1
|
Bhattoa HP, Vasikaran S, Trifonidi I, Kapoula G, Lombardi G, Jørgensen NR, Pikner R, Miura M, Chapurlat R, Hiligsmann M, Haarhaus M, Evenepoel P, Jørgensen HS, Herrmann M, Kaufman JM, Clark P, Tuzun Ş, Al-Daghri N, Silverman S, Alokail MS, Ormarsdóttir S, Yerro MCP, Matijevic R, Laslop A, da Silva Rosa MMC, Zakraoui L, Burlet N, McCloskey E, Harvey NC, Radermecker RP, Fusaro M, Torre C, Kanis JA, Rizzoli R, Reginster JY, Makris K, Cavalier E. Update on the role of bone turnover markers in the diagnosis and management of osteoporosis: a consensus paper from The European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), International Osteoporosis Foundation (IOF), and International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Osteoporos Int 2025; 36:579-608. [PMID: 40152990 PMCID: PMC12064614 DOI: 10.1007/s00198-025-07422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/03/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE The International Osteoporosis Foundation (IOF) and the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) have proposed procollagen type I N propeptide (PINP) and β isomerized C-terminal telopeptide of type I collagen (β-CTX-I) as reference bone turnover markers (BTMs) for osteoporosis. This report examines the published literature since the 2011 IOF-IFCC position paper in order to determine the clinical potential of the reference BTMs and newer markers for the prediction of fracture risk and monitoring the treatment of osteoporosis. METHODS Evidence for the relationship between BTMs and subsequent fractures was gathered from prospective studies through literature review of the Medline database from years 2011 to May 2024. The impact of treatment on BTMs was also studied by examining publications in that period. Studies of the accuracy of BTMs in the assessment of bone turnover in the setting of advanced chronic kidney disease were also examined. RESULTS Increased BTM concentrations are associated with higher fracture risk in postmenopausal women. PINP and β-CTX-I measured in blood are associated with fracture risk but their interaction with other risk factors has not been sufficiently studied limiting their incorporation into fracture risk algorithms. Treatment-induced changes in PINP and β-CTX-I account for a substantial proportion of fracture risk reduction and are useful for improving adherence; they are recommended for inclusion in studies to examine adherence in individual patients. However, total PINP (tPINP) and β-CTX-I may be elevated in CKD due to renal retention. Bone alkaline phosphatase (BALP), intact PINP (iPINP), and tartrate resistant acid phosphatase 5b (TRACP5b) show the most promise in discriminating high and low turnover bone diseases in patients with advanced CKD and for predicting fracture risk, monitoring treatment response, and assessing the risk of treatment-related complications. CONCLUSION We re-affirm the use of serum/plasma tPINP and plasma β-CTX-I as reference BTMs with appropriate patient preparation and sample handling and measurement by standardized/harmonized assays in clinical studies to accumulate further data, and for monitoring treatment of osteoporosis in the setting of normal renal function in clinical practice. BALP and TRACP5b, measured by standardized assays, are recommended as reference BTMs for CKD-associated osteoporosis and should be included in observational and intervention studies to ascertain their utility for risk-evaluation, treatment initiation, and assessment of treatment response in CKD-associated osteoporosis.
Collapse
Affiliation(s)
- Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd. 98, 4032, Debrecen, Hungary.
| | | | - Ioulia Trifonidi
- Clinical Biochemistry Department-KAT General Hospital, Kifissia, Athens, Greece
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, University of Athens, Athens, Greece
| | - Georgia Kapoula
- Clinical Biochemistry Department, General Hospital of Lamia, 35100, Lamia, Greece
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Centre, Rigshospitalet, Copenhagen, Denmark
| | - Richard Pikner
- Department of Clinical Biochemistry and Bone Metabolism, Klatovska Hospital, Klatovy, Czech Republic
- Department of Clinical Biochemistry and Haematology, Faculty of Medicine Pilsen, Charles University Prague, Pilsen, Czech Republic
- Faculty of Health Care Studies, University of West Bohemia, Pilsen, Czech Republic
| | - Masakazu Miura
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Roland Chapurlat
- INSERM UMR 1033, Université Claude Bernard-Lyon1, Hôpital E Herriot, 69437, Lyon, France
| | - Mickael Hiligsmann
- Department of Health Services Research, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | - Mathias Haarhaus
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, 141 86, Stockholm, Sweden
- Diaverum AB, Hyllie Boulevard 53, 215 37, Malmö, Sweden
| | - Pieter Evenepoel
- University Hospitals Leuven and Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Louvain, Belgium
| | - Hanne Skou Jørgensen
- Department of Clinical Medicine - Department of Medicine and Nephrology, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine and Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark
- Department of Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KatholiekeUniversitet Leuven (KU Leuven), Louvain, Belgium
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Diagnostics, Medical University of Graz, Auenbruggerplatz 15 /1, 8036, Graz, Austria
| | - Jean-Marc Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Patricia Clark
- Clinical Epidemiology Unit, Faculty of Medicina UNAM, Hospital Infantil Federico Gómez, Mexico City, Mexico
| | - Şansın Tuzun
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Nasser Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Stuart Silverman
- Cedars-Sinai Medical Center, OMC Clinical Research Center, Beverly Hills, CA, 90211, USA
| | - Majed S Alokail
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Sif Ormarsdóttir
- Icelandic Medicines Agency, Vínlandsleið 14, 113, Reykjavík, Iceland
| | | | | | - Andrea Laslop
- Scientific Office, Austrian Medicines and Medical Devices Agency, Vienna, Austria
| | | | | | - Nansa Burlet
- Division d'Epidémiologie, Santé Publique Et Economie de La Santé, Université de Liège, Liège, Belgium
| | - Eugene McCloskey
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Régis P Radermecker
- CHU de Liège and Centre de Recherche Intégré Sur Les Médicaments (CIRM), Department of Clinical Pharmacology, University of Liège, Domaine du Sart-Tilman, B-4000, Liège, Belgium
| | - Maria Fusaro
- Institute of Clinical Physiology, 56124, Pisa and Department of Medicine, National Research Council, University of Padova, Padua, Italy
| | - Carla Torre
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMed.ULisboa), Lisbon, Portugal
| | - John A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | - René Rizzoli
- Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Jean-Yves Reginster
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Konstantinos Makris
- Clinical Biochemistry Department-KAT General Hospital, Kifissia, Athens, Greece
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, University of Athens, Athens, Greece
| | - Etienne Cavalier
- CHU de Liège and Centre de Recherche Intégré Sur Les Médicaments (CIRM), Department of Clinical Chemistry, University of Liège, Domaine du Sart-Tilman, B-4000, Liège, Belgium
| |
Collapse
|
2
|
Carullo N, Sorbo D, Faga T, Pugliese S, Zicarelli MT, Costa D, Ielapi N, Battaglia Y, Pisani A, Coppolino G, Bolignano D, Michael A, Serra R, Andreucci M. Anemia and Mineral Bone Disorder in Kidney Disease Patients: The Role of FGF-23 and Other Related Factors. Int J Mol Sci 2024; 25:12838. [PMID: 39684548 DOI: 10.3390/ijms252312838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Anemia and mineral and bone disorder (MBD) are significant complications of chronic kidney disease (CKD). The erythropoietin (Epo) pathway plays a key role in both of these processes in CKD. Another molecule that plays an important role in CKD-MBD is fibroblast growth factor (FGF)-23, whose main role is to maintain serum phosphate levels in the normal range, acting via its co-receptor Klotho; however, its activity may also be related to anemia and inflammation. In this review, the regulation of Epo and FGF-23 and the molecular mechanisms of their action are outlined. Furthermore, the complex interaction between EPO and FGF-23 is discussed, as well as their association with other anemia-related factors and processes such as Klotho, vitamin D, and iron deficiency. Together, these may be part of a "kidney-bone marrow-bone axis" that promotes CKD-MBD.
Collapse
Affiliation(s)
- Nazareno Carullo
- "G. Jazzolino" Hospital, A.S.P. Vibo Valentia, I89900 Vibo Valentia, Italy
| | - David Sorbo
- San Bortolo Hospital, ULSS 8 Berica, I36100 Vicenza, Italy
| | - Teresa Faga
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Sara Pugliese
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Maria Teresa Zicarelli
- Amantea Outpatient Clinic, A.S.P. Cosenza, I87032 Amantea, Italy
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Davide Costa
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, I88100 Catanzaro, Italy
- Department of Public Health and Infectious Disease, "Sapienza" University of Rome, I00185 Rome, Italy
| | - Yuri Battaglia
- Department of Medicine, University of Verona, I37129 Verona, Italy
| | - Antonio Pisani
- Department of Public Health, University of Naples Federico II, I80131 Naples, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Ashour Michael
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| |
Collapse
|
3
|
Dolan E, Dumas A, Esteves GP, Takarabe LL, Perfeito LAM, Keane KM, Gualano B, Kelley GA, Burke L, Sale C, Swinton PA. The Influence of Nutrition Intervention on the P1NP and CTX-1 Response to an Acute Exercise Bout: A Systematic Review with Meta-Analysis. Sports Med 2024; 54:2889-2906. [PMID: 39136851 DOI: 10.1007/s40279-024-02087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Although nutrition and exercise both influence bone metabolism, little is currently known about their interaction, or whether nutritional intervention can modulate the bone biomarker response to acute exercise. Improved understanding of the relationships between nutrition, exercise and bone metabolism may have substantial potential to inform nutritional interventions to protect the bone health of exercising individuals, and to elucidate mechanisms by which exercise and nutrition influence bone. OBJECTIVE The aim was to synthesise available evidence related to the influence of nutrition on the response of the bone biomarkers procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide of type 1 collagen (CTX-1) to acute exercise, using a systematic review and meta-analytic approach. METHODS Studies evaluating the influence of nutritional status or intervention on the bone biomarker response to an acute exercise bout were included and separated into four categories: (1) feeding status and energy availability, (2) macronutrients, (3) micronutrients and (4) other. Studies conducted on healthy human populations of any age or training status were included. Meta-analysis was conducted when data from at least five studies with independent datasets were available. In the case of insufficient data to warrant meta-analysis, results from individual studies were narratively synthesised and standardised mean effect sizes visually represented. RESULTS Twenty-two articles were included. Of these, three investigated feeding status or energy availability, eight macronutrients, eight micronutrients (all calcium) and six other interventions including dairy products or collagen supplementation. Three studies had more than one intervention and were included in all relevant outcomes. The largest and most commonly reported effects were for the bone resorption marker CTX-1. Meta-analysis indicated that calcium intake, whether provided via supplements, diet or infusion, reduced exercise-induced increases in CTX-1 (effect size - 1.1; 95% credible interval [CrI] - 2.2 to - 0.05), with substantially larger effects observed in studies that delivered calcium via direct infusion versus in supplements or foods. Narrative synthesis suggests that carbohydrate supplementation may support bone during acute exercise, via reducing exercise-induced increases in CTX-1. Conversely, a low-carbohydrate/high-fat diet appears to induce the opposite effect, as evidenced by an increased exercise associated CTX-1 response, and reduced P1NP response. Low energy availability may amplify the CTX-1 response to exercise, but it is unclear whether this is directly attributable to energy availability or to the lack of specific nutrients, such as carbohydrate. CONCLUSION Nutritional intervention can modulate the acute bone biomarker response to exercise, which primarily manifests as an increase in bone resorption. Ensuring adequate attention to nutritional factors may be important to protect bone health of exercising individuals, with energy, carbohydrate and calcium availability particularly important to consider. Although a wide breadth of data were available for this evidence synthesis, there was substantial heterogeneity in relation to design and intervention characteristics. Direct and indirect replication is required to confirm key findings and to generate better estimates of true effect sizes.
