVE To explore why cement leakage from basivertebral foramen (BF) easily occurs during vertebral augmentation procedures. SUMMARY OF BACKGROUND DATA Type B (through BF, basivertebral foramen) cement leakage is the most common type after vertebral augmentation, but the mechanism of this is still controversial. The contribution of vertebral trabecular bone orientation and trabecular damage during compression fracture to cement leakage is still unknown. METHODS In this study, 12 fresh-frozen human lumbar spines (T12-L5) were collected and divided into 24 three-segment units. Mechanical testing was performed to simulate a compression fracture. MicroCT were performed on all segments before and after mechanical testing, and trabecular microstructure of the superior, middle (containing BF), and inferior 1/3 of each vertebral body was analyzed. The diameter variation of intertrabecular space before and after compression fracture was used to quantify trabecular injury. After mechanical testing, vertebral augmentation, and imaging-based diagnosis were used to evaluate cement leakage. RESULTS Trabecular bone microstructural parameters in middle region (containing BF) were lower than those of the superior or inferior regions (P < 0.01). After compressive failure, 3D-reconstruction of the vertebral body by MicroCT demonstrated that intertrabecular distance in the middle region was markedly increased. Type B cement leakage was the most common type after vertebral augmentation, as found previously in Wang et al. (Spine J 2014;14: 1551-1558). CONCLUSION The presence of the BF and the relative sparsity of trabecular bone make the middle region of the vertebral body the mechanically weakest region. Trabecular bone in middle region suffered the most severe damage during compressive failure of the vertebral body, which resulted in the greatest intervertebral spacing, and subsequently the highest percentage of type B cement leakage. These data suggest specific mechanisms by which cement may leak from the BF, and the contribution of trabecular microstructure and trabecular injury. LEVEL OF EVIDENCE 4.
Collapse
|
15
|
Wen XX, Xu C, Zong CL, Feng YF, Ma XY, Wang FQ, Yan YB, Lei W. Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis. J Mech Behav Biomed Mater 2016; 60:468-475. [PMID: 26999702 DOI: 10.1016/j.jmbbm.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/24/2023]
Abstract
Micro-finite element (μFE) models have been widely used to assess the biomechanical properties of trabecular bone. How to choose a proper sample volume of trabecular bone, which could predict the real bone biomechanical properties and reduce the calculation time, was an interesting problem. Therefore, the purpose of this study was to investigate the relationship between different sample volumes and apparent elastic modulus (E) calculated from μFE model. 5 Human lumbar vertebral bodies (L1-L5) were scanned by micro-CT. Cubic concentric samples of different lengths were constructed as the experimental groups and the largest possible volumes of interest (VOI) were constructed as the control group. A direct voxel-to-element approach was used to generate μFE models and steel layers were added to the superior and inferior surface to mimic axial compression tests. A 1% axial strain was prescribed to the top surface of the model to obtain the E values. ANOVA tests were performed to compare the E values from the different VOIs against that of the control group. Nonlinear function curve fitting was performed to study the relationship between volumes and E values. The larger cubic VOI included more nodes and elements, and more CPU times were needed for calculations. E values showed a descending tendency as the length of cubic VOI decreased. When the volume of VOI was smaller than (7.34mm(3)), E values were significantly different from the control group. The fit function showed that E values approached an asymptotic values with increasing length of VOI. Our study demonstrated that apparent elastic modulus calculated from μFE models were affected by the sample volumes. There was a descending tendency of E values as the length of cubic VOI decreased. Sample volume which was not smaller than (7.34mm(3)) was efficient enough and timesaving for the calculation of E.
Collapse
Affiliation(s)
- Xin-Xin Wen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Chao Xu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Chun-Lin Zong
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ya-Fei Feng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Xiang-Yu Ma
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, China
| | - Fa-Qi Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Ya-Bo Yan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China.