Collapse
Affiliation(s)
- Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil.
| | - Alina Dumas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriel Perri Esteves
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Leticia Lopes Takarabe
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Luisa Alves Mendonça Perfeito
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Karen M Keane
- Department of Sport, Exercise and Nutrition, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - George A Kelley
- School of Public and Population Health and Department of Kinesiology, Boise State University, Boise, USA
| | - Louise Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Craig Sale
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
4
|
Wang F, Li H, Yi K, Wu Y, Bian Q, Guo B, Luo X, Kang Y, Wu Q, Ma Q. Long-term second-generation antipsychotics decreases bone formation and resorption in male patients with schizophrenia. Psychopharmacology (Berl) 2024; 241:1771-1780. [PMID: 38647696 DOI: 10.1007/s00213-024-06592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
RATIONALE Patients with schizophrenia with second-generation antipsychotics (SGAs) treatment have shown an increased risk of bone fragility and susceptibility to fracture; however, it is still unclear whether this risk is derived from the effect of antipsychotics on balance of bone metabolism. OBJECTIVES We investigated the changes of two bone turnover biomarkers (BTMs) concentrations in people with schizophrenia receiving SGAs: procollagen type I aminoterminal propeptide (PINP) and C-terminal telopeptide of type I collagen (CTX-1) as BTMs of osteogenesis and bone resorption, respectively, to explore how antipsychotics contribute to bone fragility. METHODS We recruited 59 Chinese male patients with schizophrenia (32 drug-naïve first-episode (DNFE) patients and 27 chronic patients) to undergo 8 weeks SGAs treatment. Fasting peripheral blood samples of pre- and posttreatment were collected, plasma levels of PINP and CTX-1 were measured. RESULTS The interaction effects of group and time on PINP and CTX-1 concentrations were found (P = .016 and P = .008). There was a significant decrease for both BTMs concentrations of the posttreatment compared to the pretreatment (P<.001 and P = .003). Chronic patients had significantly higher changes of BTMs concentrations compared to DNFE patients (P = .048 and P = .024). There was a positive correlation of the two BTMs of pretreatment with disease course in DNFE group (r = .37, P = .039;r = .38, P = .035) and a negative correlation of PINP of pretreatment with age in the chronic group (r=-.40, P = .039). CONCLUSION Long-term SGAs medication inhibited osteogenesis in a dose- and time-dependent manner and damaged the balance of bone formation and bone resorption.
Collapse
Affiliation(s)
- Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China.
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China.
| | - Hui Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Kaijun Yi
- Department of Orthopedics, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang, 441000, Hubei, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Qingtao Bian
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Baoyan Guo
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Qi Wu
- Fenyang College, Shanxi Medical University, Lvliang, 032200, China
- Department of Psychiatry, Changzhou Peace Hospital, The 102nd Hospital of The Chinese People's Liberation Army, Changzhou, 213003, China
| | - Qinghe Ma
- Department of Psychiatry, Changzhou Peace Hospital, The 102nd Hospital of The Chinese People's Liberation Army, Changzhou, 213003, China
- Department of Internal Medicine, The 904th Hospital of The Chinese People's Liberation Army, Wuxi, 214004, China
| |
Collapse
|
5
|
Shieh A, Karlamangla AS, Gossiel F, Eastell R, Greendale GA. Changes in Collagen Type I C-Telopeptide and Procollagen Type I N-Terminal Propeptide During the Menopause Transition. J Clin Endocrinol Metab 2024; 109:1580-1589. [PMID: 38087944 PMCID: PMC11099485 DOI: 10.1210/clinem/dgad727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024]
Abstract
CONTEXT Collagen type I C-telopeptide (CTX) and procollagen type I N-terminal propeptide (PINP) are reference bone resorption and formation markers, respectively. OBJECTIVE To characterize CTX and PINP trajectories across the menopause transition (MT). METHODS This 18-year longitudinal analysis of a community-based cohort from the Study of Women's Health Across the Nation included 541 women (126 Black, 90 Chinese, 87 Japanese, 238 White) who transitioned from pre- to postmenopause. Multivariable mixed effects regression fit piecewise linear models of CTX or PINP relative to years from final menstrual period (FMP); covariates were race/ethnicity, body mass index (BMI), and age at FMP. In the referent participant (White, 52.46 years at FMP, BMI 27.12 kg/m2), CTX and PINP were stable until 3 years pre-FMP (premenopause). During the MT (3 years before to 3 years after the FMP), CTX and PINP increased 10.3% (P < .0001) and 7.5% (P < .0001) per year, respectively; MT-related gains totaled 61.9% for CTX and 45.2% for PINP. Starting 3 years post-FMP (postmenopause), CTX and PINP decreased 3.1% (P < .0001) and 2.9% (P < .0001) per year, respectively. Compared with the White participants, during the MT, Chinese participants had larger gains in CTX (P = .01), and Japanese women experienced greater increases in CTX (P < .0001) and PINP (P = .02). In postmenopause, CTX (P = .01) and PINP (P = .01) rose more in Japanese relative to White women. CONCLUSION CTX and PINP are stable in premenopause, increase during the MT, and decrease in postmenopause. During the MT and postmenopause, bone turnover change rates vary by race/ethnicity.
Collapse
Affiliation(s)
- Albert Shieh
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Arun S Karlamangla
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Fatma Gossiel
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield S5 7AU, UK
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield S5 7AU, UK
| | - Gail A Greendale
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Zhao F, Li C, Wang W, Zhang Y, Yao P, Wei X, Jia Y, Dang S, Zhang S. Machine learning predicts the risk of osteoporosis in patients with breast cancer and healthy women. J Cancer Res Clin Oncol 2024; 150:102. [PMID: 38393381 PMCID: PMC10891247 DOI: 10.1007/s00432-024-05622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE In this study, we investigated the effects of endocrine therapy and related drugs on the body composition and bone metabolism of patients with breast cancer. Additionally, using body composition-related indicators in machine learning algorithms, the risks of osteoporosis in patients with breast cancer and healthy women were predicted. METHODS We enrolled postmenopausal patients with breast cancer who were hospitalized in a tertiary hospital and postmenopausal women undergoing health checkups in our hospital between 2019 and 2021. The basic information, body composition, bone density-related indicators, and bone metabolism-related indicators of all the study subjects were recorded. Machine learning models were constructed using cross-validation. RESULTS Compared with a healthy population, the body composition of patients with breast cancer was low in bone mass, protein, body fat percentage, muscle, and basal metabolism, whereas total water, intracellular fluid, extracellular fluid, and waist-to-hip ratio were high. In patients with breast cancer, the bone mineral density (BMD), Z value, and T value were low and the proportion of bone loss and osteoporosis was high. BMD in patients with breast cancer was negatively correlated with age, endocrine therapy status, duration of medication, and duration of menopause, and it was positively correlated with body mass index (BMI) and basal metabolism. The parameters including body composition, age, hormone receptor status, and medication type were used for developing the machine learning model to predict osteoporosis risk in patients with breast cancer and healthy populations. The model showed a high accuracy in predicting osteoporosis, reflecting the predictive value of the model. CONCLUSIONS Patients with breast cancer may have changed body composition and BMD. Compared with the healthy population, the main indicators of osteoporosis in patients with breast cancer were reduced nonadipose tissue, increased risk of edema, altered fat distribution, and reduced BMD. In addition to age, duration of treatment, and duration of menopause, body composition-related indicators such as BMI and basal metabolism may be considerably associated with BMD of patients with breast cancer, suggesting that BMD status can be monitored in clinical practice by focusing on changes in the aforementioned indexes, which may provide a way to prevent preclinical osteoporosis.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China
| | - Chaofan Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China
| | - Weiwei Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China
| | - Peizhuo Yao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China
| | - Xinyu Wei
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China
| | - Yiwei Jia
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China
| | - Shaonong Dang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Hughes L, Centner C. Idiosyncratic bone responses to blood flow restriction exercise: new insights and future directions. J Appl Physiol (1985) 2024; 136:283-297. [PMID: 37994414 PMCID: PMC11212818 DOI: 10.1152/japplphysiol.00723.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Applying blood flow restriction (BFR) during low-load exercise induces beneficial adaptations of the myotendinous and neuromuscular systems. Despite the low mechanical tension, BFR exercise facilitates a localized hypoxic environment and increase in metabolic stress, widely regarded as the primary stimulus for tissue adaptations. First evidence indicates that low-load BFR exercise is effective in promoting an osteogenic response in bone, although this has previously been postulated to adapt primarily during high-impact weight-bearing exercise. Besides studies investigating the acute response of bone biomarkers following BFR exercise, first long-term trials demonstrate beneficial adaptations in bone in both healthy and clinical populations. Despite the increasing number of studies, the physiological mechanisms are largely unknown. Moreover, heterogeneity in methodological approaches such as biomarkers of bone metabolism measured, participant and study characteristics, and time course of measurement renders it difficult to formulate accurate conclusions. Furthermore, incongruity in the methods of BFR application (e.g., cuff pressure) limits the comparability of datasets and thus hinders generalizability of study findings. Appropriate use of biomarkers, effective BFR application, and befitting study design have the potential to progress knowledge on the acute and chronic response of bone to BFR exercise and contribute toward the development of a novel strategy to protect or enhance bone health. Therefore, the purpose of the present synthesis review is to 1) evaluate current mechanistic evidence; 2) discuss and offer explanations for similar and contrasting data findings; and 3) create a methodological framework for future mechanistic and applied research.
Collapse
Affiliation(s)
- Luke Hughes
- Department of Sport Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| |
Collapse
|
8
|
de la Bastide C, Soares L, Lui LY, Harrington J, Cawthon P, Orwoll E, Kado D, Meliker J. A protocol for the prospective study of urinary cadmium with risk of fracture, bone loss, and muscle loss. JBMR Plus 2024; 8:ziad006. [PMID: 38505523 PMCID: PMC10945722 DOI: 10.1093/jbmrpl/ziad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 03/21/2024] Open
Abstract
Cadmium (Cd) is a heavy metal and natural element found in soil and crops with increasing concentrations linked to phosphate fertilizers and sewage sludge applied to crop lands. A large fraction of older US men and woman have documented Cd exposure. Cd exposure has proven health concerns such as risk of lung cancer from inhalation and impaired renal function; however, growing evidence suggests it also influences bone and muscle health. Given that low levels of Cd could affect bone and muscle, we have designed prospective studies using the two largest and most detailed US studies of bone health in older men and women: the Osteoporotic Fractures in Men Study and the Study of Osteoporotic Fractures. We are investigating the association of urinary cadmium (U-Cd), as a surrogate for long-term Cd exposure, with bone and muscle health. Building off suggestive evidence from mechanistic and cross-sectional studies, this will be the first well-powered prospective study of incident fracture outcomes, bone loss, and muscle loss in relation to U-Cd, an established biomarker of long-term Cd exposure. The following is a proposed protocol for the intended study; if successful, the proposed studies could be influential in directing future US policy to decrease Cd exposure in the US population similar to recent policies adopted by the European Union to limit Cd in fertilizers.
Collapse
Affiliation(s)
| | - Lissa Soares
- Program in Public Health, Stony Brook University, Stony Brook, NY 11790, United States
| | - Li-Yung Lui
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, United States
| | - James Harrington
- Analytical Science Division, RTI International, Research Triangle Park, NC 27709-2194, United States
| | - Peggy Cawthon
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, United States
| | - Eric Orwoll
- Department of Medicine, School of Medicine, Oregon Health Sciences University, Portland, OR 97239, United States
| | - Deborah Kado
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, United States
- Geriatric Research, Education, and Clinical Center (GRECC), VA Health Care System, Palo Alto, CA 94303, United States
| | - Jaymie Meliker
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, United States
- Program in Public Health, Stony Brook University, Stony Brook, NY 11790, United States
- Department of Family, Population, & Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
9
|
Zhang Y, Li R, Zhang J, Zhou W, Yu F. Changes in Serum Concentrations of Bone Turnover Markers in Healthy Pregnant Women. Int J Clin Pract 2023; 2023:8466349. [PMID: 38145116 PMCID: PMC10748724 DOI: 10.1155/2023/8466349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Background Changes in bone metabolism during pregnancy have not received sufficient attention because of the lack of effective screening tools. Bone turnover markers (BTMs) could reflect the changes of bone metabolism. Currently, reference intervals for bone metabolism during normal pregnancy are inconclusive. This study aimed to determine reference intervals for BTMs in pregnant women taking prenatal care and to facilitate clinical research on diseases affecting bone metabolism during pregnancy. Methods We surveyed 120 low-risk pregnant women attending routine antenatal care from January 2020 to March 2020. The serum levels of procollagen type I N-propeptide (PINP), N-terminal osteocalcin (N-MID), and C-terminal telopeptide of type I collagen (β-CTX) were measured in the first trimester (<13 weeks), second trimester (14-27 weeks), and third trimester (>28 weeks). Reference intervals for BTMs during pregnancy were analyzed. The Kruskal-Wallis test and paired t-test are used to analyze differences between groups. Spearman correlation coefficients expressed the measure of linear association. Results The bone resorption marker β-CTX in third trimester increases compared to the first trimester and the second trimester (P < 0.001, P < 0.001). The bone formation markers PINP and N-MID were decreased from the first trimester to the second trimester (P = 0.01, P < 0.001) and then raised from the second trimester to the third trimester (P < 0.001, P < 0.001). Two indices of bone turnover rate, β-CTX/PINP and β-CTX/N-MID, were increased from the first trimester to the second trimester (P < 0.001, P < 0.001) and then decreased from the second trimester to the third trimester (P = 0.02, P < 0.001). Conclusion This study established reference intervals for BTMs in pregnant women and observed the changes in BTMs during the different trimesters of pregnancy. The present findings can help in clinical monitoring of the effects of pregnancy diseases on the bone metabolism of pregnant women.
Collapse
Affiliation(s)
- Yiduo Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ruiying Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Wenjie Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Fan Yu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Lv J, Xie W, Wang S, Zhu Y, Wang Y, Zhang P, Chen J. Associated factors of osteoporosis and vascular calcification in patients awaiting kidney transplantation. Int Urol Nephrol 2023; 55:3217-3224. [PMID: 37093441 PMCID: PMC10611617 DOI: 10.1007/s11255-023-03606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Pretransplant osteoporosis and vascular calcification probably increase the risk of fractures and cardiovascular events after kidney transplantation. In the present study, we investigated the related risk factors of osteoporosis and vascular calcification among end-stage renal disease (ESRD) patients awaiting kidney transplantation. METHODS A total of 221 ESRD patients (age, 43.4 ± 14.3 years; 125 males and 96 females; median dialysis duration, 61.0 m) awaiting kidney transplantation were enrolled in this cross-sectional study. Serum levels of bone turnover markers and intact parathyroid hormone (iPTH) were analyzed from fasting morning blood samples. Dual-energy X-ray absorptiometry was used to measure bone mineral density (BMD). Vascular calcification was evaluated by lateral abdominal radiography and plain radiographic films of the pelvis and hands. RESULTS The osteoporosis prevalence was 27.6% in this cohort of kidney transplantation candidates, and the prevalence of vascular calcification was 51.1%. The related factors for osteoporosis and vascular calcification were similar and included older age, longer dialysis duration, parathyroid hyperplasia, and higher levels of iPTH and bone turnover markers. In the multivariable regression model, age and iPTH were independent risk predictors of both vascular calcification and osteoporosis. There were strong, positive correlations between iPTH and all bone turnover markers. The moderate and severe hyperparathyroidism (iPTH 600-1499 pg/ml and iPTH 1500 pg/ml) were related to reduced serum albumin and hemoglobin levels. CONCLUSION The involvement of high iPTH levels in vascular calcification, osteoporosis, and malnutrition indicated the need of treating hyperparathyroidism early in patients awaiting kidney transplantation. Prospective studies are needed to further examine the utility of bone turnover markers.
Collapse
Affiliation(s)
- Junhao Lv
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenqin Xie
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Suya Wang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yilin Zhu
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yaomin Wang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Ping Zhang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China.
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China.
| |
Collapse
|
11
|
Di Rocco M, Forleo-Neto E, Pignolo RJ, Keen R, Orcel P, Funck-Brentano T, Roux C, Kolta S, Madeo A, Bubbear JS, Tabarkiewicz J, Szczepanek M, Bachiller-Corral J, Cheung AM, Dahir KM, Botman E, Raijmakers PG, Al Mukaddam M, Tile L, Portal-Celhay C, Sarkar N, Hou P, Musser BJ, Boyapati A, Mohammadi K, Mellis SJ, Rankin AJ, Economides AN, Trotter DG, Herman GA, O'Meara SJ, DelGizzi R, Weinreich DM, Yancopoulos GD, Eekhoff EMW, Kaplan FS. Garetosmab in fibrodysplasia ossificans progressiva: a randomized, double-blind, placebo-controlled phase 2 trial. Nat Med 2023; 29:2615-2624. [PMID: 37770652 PMCID: PMC10579054 DOI: 10.1038/s41591-023-02561-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by heterotopic ossification (HO) in connective tissues and painful flare-ups. In the phase 2 LUMINA-1 trial, adult patients with FOP were randomized to garetosmab, an activin A-blocking antibody (n = 20) or placebo (n = 24) in period 1 (28 weeks), followed by an open-label period 2 (28 weeks; n = 43). The primary end points were safety and for period 1, the activity and size of HO lesions. All patients experienced at least one treatment-emergent adverse event during period 1, notably epistaxis, madarosis and skin abscesses. Five deaths (5 of 44; 11.4%) occurred in the open-label period and, while considered unlikely to be related, causality cannot be ruled out. The primary efficacy end point in period 1 (total lesion activity by PET-CT) was not met (P = 0.0741). As the development of new HO lesions was suppressed in period 1, the primary efficacy end point in period 2 was prospectively changed to the number of new HO lesions versus period 1. No placebo patients crossing over to garetosmab developed new HO lesions (0% in period 2 versus 40.9% in period 1; P = 0.0027). Further investigation of garetosmab in FOP is ongoing. ClinicalTrials.gov identifier NCT03188666 .
Collapse
Affiliation(s)
- Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Richard Keen
- Centre for Metabolic Bone Disease Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Philippe Orcel
- Department of Rheumatology - DMU Locomotion, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM Université Paris Cité, Paris, France
| | - Thomas Funck-Brentano
- Department of Rheumatology - DMU Locomotion, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM Université Paris Cité, Paris, France
| | - Christian Roux
- Department of Rheumatology, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sami Kolta
- Department of Rheumatology, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Annalisa Madeo
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Judith S Bubbear
- Centre for Metabolic Bone Disease Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Jacek Tabarkiewicz
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | - Małgorzata Szczepanek
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | | | - Angela M Cheung
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn M Dahir
- Vanderbilt University Medical Center, Program for Metabolic Bone Disorders, Nashville, TN, USA
| | - Esmée Botman
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Pieter G Raijmakers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mona Al Mukaddam
- Departments of Orthopaedics, Medicine and the Center for Research in FOP & Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lianne Tile
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Peijie Hou
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - E Marelise W Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Frederick S Kaplan
- Departments of Orthopaedics, Medicine and the Center for Research in FOP & Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Civil R, Dolan E, Swinton PA, Santos L, Varley I, Atherton PJ, Elliott-Sale KJ, Sale C. P1NP and β-CTX-1 Responses to a Prolonged, Continuous Running Bout in Young Healthy Adult Males: A Systematic Review with Individual Participant Data Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:85. [PMID: 37725246 PMCID: PMC10509102 DOI: 10.1186/s40798-023-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Circulating biomarkers of bone formation and resorption are widely used in exercise metabolism research, but their responses to exercise are not clear. This study aimed to quantify group responses and inter-individual variability of P1NP and β-CTX-1 after prolonged, continuous running (60-120 min at 65-75% V̇O2max) in young healthy adult males using individual participant data (IPD) meta-analysis. METHODS The protocol was designed following PRISMA-IPD guidelines and was pre-registered on the Open Science Framework prior to implementation ( https://osf.io/y69nd ). Changes in P1NP and β-CTX-1 relative to baseline were measured during, immediately after, and in the hours and days following exercise. Typical hourly and daily variations were estimated from P1NP and β-CTX-1 changes relative to baseline in non-exercise (control) conditions. Group responses and inter-individual variability were quantified with estimates of the mean and standard deviation of the difference, and the proportion of participants exhibiting an increased response. Models were conducted within a Bayesian framework with random intercepts to account for systematic variation across studies. RESULTS P1NP levels increased during and immediately after running, when the proportion of response was close to 100% (75% CrI: 99 to 100%). P1NP levels returned to baseline levels within 1 h and over the next 4 days, showing comparable mean and standard deviation of the difference with typical hourly (0.1 ± 7.6 ng·mL-1) and daily (- 0.4 ± 5.7 ng·mL-1) variation values. β-CTX-1 levels decreased during and up to 4 h after running with distributions comparable to typical hourly variation (- 0.13 ± 0.11 ng·mL-1). There was no evidence of changes in β-CTX-1 levels during the 4 days after the running bout, when distributions were also similar between the running data and typical daily variation (- 0.03 ± 0.10 ng·mL-1). CONCLUSION Transient increases in P1NP were likely biological artefacts (e.g., connective tissue leakage) and not reflective of bone formation. Comparable small decreases in β-CTX-1 identified in both control and running data, suggested that these changes were due to the markers' circadian rhythm and not the running intervention. Hence, prolonged continuous treadmill running did not elicit bone responses, as determined by P1NP and β-CTX-1, in this population.
Collapse
Affiliation(s)
- Rita Civil
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Philip J Atherton
- Centre of Metabolism, Ageing and Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
13
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. MicroRNAs as potential biopredictors for premenopausal osteoporosis: a biochemical and molecular study. BMC Womens Health 2023; 23:481. [PMID: 37689658 PMCID: PMC10493018 DOI: 10.1186/s12905-023-02626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Circulating micro-RNAs have been proposed as a new type of biomarker in several diseases, particularly those related to bone health. They have shown great potential due to their feasibility and simplicity of measurement in all body fluids, especially urine, plasma, and serum. AIM This study aimed to evaluate the expression of a set of mRNAs, namely miR-21, miR-24, mir-100, miR-24a, miR-103-3p, and miR-142-3p. Their proposed roles in the progression of osteoporosis were identified using a real-time polymerase chain reaction (RT-PCR) analysis in premenopausal women. In addition, their correlations with osteocalcin (OC), bone-specific alkaline phosphatase (BAP), and deoxypyridinoline (DPD) bone markers were explored. METHODS A total of 85 healthy premenopausal women aged 25-50 years old were included in this study. Based on a DXA scan (Z-score) analysis and calcaneus broadband ultrasound attenuation scores (c-BUAs), measured via quantitative ultrasound (QUS), the subjects were classified into three groups: normal group (n = 25), osteopenia (n = 30), and osteoporosis (n = 30). Real-time-PCR and immunoassay analyses were performed to determine miRNA expression levels and serum OC, s-BAP, and DPD, respectively, as biomarkers of bone health. RESULTS Among the identified miRNAs, only miR-21, miR-24, and mir-100 were significantly upregulated and increased in the serum of patients with osteopenia and osteoporosis, and miR-24a, miR-103-3p, and miR-142-3p were downregulated and significantly decreased in osteoporosis. Both upregulated and downregulated miRNAs were significantly correlated with BMD, c-BUA, OC, s-BAP, and DPD. CONCLUSION A group of circulating miRNAs was shown to be closely correlated with the parameters BMD, c-BUA, OC, s-BAP, and DPD, which are traditionally used for bone-health measurements. They could be identified as non-invasive biomarkers in premenopausal patients with osteoporosis. More studies with large sample sizes are recommended to estimate the mechanistic role of miRNAs in osteoporosis pathogenesis and to provide evidence for the use of these miRNAs as a non-invasive method of diagnosing clinical osteoporosis, especially in premenopausal patients.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| |
Collapse
|
14
|
Saslow LR, Eslamian A, Moran P, Hartogensis W, Mason AE, Kim S, Bauer DC, Griauzde DH, Goldman V, Liu V, Stephens P, Raymond K, Yeung G, Leung C, Hecht FM. Protocol for a randomized controlled trial comparing a very low-carbohydrate diet or moderate-carbohydrate plate-method diet for type 2 diabetes: the LEGEND (Lifestyle Education about Nutrition for Diabetes) trial. Trials 2023; 24:463. [PMID: 37475033 PMCID: PMC10360267 DOI: 10.1186/s13063-023-07512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Optimal carbohydrate intake is an important and controversial area in the nutritional management of type 2 diabetes. Some evidence indicates that reducing overall carbohydrate intake with a low- or very low-carbohydrate eating plan can improve glycemic control compared to following eating plans that involve greater carbohydrate intake. However, critical knowledge gaps currently prevent clear recommendations about carbohydrate intake levels. METHODS The LEGEND (Lifestyle Education about Nutrition for Diabetes) Trial aims to compare a very low-carbohydrate diet to a moderate-carbohydrate plate-method diet for glycemic control in adults with type 2 diabetes. This two-site trial plans to recruit 180 adults with type 2 diabetes. We will randomize participants to either a 20-session group-based diet and lifestyle intervention that teaches either a very low-carbohydrate diet or a moderate-carbohydrate plate-method diet. We will assess participants at study entry and 4 and 12 months later. The primary outcome is HbA1c, and secondary outcomes include inflammation (high sensitivity C-reactive protein), body weight, changes in diabetes medications, lipids (small particle LDL, HDL, triglycerides), skeletal metabolism (bone mineral density from dual-energy x-ray absorptiometry and bone turnover markers serum procollagen type I N propeptide and serum C-terminal telopeptide of type I collagen), and body composition (percent body fat, percent lean body mass). DISCUSSION The LEGEND trial is a randomized controlled trial to assess optimal carbohydrate intake in type 2 diabetes by evaluating the effects of a very low-carbohydrate diet vs. a moderate-carbohydrate plate-method diet over a year-long period. The research addresses important gaps in the evidence base for the nutritional management of type 2 diabetes by providing data on potential benefits and adverse effects of different levels of carbohydrate intake. TRIAL REGISTRATION ClinicalTrials.gov NCT05237128. Registered on February 11, 2022.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarah Kim
- University of California, San Francisco, CA, USA
| | | | | | | | - Vivian Liu
- University of California, San Francisco, CA, USA
| | | | | | - George Yeung
- University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
15
|
Ladang A, Rauch F, Delvin E, Cavalier E. Bone Turnover Markers in Children: From Laboratory Challenges to Clinical Interpretation. Calcif Tissue Int 2023; 112:218-232. [PMID: 35243530 DOI: 10.1007/s00223-022-00964-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023]
Abstract
Bone turnover markers (BTMs) have been developed many years ago to study, in combination with imaging techniques, bone remodeling in adults. In children and adolescents, bone metabolism differs from adults since it implies both growth and bone remodeling, suggesting an age- and gender-dependent BTM concentration. Therefore, specific studies have evaluated BTMs in not only physiological but also pathological conditions. However, in pediatrics, the use of BTMs in clinical practice is still limited due to these many children-related specificities. This review will discuss about physiological levels of BTMs as well as their modifications under pathological conditions in children and adolescents. A focus is also given on analytical and clinical challenges that restrain BTM usefulness in pediatrics.