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China.
| |
Collapse
|
16
|
Ramtani S, Bennaceur H, Outtas T. Elastic bone-column buckling including bone density gradient effect within the context of adaptive elasticity. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2015.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Lekadir K, Hoogendoorn C, Hazrati-Marangalou J, Taylor Z, Noble C, van Rietbergen B, Frangi AF. A Predictive Model of Vertebral Trabecular Anisotropy From Ex Vivo Micro-CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1747-1759. [PMID: 25561590 DOI: 10.1109/tmi.2014.2387114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spine-related disorders are amongst the most frequently encountered problems in clinical medicine. For several applications such as 1) to improve the assessment of the strength of the spine, as well as 2) to optimize the personalization of spinal interventions, image-based biomechanical modeling of the vertebrae is expected to play an important predictive role. However, this requires the construction of computational models that are subject-specific and comprehensive. In particular, they need to incorporate information about the vertebral anisotropic micro-architecture, which plays a central role in the biomechanical function of the vertebrae. In practice, however, accurate personalization of the vertebral trabeculae has proven to be difficult as its imaging in vivo is currently infeasible. Consequently, this paper presents a statistical approach for accurate prediction of the vertebral fabric tensors based on a training sample of ex vivo micro-CT images. To the best of our knowledge, this is the first predictive model proposed and validated for vertebral datasets. The method combines features selection and partial least squares regression in order to derive optimal latent variables for the prediction of the fabric tensors based on the more easily extracted shape and density information. Detailed validation with 20 ex vivo T12 vertebrae demonstrates the accuracy and consistency of the approach for the personalization of trabecular anisotropy.
Collapse
|
18
|
Jing D, Cai J, Wu Y, Shen G, Zhai M, Tong S, Xu Q, Xie K, Wu X, Tang C, Xu X, Liu J, Guo W, Jiang M, Luo E. Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats. PLoS One 2014; 9:e102956. [PMID: 25047554 PMCID: PMC4105536 DOI: 10.1371/journal.pone.0102956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/25/2014] [Indexed: 11/25/2022] Open
Abstract
Abundant evidence has substantiated the positive effects of pulsed electromagnetic fields (PEMF) and static magnetic fields (SMF) on inhibiting osteopenia and promoting fracture healing. However, the osteogenic potential of rotating magnetic fields (RMF), another common electromagnetic application modality, remains poorly characterized thus far, although numerous commercial RMF treatment devices have been available on the market. Herein the impacts of RMF on osteoporotic bone microarchitecture, bone strength and bone metabolism were systematically investigated in hindlimb-unloaded (HU) rats. Thirty two 3-month-old male Sprague-Dawley rats were randomly assigned to the Control (n = 10), HU (n = 10) and HU with RMF exposure (HU+RMF, n = 12) groups. Rats in the HU+RMF group were subjected to daily 2-hour exposure to moderate-intensity RMF (ranging from 0.60 T to 0.38 T) at 7 Hz for 4 weeks. HU caused significant decreases in body mass and soleus muscle mass of rats, which were not obviously altered by RMF. Three-point bending test showed that the mechanical properties of femurs in HU rats, including maximum load, stiffness, energy absorption and elastic modulus were not markedly affected by RMF. µCT analysis demonstrated that 4-week RMF did not significantly prevent HU-induced deterioration of femoral trabecular and cortical bone microarchitecture. Serum biochemical analysis showed that RMF did not significantly change HU-induced decrease in serum bone formation markers and increase in bone resorption markers. Bone histomorphometric analysis further confirmed that RMF showed no impacts on bone remodeling in HU rats, as evidenced by unchanged mineral apposition rate, bone formation rate, osteoblast numbers and osteoclast numbers in cancellous bone. Together, our findings reveal that RMF do not significantly affect bone microstructure, bone mechanical strength and bone remodeling in HU-induced disuse osteoporotic rats. Our study indicates potentially obvious waveform-dependent effects of electromagnetic fields-stimulated osteogenesis, suggesting that RMF, at least in the present form, might not be an optimal modality for inhibiting disuse osteopenia/osteoporosis.