Collapse
Affiliation(s)
- Aurélie Ladang
- Clinical Chemistry Department, CHU de Liège, Liège, Belgium.
| | - Frank Rauch
- Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Edgard Delvin
- Centre & Department of Biochemistry, Ste-Justine University Hospital Research, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
16
|
de Sire A, Lippi L, Marotta N, Folli A, Calafiore D, Moalli S, Turco A, Ammendolia A, Fusco N, Invernizzi M. Impact of Physical Rehabilitation on Bone Biomarkers in Non-Metastatic Breast Cancer Women: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:921. [PMID: 36674436 PMCID: PMC9863706 DOI: 10.3390/ijms24020921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Rehabilitation might improve bone health in breast cancer (BC) patients, but the effects on bone biomarkers are still debated. Thus, this meta-analysis of randomized controlled trials (RCTs) aims at characterizing the impact of rehabilitation on bone health biomarkers in BC survivors. On 2 May 2022, PubMed, Scopus, Web of Science, Cochrane, and PEDro were systematically searched for RCTs assessing bone biomarker modifications induced by physical exercise in BC survivors. The quality assessment was performed with the Jadad scale and the Cochrane risk-of-bias tool for randomized trials (RoBv.2). Trial registration number: CRD42022329766. Ten studies were included for a total of 873 patients. The meta-analysis showed overall significant mean difference percentage decrease in collagen type 1 cross-linked N-telopeptide (NTX) serum level [ES: -11.65 (-21.13, -2.17), p = 0.02)] and an increase in bone-specific alkaline phosphatase (BSAP) levels [ES: +6.09 (1.56, 10.62). According to the Jadad scale, eight RCTs were considered high-quality studies. Four studies showed a low overall risk of bias, according to RoBv.2. The significant effects of rehabilitation on bone biomarkers suggested a possible implication for a precision medicine approach targeting bone remodeling. Future research might clarify the role of bone biomarkers monitoring in rehabilitation management of cancer treatment induced bone-loss.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
- Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Translational Medicine, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Nicola Marotta
- Physical and Rehabilitative Medicine, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Arianna Folli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Dario Calafiore
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Stefano Moalli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Alessio Turco
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Antonio Ammendolia
- Physical and Rehabilitative Medicine, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
- Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Translational Medicine, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
17
|
de Oliveira MC, Heredia JE, da Silva FRF, Macari S. Extracellular Vesicles in Bone Remodeling and Osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:155-168. [PMID: 37603279 DOI: 10.1007/978-981-99-1443-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Osteoporosis is a systemic disorder characterized by bone mass loss, leading to fractures due to weak and brittle bones. The bone tissue deterioration process is related to an impairment of bone remodeling orchestrated mainly by resident bone cells, including osteoblasts, osteoclasts, osteocytes, and their progenitors. Extracellular vesicles (EVs) are nanoparticles emerging as regulatory molecules and potential biomarkers for bone loss. Although the progress in studies relating to EVs and bone loss has increased in the last years, research on bone cells, animal models, and mainly patients is still limited. Here, we aim to review the recent advances in this field, summarizing the effect of EV components such as proteins and miRNAs in regulating bone remodeling and, consequently, osteoporosis progress and treatment. Also, we discuss the potential application of EVs in clinical practice as a biomarker and bone loss therapy, demonstrating that this rising field still needs to be further explored.
Collapse
Affiliation(s)
- Marina Chaves de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joyce Elisa Heredia
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Soraia Macari
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev 2022; 44:417-473. [PMID: 36510335 PMCID: PMC10166271 DOI: 10.1210/endrev/bnac031] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bone turnover markers (BTMs) are used widely, in both research and clinical practice. In the last 20 years, much experience has been gained in measurement and interpretation of these markers, which include commonly used bone formation markers bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide; and commonly used resorption markers serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen and tartrate resistant acid phosphatase type 5b. BTMs are usually measured by enzyme-linked immunosorbent assay or automated immunoassay. Sources contributing to BTM variability include uncontrollable components (e.g., age, gender, ethnicity) and controllable components, particularly relating to collection conditions (e.g., fasting/feeding state, and timing relative to circadian rhythms, menstrual cycling, and exercise). Pregnancy, season, drugs, and recent fracture(s) can also affect BTMs. BTMs correlate with other methods of assessing bone turnover, such as bone biopsies and radiotracer kinetics; and can usefully contribute to diagnosis and management of several diseases such as osteoporosis, osteomalacia, Paget's disease, fibrous dysplasia, hypophosphatasia, primary hyperparathyroidism, and chronic kidney disease-mineral bone disorder.
Collapse
Affiliation(s)
- Marian Schini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tatiane Vilaca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Syazrah Salam
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Pantano F, Tramontana F, Iuliani M, Leanza G, Simonetti S, Piccoli A, Paviglianiti A, Cortellini A, Spinelli GP, Longo UG, Strollo R, Vincenzi B, Tonini G, Napoli N, Santini D. Changes in bone turnover markers in patients without bone metastases receiving immune checkpoint inhibitors: An exploratory analysis. J Bone Oncol 2022; 37:100459. [PMID: 36338920 PMCID: PMC9633734 DOI: 10.1016/j.jbo.2022.100459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are correlated with immune-related adverse events (irAEs) that may potentially affect all host tissues. The effects of ICIs on the skeleton are poorly investigated, thus we evaluated the changes of specific markers of bone resorption and formation. We found an increase of type I collagen C-terminal telopeptide (CTX-I) levels after 3 months of ICIs treatment with a concomitant reduction of N-terminal propeptide of type I procollagen (PINP) levels with a trend toward statistical significance. CTX-I increase was also associated with poor prognosis in terms of treatment response and survival.
Immune checkpoint inhibitors (ICIs) has revolutionized the treatment of different advanced solid tumors, but most patients develop severe immune-related adverse events (irAEs). Although a bi-directional crosstalk between bone and immune systems is widely described, the effect of ICIs on the skeleton is poorly investigated. Here, we analyze the changes in plasma levels of type I collagen C-terminal telopeptide (CTX-I) and N-terminal propeptide of type I procollagen (PINP), reference makers of bone turnover, in patients treated with ICIs and their association with clinical outcome. A series of 44 patients affected by advanced non-small cell lung cancer or renal cell carcinoma, without bone metastases, and treated with ICIs as monotherapy were enrolled. CTX-I and PINP plasma levels were assessed at baseline and after 3 months of ICIs treatment by ELISA kits. A significant increase of CTX-I with a concomitant decreasing trend towards the reduction of PINP was observed after 3 months of treatment. Intriguingly, CTX-I increase was associated with poor prognosis in terms of treatment response and survival. These data suggest a direct relationship between ICIs treatment, increased osteoclast activity and potential fracture risk. Overall, this study reveals that ICIs may act as triggers for skeletal events, and if confirmed in larger prospective studies, it would identify a new class of skeletal-related irAEs.
Collapse
Key Words
- APRIL, a proliferation-inducing ligand
- Bone health
- CT-scan, Computed Tomography Scan
- CTX-I, type I collagen C-Terminal telopeptide
- ECOG, Eastern Cooperative Oncology Group
- ELISA, Enzyme-Linked Immunosorbent Assay
- ICIs, Immune Checkpoint Inhibitors
- IFN-γ, Interferon-γ
- IL-6, Interleukin-6
- Immune checkpoint inhibitors (ICIs)
- N-terminal propeptide of type I procollagen (PINP)
- NSCLC, Non-Small Cell Lung Cancer
- OPG, Osteoprotegerin
- OS, Overall Survival
- PD-L1, Programmed cell Death Ligand 1
- PINP, N-terminal Propeptide of type I Procollagen
- RANKL, nuclear factor kappa-B ligand
- RCC, Renal Cell Carcinoma
- RECIST, Response Evaluation Criteria in Solid Tumors
- T0, Time 0
- T1, Time 1
- TNF-α, Tumor Necrosis Factor-α
- TTF, Time to Treatment Failure
- Th17, T helper 17
- Type I Collagen C-Terminal Telopeptide (CTX-I)
- irAEs, Immune-Related Adverse Events
Collapse
Affiliation(s)
- Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Flavia Tramontana
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Michele Iuliani
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy,Corresponding author.
| | - Giulia Leanza
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sonia Simonetti
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Alessandra Piccoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Annalisa Paviglianiti
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy,Hematology Department, Institut Català d’Oncologia Hospitalet, Barcelona, Spain,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Alessio Cortellini
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Universitaria, Sapienza University of Rome- Polo Pontino, Italy
| | - Umile Giuseppe Longo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocky Strollo
- Dipartimento di Scienze e Tecnologie per l'Uomo e l'Ambiente, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Bruno Vincenzi
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Giuseppe Tonini
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Daniele Santini
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy,UOC Oncologia Universitaria, Sapienza University of Rome- Polo Pontino, Italy
| |
Collapse
|
20
|
Carey JJ, Chih-Hsing Wu P, Bergin D. Risk assessment tools for osteoporosis and fractures in 2022. Best Pract Res Clin Rheumatol 2022; 36:101775. [PMID: 36050210 DOI: 10.1016/j.berh.2022.101775] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is one of the frequently encountered non-communicable diseases in the world today. Several hundred million people have osteoporosis, with many more at risk. The clinical feature is a fragility fracture (FF), which results in major reductions in the quality and quantity of life, coupled with a huge financial burden. In recognition of the growing importance, the World Health Organisation established a working group 30 years ago tasked with providing a comprehensive report to understand and assess the risk of osteoporosis in postmenopausal women. Dual-energy X-ray absorptiometry (DXA) is the most widely endorsed technology for assessing the risk of fracture or diagnosing osteoporosis before a fracture occurs, but others are available. In clinical practice, important distinctions are essential to optimise the use of risk assessments. Traditional tools lack specificity and were designed for populations to identify groups at higher risk using a 'one-size-fits-all' approach. Much has changed, though the purpose of risk assessment tools remains the same. In 2022, many tools are available to aid the identification of those most at risk, either likely to have osteoporosis or suffer the clinical consequence. Modern technology, enhanced imaging, proteomics, machine learning, artificial intelligence, and big data science will greatly advance a more personalised risk assessment into the future. Clinicians today need to understand not only which tool is most effective and efficient for use in their practice, but also which tool to use for which patient and for what purpose. A greater understanding of the process of risk assessment, deciding who should be screened, and how to assess fracture risk and prognosis in older men and women more comprehensively will greatly reduce the burden of osteoporosis for patients, society, and healthcare systems worldwide. In this paper, we review the current status of risk assessment, screening and best practice for osteoporosis, summarise areas of uncertainty, and make some suggestions for future developments, including a more personalised approach for individuals.
Collapse
Affiliation(s)
- John J Carey
- National University of Ireland Galway, 1007, Clinical Sciences Institute, Galway, H91 V4AY, Ireland.
| | - Paulo Chih-Hsing Wu
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Taiwan; Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Director, Obesity/Osteoporosis Special Clinic, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Diane Bergin
- National University of Ireland Galway, 1007, Clinical Sciences Institute, Galway, H91 V4AY, Ireland; Galway University Hospitals, Ireland
| |
Collapse
|
21
|
de Vasconcelos RF, Costa V, Araujo B, Maia TAC, Dias R, Vasconcelos L, Silveira H, Carneiro B, Thiers D, Costa FWG, Kurita L, Ayala A, Leitão R, Pereira KMA, Gondim DV, Goes P. Milk kefir therapy improves the skeletal response to resistance exercise in rats submitted to glucocorticoid-induced osteoporosis. Exp Gerontol 2022; 167:111921. [PMID: 35964897 DOI: 10.1016/j.exger.2022.111921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIO) has emerged as a challenge after long-term glucocorticoids (GCs) administration. Exercise has been an important non-pharmacological option, while medications modulate bone remodeling despite adverse effects. In this way, milk Kefir (MK) therapy stands out as a safe alternative to improve bone metabolism. Our study aimed to investigate the effect of MK associated to resistance exercise on bone loss in rats with GIO. For this, sixty male Wistar rats were divided into 2 groups: normal (N) and subjected to GIO, which was subdivided into 4 groups: control (C), milk kefir therapy (K), Exercise (Ex), and Exercise+K (ExK). GIO was induced by dexamethasone (7 mg/kg - i.m.; 1×/wk, 5 wk). MK was administered daily (1×/day; 0.7 ml/animal) and the climb exercise with load was performed 3×/wk; both for 16 wk. Femur was collected for assessment of bone microarchitecture, quality and metabolism. GIO markedly reduced trabecular bone volume density (BV/TV) (-35 %), trabecular thickness (Tb.Th) (-33 %), mineral content of femur (-26 %) as well as bone collagen content (-56 %). Bone strength and its biomechanical properties given by flexural strength (-81 %), fracture load (-80 %), and the number of osteocytes (-84 %) were lowered after GIO. GCs reduced osteoblast number and function while increased osteoclast number, altering bone remodeling (p < 0.05). On the other hand, ExK significantly improved bone microarchitecture and quality, marked by fractal dimension increase (+38 %), cortical volume (+34 %), BV/TV (+34 %), Tb.Th (+33 %), mineral content and collagen maturity, while reduced the space between trabecula (-34 %). The Ex and ExK increased the number of osteocytes (p < 0.05) and they were able to reverse the lower osteoblast number. Both treatments used alone significantly enhanced bone biomechanical properties, but the ExK showed a more significant improvement. ExK ameliorated bone strength and biomechanics (p < 0.05) and stimulated bone formation and modulated bone remodeling (p < 0.05). MK and exercise administered isolated or in association increased the percentage of collagen bone filling after GIO (p < 0.05), but only ExK improved collagen maturity. Our results showed that MK associated to resistance exercise enhanced bone microarchitecture, quality and metabolism, being therefore an interesting tool to improve skeletal response during GIO.
Collapse
Affiliation(s)
- Raquel Felipe de Vasconcelos
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Vanessa Costa
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Araujo
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thays Allane Cordeiro Maia
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Romero Dias
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lorena Vasconcelos
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Helson Silveira
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bárbara Carneiro
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Post-Graduation Program in Dentistry, Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Diego Thiers
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fábio Wildson Gurgel Costa
- Post-Graduation Program in Dentistry, Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil; Oral Radiology Unit, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Lúcio Kurita
- Oral Radiology Unit, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Alejandro Ayala
- Post-graduation Program in Physics, Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Renata Leitão
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, Brazil
| | - Karuza Maria Alves Pereira
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, Brazil
| | - Delane Viana Gondim
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, Brazil
| | - Paula Goes
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
22
|
The Bone Biomarker Response to an Acute Bout of Exercise: A Systematic Review with Meta-Analysis. Sports Med 2022; 52:2889-2908. [DOI: 10.1007/s40279-022-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/16/2022]
|
23
|
Zou J, Zhu L, Yang J, Feng J, Li S, Luo J, Li M, Ren Y, Dong J, Zhang Y, Tian L. Correlation between vitamin D metabolites and rheumatoid arthritis with osteoporosis by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). J Bone Miner Metab 2022; 40:696-703. [PMID: 35648223 DOI: 10.1007/s00774-022-01337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Our aim is to study the correlation between vitamin D metabolites and osteoporosis in rheumatoid arthritis (RA) by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). At the same time, other influencing factors and serum biomarkers of osteoporosis in patients with RA were studied. MATERIALS AND METHODS Patients with RA admitted from January 2020 to December 2020 were selected at our hospital. The subjects were divided into the normal bone mineral density (BMD), osteopenia, and osteoporosis groups. The differences of vitamin D (VD) metabolites among groups were compared. The Pearson correlation coefficient was used to analyze the relationship between BMD and various parameters. The relationship between BMD and influencing factors was studied by a multiple linear regression equation. RESULTS A total of 287 patients with RA were included. RA patients with 25-hydroxy vitamin D [25(OH)D] deficiency accounted for 43.63% and 25(OH)D insufficient levels accounted for 31.37%. There were 31 cases (10.80%) in the normal BMD group, 161 cases (56.10%) in the osteopenia group, and 95 cases (33.10%) in the osteoporosis group. The BMD of L1-4 (T- score) was negatively correlated with age (P < 0.05), course of disease (P < 0.05), and erythrocyte sedimentation rate (ESR) (P < 0.05), and positively correlated with 25(OH)D3 (P < 0.05). The multiple linear regression model results showed that age and 25(OH)D3 were independent predictors of BMD; this explained 22.11% of the total variation. CONCLUSIONS VD deficiency and insufficient are common in RA patients. RA patients can be appropriately supplemented with VD. VD3 may be a better choice.
Collapse
Affiliation(s)
- Jinmei Zou
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Lungang Zhu
- Department of Emergency, Mianyang Central Hospital, Mianyang, China
| | - Jing Yang
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China.
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Siyin Li
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Jiaang Luo
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Min Li
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Yan Ren
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Jianling Dong
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Yu Zhang
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Lan Tian
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| |
Collapse
|
24
|
Prowting JL, Skelly LE, Kurgan N, Fraschetti EC, Klentrou P, Josse AR. Acute Effects of Milk vs. Carbohydrate on Bone Turnover Biomarkers Following Loading Exercise in Young Adult Females. Front Nutr 2022; 9:840973. [PMID: 35571916 PMCID: PMC9101466 DOI: 10.3389/fnut.2022.840973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy products and impact exercise have previously been identified to be independently beneficial for bone mineral properties, however, it is unknown how the combination of these two osteogenic interventions may alter acute bone turnover. Using a randomized crossover design, we compared the acute effects of consuming milk vs. an isoenergetic carbohydrate control beverage on bone biomarkers following loading exercise. Thirteen healthy female participants (Age = 20.3 ± 2.3y; BMI = 21.0 ± 1.1 kg/m2) consumed either 550 mL of 0% skim white milk (MILK) or 52.7 g of maltodextrin in 550 mL of water (CHO), both 5 min and 1 h following completion of a combined plyometric (198 impacts) and resistance exercise (3-4 sets/exercise, 8-12 reps/set, ∼75% 1-RM) bout. Venous blood samples were obtained pre-exercise, and 15 min, 75 min, 24 h and 48 h post-exercise to assess serum concentrations of bone resorption biomarkers, specifically carboxyl-terminal crosslinking telopeptide of type I collagen (CTX), receptor activator nuclear factor kappa-β ligand (RANKL), and sclerostin (SOST), as well as bone formation biomarkers, specifically osteoprotegerin (OPG) and osteocalcin (OC). When absolute biomarker concentrations were examined, there were no interaction or group effects for any biomarker, however, there were main time effects (p < 0.05) for RANKL, SOST, and OC, which were lower, and the OPG: OPG/RANKL ratio, which was higher at 75 min post-exercise compared with baseline in both conditions. In addition to assessing absolute biomarker concentrations at specific timepoints, we also evaluated the relative (% change) cumulative post-exercise response (75 min to 48 h) using an area under the curve (AUC) analysis. This analysis showed that the relative post-exercise CTX response was significantly lower in the MILK compared to the CHO condition (p = 0.03), with no differences observed in the other biomarkers. These results show that while milk does not appear to alter absolute concentrations of bone biomarkers compared to CHO, it may attenuate relative post-exercise bone resorption (i.e., blunt the usual catabolic response to exercise).
Collapse
Affiliation(s)
- Joel L. Prowting
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Lauren E. Skelly
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Emily C. Fraschetti
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Andrea R. Josse
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
25
|
Ховасова НО, Дудинская ЕН, Наумов АВ, Ткачева ОН, Мачехина ЛВ, Онучина ЮС. [Effect of bone anabolic therapy on bone remodeling and bone density in geriatric patients with osteoporosis and falling syndrome]. PROBLEMY ENDOKRINOLOGII 2022; 68:67-75. [PMID: 35841170 PMCID: PMC9762541 DOI: 10.14341/probl13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Older adults with severe osteoporosis are the most vulnerable group of geriatric patients. They are shown the purpose of anti-osteoporotic therapy, which should be effective and safe. Teriparatide showed a decrease in the risk of fractures, an increase in BMD. In Russia, the use of teriparatide in the geriatric population is extremely scarce. AIM assess clinical course, bone metabolism parameters and efficacy of bone-anabolic therapy in elderly and senile patients with severe osteoporosis and falls. MATERIALS AND METHODS The longitudinal prospective study included 100 patients 60 years and older with severe osteoporosis who had one or more falls within the last year. All patients were prescribed calcium and vitamin D preparations and bone-anabolic therapy (teriparatide 20 mg daily subcutaneously). The duration of follow-up was 24 months and included 3 visits: screening, at 12 and 24 months. The effectiveness of bone-anabolic therapy was carried out on the basis of assessing the frequency of new fractures, reduction of pain, changes in BMD according to X-ray densitometry, dynamics of bone metabolism markers. RESULTS All patients had severe osteoporosis and aggravated comorbidity status, suffered a fall within the last year, and also low-energy fractures in the past. One in three patients had a vertebral fracture, one in five had a proximal femoral fracture. Prior to the start of the study, 61 patients received antiosteoporotic therapy. During the follow-up, 4 patients died, 96 patients completed the study. Against the background of teriparatide therapy, a decrease in the number of new cases of low-energy fractures and the number of patients with chronic pain was obtained. An increase in BMD was noted in the lumbar spine after 24 months and in the femoral neck after 12 months. There was no negative dynamics of the BMD. Also after 12 months, an increase in P1NP and C-terminal telopeptide of collagen type 1 was noted, after 24 months - osteocalcin and C-terminal telopeptide. CONCLUSION The use of teriparatide can be recommended as an effective intervention to treat severe osteoporosis in geriatric patients with falls.
Collapse
Affiliation(s)
- Н. О. Ховасова
- Кафедра болезней старения, Российский национальный исследовательский медицинский университет им. Пирогова; Лаборатория заболеваний костно-мышечной системы, Российский геронтологический научно-клинический центр
| | - Е. Н. Дудинская
- Кафедра болезней старения, Российский национальный исследовательский медицинский университет им. Пирогова; Лаборатория возрастных метаболических и эндокринных нарушений, Российский геронтологический научноклинический центр
| | - А. В. Наумов
- Кафедра болезней старения, Российский национальный исследовательский медицинский университет им. Пирогова; Лаборатория заболеваний костно-мышечной системы, Российский геронтологический научно-клинический центр
| | - О. Н. Ткачева
- Кафедра болезней старения, Российский национальный исследовательский медицинский университет им. Пирогова
| | - Л. В. Мачехина
- Кафедра болезней старения, Российский национальный исследовательский медицинский университет им. Пирогова; Лаборатория возрастных метаболических и эндокринных нарушений, Российский геронтологический научноклинический центр
| | - Ю. С. Онучина
- Кафедра болезней старения, Российский национальный исследовательский медицинский университет им. Пирогова; Лаборатория возрастных метаболических и эндокринных нарушений, Российский геронтологический научноклинический центр
| |
Collapse
|
26
|
Bemben DA, Sherk VD, Buchanan SR, Kim S, Sherk K, Bemben MG. Acute and Chronic Bone Marker and Endocrine Responses to Resistance Exercise With and Without Blood Flow Restriction in Young Men. Front Physiol 2022; 13:837631. [PMID: 35370772 PMCID: PMC8969015 DOI: 10.3389/fphys.2022.837631] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
In this study, we compared acute and chronic bone marker and hormone responses to 6 weeks of low intensity (20% 1RM) blood flow restriction (BFR20) resistance training to high intensity (70% 1RM) traditional resistance training (TR70) and moderate intensity (45% 1RM) traditional resistance training (TR45) in young men (18–35 years). Participants were randomized to one of the training groups or to a control group (CON). The following training programs were performed 3 days per week for 6 weeks for knee extension and knee flexion exercises: BFR20, 20%1RM, 4 sets (30, 15, 15, 15 reps) wearing blood flow restriction cuffs around the proximal thighs; TR70, 70% 1RM 3 sets 10 reps; and TR45, 45% 1RM 3 sets 15 reps. Muscle strength and thigh cross-sectional area were assessed at baseline, between week 3 and 6 of training. Acute bone marker (Bone ALP, CTX-I) and hormone (testosterone, IGF-1, IGFBP-3, cortisol) responses were assessed at weeks 1 and 6, with blood collection done in the morning after an overnight fast. The main findings were that the acute bone formation marker (Bone ALP) showed significant changes for TR70 and BFR20 but there was no difference between weeks 1 and 6. TR70 had acute increases in testosterone, IGF-1, and IGFBP-3 (weeks 1 and 6). BFR20 had significant acute increases in testosterone (weeks 1 and 6) and in IGF-1 at week 6, while TR45 had significant acute increases in testosterone (week 1), IGF-1 (week 6), and IGFBP-3 (week 6). Strength and muscle size gains were similar for the training groups. In conclusion, low intensity BFR resistance training was effective for stimulating acute bone formation marker and hormone responses, although TR70 showed the more consistent hormone responses than the other training groups.