Collapse
Affiliation(s)
- Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Jing Cai
- Department of Endocrinology, Xijing hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Wu
- Institute of Orthopaedics, Xijing hospital, Fourth Military Medical University, Xi’an, China
| | - Guanghao Shen
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Mingming Zhai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Shichao Tong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Qiaoling Xu
- Department of Nursing, Fourth Military Medical University, Xi’an, China
| | - Kangning Xie
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xiaoming Wu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Chi Tang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xinmin Xu
- Department of Medical Engineering, PLA No. 323 Hospital, Xi’an, China
| | - Juan Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Wei Guo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Maogang Jiang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
19
|
Yeni YN, Wu B, Huang L, Oravec D. Mechanical loading causes detectable changes in morphometric measures of trabecular structure in human cancellous bone. J Biomech Eng 2014; 135:54505. [PMID: 24231966 DOI: 10.1115/1.4024136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/04/2013] [Indexed: 11/08/2022]
Abstract
The relationships between mechanical loads and bone microstructure are of interest to those who seek to predict bone mechanical properties from microstructure or to predict how organization of bone microstructure is driven by mechanical loads. While strains and displacements in the material are inherently responsible for mechanically caused changes in the appearance of the microstructure, it is the morphometric measures of microstructural organization that are often available for assessment of bone quality. Therefore, an understanding of how strain history is reflected in morphometric measures of bone microstructure has practical implications in that it may provide clinically measurable indices of mechanical history in bone and improve interpretation of bone mechanical properties from microstructural information. The objective of the current study was to examine changes in morphometric measures of cancellous bone microstructure in response to varying levels of continuum level strains. The experimental approach included stereologic analysis of microcomputed tomography (μCT) images of human cancellous bone samples obtained at sequentially increasing levels of strain in a custom-made loading apparatus mounted in a μCT scanner. We found that the degree of anisotropy (DA) decreased from baseline to failure and from failure to postfailure. DA partially recovered from postfailure levels upon unloading; however, the final DA was less than at failure and less than at baseline. We also found that average trabecular thickness (Tb.Th.Av) increased with displacements at postfailure and did not recover when unloaded. Average trabecular number decreased when the specimens were unloaded. In addition, the heterogeneity of Tb.Th as measured by intra-specimen standard deviation (Tb.Th.SD) increased and that of trabecular number (Tb.N.SD) decreased with displacements at postfailure. Furthermore, the intraspecimen coefficient of variation of trabecular number decreased at postfailure displacements but did not recover upon unloading. Finally, the coefficient of variation of trabecular separation at unload was less than that at baseline. These measures can be developed into image-based indices to estimate strain history, damage, and residual mechanical properties where direct analysis of stresses and strains, such as through finite element modeling, may not be feasible. It remains to be determined how wide a time interval can be used to estimate strain history before remodeling becomes an overriding effect on the trabecular architecture.
Collapse
|
20
|
Hazrati Marangalou J, Eckstein F, Kuhn V, Ito K, Cataldi M, Taddei F, van Rietbergen B. Locally measured microstructural parameters are better associated with vertebral strength than whole bone density. Osteoporos Int 2014; 25:1285-96. [PMID: 24306231 DOI: 10.1007/s00198-013-2591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/25/2013] [Indexed: 01/30/2023]
Abstract
UNLABELLED Whole vertebrae areal and volumetric bone mineral density (BMD) measurements are not ideal predictors of vertebral fractures. We introduce a technique which enables quantification of bone microstructural parameters at precisely defined anatomical locations. Results show that local assessment of bone volume fraction at the optimal location can substantially improve the prediction of vertebral strength. INTRODUCTION Whole vertebrae areal and volumetric BMD measurements are not ideal predictors of vertebral osteoporotic fractures. Recent studies have shown that sampling bone microstructural parameters in smaller regions may permit better predictions. In such studies, however, the sampling location is described only in general anatomical terms. Here, we introduce a technique that enables the quantification of bone volume fraction and microstructural parameters at precisely defined anatomical locations. Specific goals of this study were to investigate at what anatomical location within the vertebrae local bone volume fraction best predicts vertebral-body strength, whether this prediction can be improved by adding microstructural parameters and to explore if this approach could better predict vertebral-body strength than whole bone volume fraction and finite element (FE) analyses. METHODS Eighteen T12 vertebrae were scanned in a micro-computed tomography (CT) system and FE meshes were made using a mesh-morphing tool. For each element, bone microstructural parameters were measured and correlated with vertebral compressive strength as measured experimentally. Whole bone volume fraction and FE-predicted vertebral strength were also compared to the experimental measurements. RESULTS A significant association between local bone volume fraction measured at a specific central region and vertebral-body strength was found that could explain up to 90% of the variation. When including all microstructural parameters in the regression, the predictive value of local measurements could be increased to 98%. Whole bone volume fraction could explain only 64% and FE analyses 76% of the variation in bone strength. CONCLUSIONS A local assessment of volume fraction at the optimal location can substantially improve the prediction of bone strength. Local assessment of other microstructural parameters may further improve this prediction but is not clinically feasible using current technology.