Collapse
Affiliation(s)
- Debra A. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- *Correspondence: Debra A. Bemben,
| | - Vanessa D. Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Samuel R. Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - SoJung Kim
- Department of Health and Exercise Science, Rowan University, Glassboro, NJ, United States
| | - Kyle Sherk
- Hanger Clinic, Denver, CO, United States
| | - Michael G. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
27
|
Dror N, Carbone J, Haddad F, Falk B, Klentrou P, Radom-Aizik S. Sclerostin and bone turnover markers response to cycling and running at the same moderate-to-vigorous exercise intensity in healthy men. J Endocrinol Invest 2022; 45:391-397. [PMID: 34390461 DOI: 10.1007/s40618-021-01659-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recreational cycling is a popular activity which stimulates and improves cardiovascular fitness. The corresponding benefits for bone are unclear. PURPOSE This study examined the effect of running (high-impact) vs. cycling (low-impact), at the same moderate-to-vigorous exercise intensity, on markers of bone formation (N-terminal propeptide of type I collagen, PINP) and bone resorption (C-telopeptide of type I collagen, CTX-1), a non-collagenous bone remodeling marker (osteocalcin), as well as bone-modulating factors, including parathyroid hormone (PTH), irisin (myokine) and sclerostin (osteokine). METHODS Thirteen healthy men (23.7 ± 1.0 y) performed two progressive exercise tests to exhaustion (peak VO2) on a cycle ergometer (CE) and on a treadmill (TM). On subsequent separate days, in randomized order, participants performed 30-min continuous running or cycling at 70% heart rate reserve (HRR). Blood was drawn before, immediately post- and 1 h into recovery. RESULTS PTH transiently increased (CE, 51.7%; TM, 50.6%) immediately after exercise in both exercise modes. Sclerostin levels increased following running only (27.7%). Irisin increased following both running and cycling. In both exercise modes, CTX-1 decreased immediately after exercise, with no significant change in PINP and osteocalcin. CONCLUSION At the same moderate-to-vigorous exercise intensity, running appears to result in a greater transient sclerostin response compared with cycling, while the responses of bone markers, PTH and irisin are similar. The longer-term implications of this differential bone response need to be further examined.
Collapse
Affiliation(s)
- N Dror
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA
| | - J Carbone
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA
| | - F Haddad
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA
| | - B Falk
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - P Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - S Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA.
| |
Collapse
|
28
|
Xing Y, Liu J, Liu H, Ma H. Relationship of Bone Turnover Markers with Serum Uric Acid-to-Creatinine Ratio in Men and Postmenopausal Women with Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:3205-3217. [PMID: 36268198 PMCID: PMC9578772 DOI: 10.2147/dmso.s384694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Accumulating evidence has shown that serum uric acid (UA) is associated with some chronic diseases owing to its antioxidant capacity; however, previous research has discrepant results regarding the relationship between UA and bone health. UA normalized by renal function can reflect endogenous UA levels more precisely than SUA levels. This study assessed the relationship between serum UA-to-creatinine (SUA/Cr) ratio and bone turnover markers (BTMs) in men and postmenopausal women with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS Overall, 1691 patients (1028 males and 663 postmenopausal females) with T2DM admitted to Hebei General Hospital between January and December 2020 were selected and divided into two groups according to their SUA/Cr ratio. One-way analysis of variance was used to compare groups. The relationship between the SUA/Cr ratio and BTMs (including osteocalcin [OC], procollagen I N-terminal peptide [PINP], and β-isomerized type I collagen C-telopeptide breakdown products [β-CTX]) was analyzed using multiple linear regression. Furthermore, subgroup analyses were performed to explore the differences between men and women in the relationship between SUA/Cr and BTMs. Mediation analysis was used to explore whether insulin resistance mediated the association between SUA/Cr and BTMs. RESULTS β-CTX and PNIP levels of patients with T2DM in the low SUA/Cr group were significantly higher than those in the high SUA/Cr group, and the difference between the two groups was statistically significant (P < 0.05). Correlation analysis showed that SUA/Cr was negatively correlated with β-CTX and PNIP. After adjusting for confounding factors, multivariate linear regression analysis revealed that the SUA/Cr level was negatively correlated with PINP and β-CTX in male patients and postmenopausal women with T2DM. Stronger correlations were found in patients with 25(OH)D3 < 20ng/mL, course ≥ 5 years, HbA1c > 7%, or BMI < 28 kg/m2. CONCLUSION SUA/Cr ratio was an independent influencing factor of BTMs in patients with T2DM.
Collapse
Affiliation(s)
- Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Jing Liu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huanxin Liu
- Health Examination Center, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Correspondence: Huijuan Ma, Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China, Tel +86 18032838686, Email
| |
Collapse
|
29
|
Mu S, Xia Y, Wu Q, Ji C, Dai H, Zhang M, Jiao J, Shi F, Liu S, Wang G, Shen T, Tian Y, Yang L, Fu Q, Zhao Y. Response of Bone Metabolism Markers to Ice Swimming in Regular Practitioners. Front Physiol 2021; 12:731523. [PMID: 34899374 PMCID: PMC8662563 DOI: 10.3389/fphys.2021.731523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/03/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: Both exercise and cold exposure cause physiological stress and they often occur in combination. However, the effects of exercise during severe cold on variation in bone metabolism in humans have remained elusive. The aim of this study was to investigate the variations in circulating bone metabolism markers after ice swimming (IS). Methods: Eighty-seven women and men aged 42–84 years old were recruited to perform regular IS activities. Serum parathyroid hormone (PTH), total calcium (Ca2+), total phosphorus (Pi), total magnesium (Mg2+), N-terminal osteocalcin (N-MID), total propeptide of procollagen 1 (TPINP), and C-terminal telopeptide of type 1 collagen (β-CTX) were measured 30 min before and 30 min after IS. Bone mineral content (BMC) and bone mineral density (BMD) were assessed at lumbar spine 1–4 (L1–L4) and femoral neck (FN). The IS habits were obtained from questionnaires and the 10-year probability of osteoporotic fracture was calculated using the FRAX® tool with and without a BMD value of the FN. Results: There were significant increases in PTH (median, 40.120–51.540 pg/mL), Ca2+ (median, 2.330–2.400 mmol/L), and Pi (median, 1.100–1.340 mmol/L) and significant decreases in TPINP (median, 38.190–36.610 ng/mL) and β-CTX (median, 0.185–0.171 ng/mL), while there was a trend for increased serum Mg2+ (P = 0.058) but no significant change in N-MID (P = 0.933) after IS in all subjects. The increases in the proportions of cases of hyperparathyroidemia, hypercalcemia, and hyperphosphatemia in those performing IS were statistically significant. The baseline levels and the changes of bone metabolism markers had associations with osteoporosis and bone status, but these may be age and sex dependent. Finally, there were significant correlations among the bone metabolism markers. Conclusion: IS caused significant alterations in bone metabolic markers, specifically, increases in PTH, Ca2+ and Pi should raise concerns about potential cardiovascular health risks in severe cold exercise. Additionally, a divergence between PTH elevation and a decline in bone turnover, which shown a special change of bone metabolism after IS and may suggest potential therapeutic implications of cold exercise in PTH and bone metabolic disorders.
Collapse
Affiliation(s)
- Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Ji
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huixu Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Shi
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqing Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
31
|
Rathnayake H, Lekamwasam S, Wickramatilake C, De Zoysa E, Lenora J. Age-related trends and reference intervals of cross-linked C-telopeptide of type I collagen and procollagen type I N-propeptide from a reference population of Sri Lankan adult women. Arch Osteoporos 2021; 16:164. [PMID: 34727246 DOI: 10.1007/s11657-021-01022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/06/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Refer ence values of bone turnover markers (BTMs) are determined by factors that are country-specific. In Sri Lanka, unavailability of BTM reference data has led to their non-use in management of osteoporosis. The results of this study can be used as reference data for women in Sri Lanka. INTRODUCTION This study was performed to establish age-related reference intervals for bone resorption marker; cross-linked C-telopeptide of type I collagen (CTX) and bone formation marker; procollagen type I N-propeptide (PINP) in a group of Sri Lankan adult women. METHODS Adult women (n = 347) aged 20-70 years were recruited using age-stratified random sampling technique and categorized into age groups by decades. Serum CTX and PINP concentration were measured using enzyme-linked immunosorbent assay (ELISA). The geometric mean (95% confidence interval) and 2.5th and 97.5th percentiles were calculated. ANOVA was used to compare the means between groups. RESULTS Mean CTX levels were relatively low and remained unchanged between 20 and 49 years. After the age of 49 years, mean CTXconcentration elevated significantly until the age of 70 years (43%, p < 0.001). Mean PINP concentrations were not significantly different between age categories (p > 0.05). Reference intervals of CTX and PINP were based on 2.5th and 97.5th percentile values. Reference intervals of CTX for the age groups of 20-29, 30-39, 40-49, 50-59, and 60-70 years were 0.19-0.97 ng/mL, 0.18-0.95 ng/mL, 0.20-1.29 ng/mL, 0.17-2.20 ng/mL, and 0.17-2.85 ng/mL respectively. Reference intervals of PINP for the same age groups were 118-810 pg/mL, 119-772 pg/mL, 116-645 pg/mL, 108-684 pg/mL, and 108-715 pg/mL respectively. CONCLUSION In Sri Lanka, bone turnover markers are not used in evaluating patients mainly due to lack of normative data. These values can be used as reference data for women in this age group.
Collapse
Affiliation(s)
- Hasanga Rathnayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | - Sarath Lekamwasam
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | - Eric De Zoysa
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.,Nuclear Medicine Unit, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Janaka Lenora
- Department of Physiology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
32
|
Stein PK, Buzkova P, Fink HA, Robbins JA, Mukamal KJ, Cauley JA, Carbone L, Elam R, McMillan DW, Valderrabano R, Barzilay JI. Cardiovascular autonomic nervous system function and hip fracture risk: the Cardiovascular Health Study. Arch Osteoporos 2021; 16:163. [PMID: 34719754 PMCID: PMC9059792 DOI: 10.1007/s11657-021-01028-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Among 1299 older adults with 24-h Holter monitoring data at baseline, followed for approximately 15 years, 190 incident hip fractures occurred. Increased heart rate variability was independently associated with reduced risk of hip fracture among female participants. PURPOSE Autonomic nervous system function modulates bone remodeling in rodent osteoporosis models. We tested whether cardiovascular autonomic function is associated with hip fracture risk in humans. METHODS Participants were 1299 subjects from the Cardiovascular Health Study (mean age 72.8 years). Eight heart rate variability (HRV) measures (time and frequency domains, detrended fluctuation analysis variables, and heart rate turbulence) were derived from 24-h Holter monitor scans in sinus rhythm. Median follow-up for incident hip fracture was 14.7 years [IQR 9.1, 20.2]. Cox proportional hazards models were used to calculate hazard ratios (95% confidence intervals, CI). RESULTS There were 144 hip fractures among 714 women (1.31 [1.06, 1.61] per 100-person years) and 46 among 585 men (0.62 [0.43, 0.90] per 100 person-years). From among HRV variables examined, a one standard deviation (SD) higher variation between normal heart beats over 24 h (the SD of NN intervals [SDNN]) was associated with a multivariable-adjusted lower hip fracture risk (HR [Formula: see text] 0.80; 95% CI 0.65-0.99; p = 0.04) in women. The adjusted association between very low frequency power, and hip fracture was borderline statistically significant in women (HR [Formula: see text] 0.82; 95% CI, 0.66-1.00; p = 0.06). When the 8 HRV variables were considered conjointly and adjusted for each other's association with hip fracture risk, a 1 SD higher SDNN value was significantly associated with reduced hip fracture risk in women (HR 0.74; 95% CI, 0.50-0.99; p = 0.05). No HRV variables were associated with hip fracture in men. CONCLUSIONS In older women, increased heart rate variation is associated with hip fracture risk.