Collapse
Affiliation(s)
- J Hazrati Marangalou
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Stauber M, Nazarian A, Müller R. Limitations of global morphometry in predicting trabecular bone failure. J Bone Miner Res 2014; 29:134-41. [PMID: 23761214 DOI: 10.1002/jbmr.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 11/07/2022]
Abstract
Efforts in finding independent measures for accurate and reliable prediction of trabecular bone failure have led to the development of a number of morphometric indices characterizing trabecular bone microstructure. Generally, these indices assume a high homogeneity within the bone specimen. However, in the present study we found that the variance in bone volume fraction (BV/TV) in a single bone specimen can be relatively large (CV = 9.07% to 28.23%). To assess the limitations of morphometric indices in the prediction of bone failure for specimens in which the assumption of homogeneity is not met, we harvested 13 cadaveric samples from a single human spine. We tested these cylindrical samples using image-guided failure assessment (IGFA), a technique combining stepwise microcompression and time-lapsed micro-computed tomography (µCT). Additionally, we computed morphometric indices for the entire sample as well as for 10 equal subregions along the anatomical axis. We found that ultimate strength was equally well predicted by BV/TV of the entire sample (R(2) = 0.55) and BV/TV of the weakest subregion (R(2) = 0.57). Investigating three-dimensional animations of structural bone failure, we showed that two main failure mechanisms determine the competence of trabecular bone samples; in homogeneous, isotropic trabecular bone samples, competence is determined by a whole set of trabecular elements, whereas in inhomogeneous, anisotropic bone samples a single or a missing trabeculae may induce catastrophic failure. The latter failure mechanism cannot be described by conventional morphometry, indicating the need for novel morphometric indices also applicable to the prediction of failure in inhomogeneous bone samples.
Collapse
Affiliation(s)
- Martin Stauber
- Institute for Biomechanics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland; b-cube AG, Brüttisellen, Switzerland
| | | | | |
Collapse
|
22
|
Thomsen JS, Niklassen AS, Ebbesen EN, Brüel A. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men. Bone 2013; 57:47-55. [PMID: 23899636 DOI: 10.1016/j.bone.2013.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory hypertrophy of vertical trabeculae in women, but not in men.
Collapse
|
23
|
Kim DG, Navalgund AR, Tee BC, Noble GJ, Hart RT, Lee HR. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body. Bone 2012; 51:868-75. [PMID: 22944606 PMCID: PMC3455132 DOI: 10.1016/j.bone.2012.08.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/17/2012] [Accepted: 08/20/2012] [Indexed: 11/21/2022]
Abstract
Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, p<0.001). Of the various parameters studied, TMD variability was the parameter that best predicted the creep behavior of the OVX group (p<0.038). The current results indicated that creep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae.
Collapse
Affiliation(s)
- Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Osteoporosis heightens vertebral fragility owing to the biomechanical effects of diminished bone structure and composition. These biomechanical effects are only partially explained by loss in bone mass, so additional factors that are independent of bone mass are also thought to play an important role in vertebral fragility. Recent advances in imaging equipment, imaging-processing methods, and computational capacity allow researchers to quantify trabecular architecture in the vertebra at the level of the individual trabecular elements and to derive biomechanics-based measures of architecture that are independent of bone mass and density. These advances have shed light on the role of architecture in vertebral fragility. In addition to the adverse biomechanical consequences associated with trabecular thinning and loss of connectivity, a reduction in the number of vertical trabecular plates appears to be particularly harmful to vertebral strength. In the clinic, detailed architecture analysis is primarily applied to peripheral sites such as the distal radius and tibia. Analysis of trabecular architecture at these peripheral sites has shown mixed results for discriminating between patients with and without a vertebral fracture independent of bone mass, but has the potential to provide unique insight into the effects of therapeutic treatments. Overall, it does appear that trabecular architecture has an independent role on vertebral strength. Additional research is required to determine how and where architecture should be measured in vivo and whether assessment of trabecular architecture in a clinical setting improves prospective fracture risk assessment for the vertebra.
Collapse
Affiliation(s)
- Aaron J Fields
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, S-1161, San Francisco, CA, 94143-0514, USA.
| | | |
Collapse
|