Collapse
Affiliation(s)
- Phyllis K Stein
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Petra Buzkova
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - John A Robbins
- Department of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura Carbone
- Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Rachel Elam
- Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David W McMillan
- Division of Rehabilitation Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Rodrigo Valderrabano
- Division of Rheumatology, University of Miami School of Medicine, Miami, FL, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia and Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
33
|
Nevola KT, Nagarajan A, Hinton AC, Trajanoska K, Formosa MM, Xuereb-Anastasi A, van der Velde N, Stricker BH, Rivadeneira F, Fuggle NR, Westbury LD, Dennison EM, Cooper C, Kiel DP, Motyl KJ, Lary CW. Pharmacogenomic Effects of β-Blocker Use on Femoral Neck Bone Mineral Density. J Endocr Soc 2021; 5:bvab092. [PMID: 34195528 PMCID: PMC8237849 DOI: 10.1210/jendso/bvab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Recent studies have shown that β-blocker (BB) users have a decreased risk of fracture and higher bone mineral density (BMD) compared to nonusers, likely due to the suppression of adrenergic signaling in osteoblasts, leading to increased BMD. There is also variability in the effect size of BB use on BMD in humans, which may be due to pharmacogenomic effects. OBJECTIVE To investigate potential single-nucleotide variations (SNVs) associated with the effect of BB use on femoral neck BMD, we performed a cross-sectional analysis using clinical data, dual-energy x-ray absorptiometry, and genetic data from the Framingham Heart Study's (FHS) Offspring Cohort. We then sought to validate our top 4 genetic findings using data from the Rotterdam Study, the BPROOF Study, the Malta Osteoporosis Fracture Study (MOFS), and the Hertfordshire Cohort Study. METHODS We used sex-stratified linear mixed models to determine SNVs that had a significant interaction effect with BB use on femoral neck (FN) BMD across 11 gene regions. We also evaluated the association of our top SNVs from the FHS with microRNA (miRNA) expression in blood and identified potential miRNA-mediated mechanisms by which these SNVs may affect FN BMD. RESULTS One variation (rs11124190 in HDAC4) was validated in females using data from the Rotterdam Study, while another (rs12414657 in ADRB1) was validated in females using data from the MOFS. We performed an exploratory meta-analysis of all 5 studies for these variations, which further validated our findings. CONCLUSION This analysis provides a starting point for investigating the pharmacogenomic effects of BB use on BMD measures.
Collapse
Affiliation(s)
- Kathleen T Nevola
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Archana Nagarajan
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Alexandra C Hinton
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Angela Xuereb-Anastasi
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Nathalie van der Velde
- Department of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, 1105 AZ, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Nicholas R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Leo D Westbury
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- Victoria University of Wellington, Wellington, New Zealand
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Douglas P Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Hinda and Arthur Marcus Institute for Aging Research Hebrew SeniorLife, Boston, MA 02131, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Christine W Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| |
Collapse
|
34
|
Bi J, Liu B, Zhang Y, Zhou Q. Study on the Bone Metabolism Indices and Otoconin-90 in Benign Paroxysmal Positional Vertigo. Otol Neurotol 2021; 42:e744-e749. [PMID: 33606471 DOI: 10.1097/mao.0000000000003087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the correlation between benign paroxysmal positional vertigo (BPPV) and abnormal bone metabolism and to evaluate the value of otoconial protein otoconin-90 in the pathogenesis research and clinical treatment of BPPV. STUDY DESIGN Prospective pilot clinical trial (Level of Evidence: 2b). SETTING Outpatient otolaryngologic department. PATIENTS Twenty seven patients with a diagnosis of BPPV referred to the otolaryngologic department and 25 controls with no history of dizziness from 2018.4 to 2018.9 were reviewed. INTERVENTIONS No. MAIN OUTCOME MEASURES Dual-energy x-ray absorptiometry scanning (DEXA), bone mineral density (BMD) measurement, and assessment of serum levels of otoconin-90 and bone metabolism indices (osteocalcin, OC; 25-OH Vitamin D; total procollagen type 1 N-peptide, TP1NP; β-C-terminal telopeptide of type 1 collagen, β-CTX). RESULTS 1) The average serum level of otoconin-90 in the BPPV group was significantly higher than that in the control group (p < 0.05), whereas both the BMD T scores and serum 25-OH Vitamin D levels of the BPPV group were significantly lower than those of the control group (p < 0.05). 2) There was a strong positive correlation between serum otoconin-90 and age (r = 0.44, p < 0.05) and a moderate negative correlation between otoconin-90 and the bone metabolism indices OC (r = -0.33, p > 0.05), 25-OH Vitamin D (r = -0.35, p > 0.05), and TP1NP (r = -0.30, p > 0.05). 3) Logistic regression analysis showed that serum otoconin-90 level was an independent risk factor for BPPV (odd ratio = 0.998, 95% confidence interval 0.997-0.999, p < 0.01). CONCLUSION A correlation between BPPV and abnormal bone metabolism was found. Moreover, otoconin-90 could serve as a research tool for BPPV.
Collapse
Affiliation(s)
- Jingtao Bi
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University.,Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Bo Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University.,Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Yi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University.,Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Qian Zhou
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University.,Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Diemar SS, Lylloff L, Rønne MS, Møllehave LT, Heidemann M, Thuesen BH, Johannesen J, Schou AJ, Husby S, Wedderkopp N, Mølgaard C, Jørgensen NR. Reference intervals in Danish children and adolescents for bone turnover markers carboxy-terminal cross-linked telopeptide of type I collagen (β-CTX), pro-collagen type I N-terminal propeptide (PINP), osteocalcin (OC) and bone-specific alkaline phosphatase (bone ALP). Bone 2021; 146:115879. [PMID: 33561588 DOI: 10.1016/j.bone.2021.115879] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Bone turnover markers (BTM) are gaining ground in clinical practice but to fully use their potential there is a need for establishing valid reference intervals (RI). Consequently, the purpose of the study was to establish general RI as well as suggested clinical RI for carboxy-terminal cross-linked telopeptide of type I collagen (β-CTX), pro-collagen type I N-terminal propeptide (PINP), osteocalcin (OC) and bone-specific alkaline phosphatase (bone ALP) in children and adolescents. METHOD BTM were measured on Danish children and adolescents participating in the CHAMPS-study DK. A total of 762 participants were included (8-18 years, 50.4% girls) contributing a total of 1410 study visits. The RI was calculated based on 2-years age spans. Participants with biochemical signs of metabolic bone disease were excluded. RESULTS The differences in RI between age groups clearly reflect changes in growth with an initial increase in BTM, greatest in boys, and a subsequent decrease most pronounced in girls. β-CTX and PINP are markers most affected by these changes, compared to OC and bone ALP. The suggested clinical 95% RI included participants with vitamin D insufficiency but no biochemical signs of metabolic bone disease which did not markedly alter the RI. CONCLUSION RI for β-CTX, PINP, OC and bone ALP varies with age and sex. β-CTX and PINP which reflect bone resorption and formation processes are mostly affected by these changes. We suggest a set of clinically applicable 95% RI for the four BTM to heighten the usefulness and generalizability of the RI.
Collapse
Affiliation(s)
- Sarah Seberg Diemar
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark.
| | - Louise Lylloff
- Department of Clinical Biochemistry, Regional Hospital West Jutland, Gl. Landevej 61, 7400 Herning, Denmark
| | - Maria Sode Rønne
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000 Odense, Denmark
| | - Line Tang Møllehave
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
| | - Malene Heidemann
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000 Odense, Denmark
| | - Betina Heinsbæk Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
| | - Jesper Johannesen
- Department of Children and Adolescents, Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anders J Schou
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000 Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000 Odense, Denmark; Clinical Institute, University of Southern Denmark, Campusvej 55, 5000 Odense, Denmark
| | - Niels Wedderkopp
- Research Unit for Exercise Epidemiology, Centre of Research in Childhood Health, Department of Regional Health Research, University of Southern Denmark, Campusvej 55, 5000 Odense, Denmark; Department of Orthopaedics, Hospital of Southwest Jutland, Finsensgade 35, 6700 Esbjerg, Denmark
| | - Christian Mølgaard
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000 Odense, Denmark; Clinical Institute, University of Southern Denmark, Campusvej 55, 5000 Odense, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, 2200 Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
36
|
Exploring the Relationship of Bone Turnover Markers and Bone Mineral Density in Community-Dwelling Postmenopausal Women. DISEASE MARKERS 2021; 2021:6690095. [PMID: 33968284 PMCID: PMC8084639 DOI: 10.1155/2021/6690095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022]
Abstract
Aims To explore the relationships of procollagen type 1 N-terminal propeptide (P1NP) and β cross-linked C-telopeptide of type 1 collagen (β-CTX) with bone mineral density (BMD) in postmenopausal women. Methods All postmenopausal women were selected from a community-based case-control study. The anteroposterior L1-L4 and left proximal femur BMD were measured. P1NP and β-CTX were also collected and tested. The main correlation analysis was applied to explore the relationships of BMD, P1NP, and β-CTX. Results The total 1055 postmenopausal women were enrolled. The BMD at all sites kept a decrease continually with age (P < 0.01). In addition, the level of β-CTX increased significantly from 45 to 50 years old and remained at a high level in the later stage, while the level of P1NP changed little or even decreased with age. Logistic regression model showed that β-CTX has better ability to predict BMD than P1NP, as demonstrated by an area under the curve (AUC) of 0.63. Conclusion P1NP and β-CTX are important markers to monitor bone metabolism. This trial is registered with ChiCTR-SOC-17013090. The date of registration is Oct. 23, 2017.
Collapse
|
37
|
Antibodies to Citrullinated Proteins (ACPA) Associate with Markers of Osteoclast Activation and Bone Destruction in the Bone Marrow of Patients with Rheumatoid Arthritis. J Clin Med 2021; 10:jcm10081778. [PMID: 33921836 PMCID: PMC8073027 DOI: 10.3390/jcm10081778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Normalizing bone metabolism is a challenge in rheumatoid arthritis (RA). Studies in mice suggest that anti-citrullinated protein antibodies (ACPAs) can trigger osteoclast activation and bone resorption in the bone marrow. However, data on the presence and role of ACPAs in human bone marrow are scarce. We investigated whether ACPAs can contribute to osteoclast activation and bone erosion in RA bone marrow. Anti-cyclic citrullinated peptide antibodies (anti-CCP Abs), osteoclast activation indicators–the tartrate-resistant acid phosphatase 5b (TRAP5b) and cathepsin K, and bone degradation marker–C-terminal telopeptide of type I collagen (CTX-I) were measured in the bone marrow and peripheral blood of RA patients using ELISAs. We found that ACPAs present in RA bone marrow was associated with increased amounts of TRAP5b, cathepsin K and CTX-I in this location. Levels of IL-8, the key mediator of anti-citrullinated protein antibody (ACPA)-induced bone resorption, were also elevated in bone marrow containing anti-CCP Abs and positively correlated with TRAP5b and cathepsin K concentrations. Higher levels of TRAP5b, cathepsin K, CTX-I and IL-8 in bone marrow compared to peripheral blood indicate local generation of these molecules. Our results complement data from animal studies and highlight the relevance of ACPAs and bone marrow in bone resorption in RA.
Collapse
|
38
|
Gillett MJ, Vasikaran SD, Inderjeeth CA. The Role of PINP in Diagnosis and Management of Metabolic Bone Disease. Clin Biochem Rev 2021; 42:3-10. [PMID: 34305208 PMCID: PMC8252919 DOI: 10.33176/aacb-20-0001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serum procollagen type I N-propeptide (PINP) is designated the reference marker of bone formation in osteoporosis; the reference marker for resorption is C-terminal telopeptide of type I collagen (CTX). PINP has very low circadian and biological variation, is not affected by food intake, and is very stable in serum after venepuncture. The two automated commercial assays for PINP provide similar results in subjects with normal renal function, allowing reference intervals to be used interchangeably. Bone turnover markers (BTM) are currently not recommended for fracture risk assessment and therefore not included in fracture risk calculators. In the management of osteoporosis, the main utility of BTM including PINP is for monitoring therapy, both antiresorptive as well as anabolic agents; monitoring is thought to help improve adherence. PINP as well as CTX may also be used in assessing offset of drug action following a pause in bisphosphonate therapy, to help decide when to re-instate therapy, or following cessation of denosumab therapy to assess efficacy of follow-on bisphosphonate therapy. PINP may also be used in the diagnosis of Paget's disease of bone as well as in monitoring response to therapy and for recurrence. Although BTM other than bone alkaline phosphatase are currently not recommended for use in metabolic bone disease of chronic kidney disease, PINP measured by assays specific to the intact molecule has potential in this condition. Further studies are needed to examine this area, as well as in malignant bone disease.
Collapse
Affiliation(s)
- Melissa J Gillett
- Department of Clinical Biochemistry, PathWest Fiona Stanley Hospital, Murdoch, WA 6150
- Western Diagnostic Pathology, Jandakot, WA 6164
| | - Samuel D Vasikaran
- Department of Clinical Biochemistry, PathWest Fiona Stanley Hospital, Murdoch, WA 6150
| | - Charles A Inderjeeth
- Medical School, University Western Australia, Nedlands, WA 6009
- Departments of Geriatric Medicine and Rheumatology, North Metropolitan Health Service, Nedlands, WA 6009, Australia
| |
Collapse
|
39
|
No Interaction Effect between Interleukin-6 Polymorphisms and Acid Ash Diet with Bone Resorption Marker in Postmenopausal Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020827. [PMID: 33478001 PMCID: PMC7835771 DOI: 10.3390/ijerph18020827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
Background: Evidence is growing that a high-acid diet might accelerate the rate of bone loss, and gene polymorphisms such as Interleukin 6 (IL6) -174G/C and -572G/C are related to bone deterioration. However, no study of the interaction between diet and IL6 polymorphisms has been conducted among Asians. Thus, the objective of this study was to determine whether IL6 gene polymorphisms modified the association between dietary acidity and the rate of bone resorption. Methods: This cross-sectional study recruited 203 postmenopausal women (age ranged from 51 to 85 years old) in community settings. The dietary intakes of the participants were assessed using a validated interviewer-administered semi-quantitative food frequency questionnaire (FFQ), while dietary acid load (DAL) was estimated using net endogenous acid production (NEAP). Agena® MassARRAY genotyping analysis and serum collagen type 1 cross-linked C-telopeptide (CTX1) were used to identify the IL6 genotype and as a bone resorption marker, respectively. The interactions between diet and single-nucleotide polymorphisms (SNPs) were assessed using linear regressions. Results: A total of 203 healthy postmenopausal women aged between 51 and 85 years participated in this study. The mean BMI of the participants was 24.3 kg/m2. In IL6 -174 G/C, all the participants carried the GG genotype, while the C allele was absent. Approximately 40% of the participants had a high dietary acid load. Dietary acid load (B = 0.15, p = 0.031) and the IL6 -572 CC genotype group (B = 0.14, p = 0.044) were positively associated with a higher bone resorption. However, there was no moderating effect of the IL6 genetic polymorphism on the relationship between and acid ash diet and bone resorption markers among the postmenopausal women (p = 0.79). Conclusion: High consumption of an acid ash diet and the IL6 -572 C allele seem to attribute to high bone resorption among postmenopausal women. However, our finding does not support the interaction effect of dietary acidity and IL6 (-174G/C and -572G/C) polymorphisms on the rate of bone resorption. Taken together, these results have given scientific research other candidate genes to focus on which may interact with DAL on bone resorption, to enhance planning for preventing or delaying the onset of osteoporosis among postmenopausal women.
Collapse
|
40
|
Cirrincione LR, Narla RR. Gender-Affirming Hormone Therapy and Bone Health: Do Different Regimens Influence Outcomes in Transgender Adults? A Narrative Review and Call for Future Studies. J Appl Lab Med 2021; 6:219-235. [PMID: 33432334 DOI: 10.1093/jalm/jfaa213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gender-affirming hormone therapy (GAHT) influences bone health in transgender individuals. Several hormone preparations and administration routes are available for GAHT, but no studies have compared clinical and laboratory bone health measures across different GAHT regimens. CONTENT We searched PubMed (MEDLINE), Embase, and Google Scholar for studies measuring bone turnover markers and bone mineral density before and during GAHT in transgender adults. We summarized bone health data by hormone type and administration route (estrogen or testosterone; oral, transdermal/percutaneous, intramuscular). Among trans women, we also examined outcomes among regimens containing different adjunctive agents (antiandrogens or gonadotropin-releasing hormone analogs). SUMMARY Most hormone preparations maintained or increased areal bone mineral density among trans adults taking GAHT for at least 12 months from baseline. Different bone turnover markers were measured across studies, and we were unable to compare or comment on the direct influence of selected hormone preparations on these clinical laboratory measures. Larger and uniformed studies are needed to measure volumetric bone mineral density and biomarkers of bone metabolism in trans adults taking standardized GAHT regimens.
Collapse
Affiliation(s)
| | - Radhika R Narla
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
41
|
Nevola KT, Kiel DP, Zullo AR, Weiss S, Homuth G, Foessl I, Obermayer-Pietsch B, Motyl KJ, Lary CW. miRNA Mechanisms Underlying the Association of Beta Blocker Use and Bone Mineral Density. J Bone Miner Res 2021; 36:110-122. [PMID: 32786095 PMCID: PMC8140522 DOI: 10.1002/jbmr.4160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 01/16/2023]
Abstract
Osteoporosis is a debilitating and costly disease that causes fractures in 33% of women and 20% of men over the age of 50 years. Recent studies have shown that beta blocker (BB) users have higher bone mineral density (BMD) and decreased risk of fracture compared with non-users. The mechanism underlying this association is thought to be due to suppression of adrenergic signaling in osteoblasts, which leads to increased BMD in rodent models; however, the mechanism in humans is unknown. Also, several miRNAs are associated with adrenergic signaling and BMD in separate studies. To investigate potential miRNA mechanisms, we performed a cross-sectional analysis using clinical data, dual-energy X-ray absorptiometry (DXA) scans, and miRNA and mRNA profiling of whole blood from the Framingham Study's Offspring Cohort. We found nine miRNAs associated with BB use and increased BMD. In parallel network analyses, we discovered a subnetwork associated with BMD and BB use containing two of these nine miRNAs, miR-19a-3p and miR-186-5p. To strengthen this finding, we showed that these two miRNAs had significantly higher expression in individuals without incident fracture compared with those with fracture in an external data set. We also noted a similar trend in association between these miRNA and Z-score as calculated from heel ultrasound measures in two external cohorts (SOS-Hip and SHIP-TREND). Because miR-19a directly targets the ADRB1 mRNA transcript, we propose BB use may downregulate ADRB1 expression in osteoblasts through increased miR-19a-3p expression. We used enrichment analysis of miRNA targets to find potential indirect effects through insulin and parathyroid hormone signaling. This analysis provides a starting point for delineating the role of miRNA on the association between BB use and BMD. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kathleen T. Nevola
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Douglas P. Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research Hebrew SeniorLife, Boston, MA, USA
| | - Andrew R. Zullo
- Department of Health Services, Policy and Practice, and Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI 02912, USA
- Rhode Island Hospital, Providence, RI, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Katherine J. Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, USA
| | - Christine W. Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| |
Collapse
|
42
|
Dolan E, Dumas A, Keane KM, Bestetti G, Freitas LHM, Gualano B, Kohrt W, Kelley GA, Pereira RMR, Sale C, Swinton P. The influence of acute exercise on bone biomarkers: protocol for a systematic review with meta-analysis. Syst Rev 2020; 9:291. [PMID: 33308281 PMCID: PMC7733242 DOI: 10.1186/s13643-020-01551-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/30/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Bone is a plastic tissue that is responsive to its physical environment. As a result, exercise interventions represent a potential means to influence the bone. However, little is currently known about how various exercise and participant characteristics interact to influence bone metabolism. Acute, controlled, interventions provide an in vivo model through which the acute bone response to exercise can be investigated, typically by monitoring circulating bone biomarkers. Currently, substantial heterogeneity in factors such as study design, quality, exercise, and participant characteristics render it difficult to synthesize and evaluate the available evidence. Using a systematic review and meta-analytic approach, the aim of this investigation is to quantify the effect of an acute exercise bout on circulating bone biomarkers as well as examine the potential factors that may moderate this response, e.g., variation in participant, exercise, and sampling characteristics. METHODS This protocol was designed in accordance with the PRISMA-P guidelines. Seven databases (MEDLINE, Embase, Sport Discus, Cochrane CENTRAL, PEDro, LILACS, and Ibec) will be systematically searched and supplemented by a secondary screening of the reference lists of all included articles. The PICOS (Population, Intervention, Comparator, Outcomes and Study Design) approach was used to guide the determination of the eligibility criteria. Participants of any age, sex, training, or health status will be considered for inclusion. We will select studies that have measured the bone biomarker response before and after an acute exercise session. All biomarkers considered to represent the bone metabolism will be considered for inclusion, and sensitivity analyses will be conducted using reference biomarkers for the measurement of bone resorption and formation (namely β-CTX-1 and P1NP). Multi-level, meta-regression models within a Bayesian framework will be used to explore the main effect of acute exercise on bone biomarkers as well as potential moderating factors. The risk of bias for each individual study will be evaluated using a modified version of the Downs and Black checklist while certainty in resultant outcomes will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. DISCUSSION A better understanding of the bone metabolic response to an acute bout of exercise has the potential to advance our understanding of the mechanisms through which this stimulus impacts bone metabolism, including factors that may moderate this response. Additionally, we will identify current gaps in the evidence base and provide recommendations to inform future research. SYSTEMATIC REVIEW REGISTRATION This protocol was prospectively registered in the Open Science Framework Registry ( https://osf.io/6f8dz ).
Collapse
Affiliation(s)
- E Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil.
| | - A Dumas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - K M Keane
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - G Bestetti
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - L H M Freitas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - B Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil.,Food Research Centre, University of São Paulo, Sao Paulo, SP, Brazil
| | - W Kohrt
- Centre for Women's Health Research, School of Medicine, University of Colorado, Aurora, USA
| | - G A Kelley
- Department of Biostatistics, West Virginia University, Morgantown, USA
| | - R M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - C Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - P Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
43
|
Carvajal Alegria G, Garrigues F, Bettacchioli E, Loeuille D, Saraux A, Cornec D, Devauchelle-Pensec V, Renaudineau Y. Tocilizumab controls bone turnover in early polymyalgia rheumatica. Joint Bone Spine 2020; 88:105117. [PMID: 33301930 DOI: 10.1016/j.jbspin.2020.105117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES This study explores changes in the bone homeostasis by testing the N-terminal collagen type I extension propeptide (PINP) marker for osteo-formation and the carboxy-terminal region of collagen type I (CTX-I) marker for osteo-resorption in patients taking tocilizumab for polymyalgia rheumatica (PMR). METHODS Twenty patients were included in the prospective open-label TENOR study (Clinicaltrials.gov NCT01713842) and received three monthly tocilizumab infusions, followed by corticosteroids starting at week (W) 12. PINP and CTX-I were tested at inclusion (W0), after tocilizumab but before steroid initiation (W12), at the end of the protocol (W24) and were compared to healthy controls. Information regarding disease activity, bone mineral density using scanographic bone attenuation correlation (SBAC), inflammatory parameters and interleukin (IL)-6 levels were collected during the follow-up of the patients. RESULTS PMR patients were characterised by a reduction in bone mineral density and a higher level of CTX-I relative to healthy controls matched in age and sex at baseline. PINP levels increased at W12 (P< 0.001, versus W0) following tocilizumab introduction and CTX-I levels decreased at W24 and after steroid initiation (P=0.001, versus W0). Such modifications explain the altered correlation observed between PINP and CTX-I at W0 (r=0.255 at W0 versus r=0.641 in healthy controls) and its correction after treatment (r=0.760 at W12 and r=0.767 at W24). Finally, greater changes in PINP were observed in patients whose circulating IL-6 levels decreased after tocilizumab therapy. CONCLUSIONS Control of bone turnover, in part through the inhibition of the IL-6 axis, is observed during tocilizumab and subsequent steroid treatment of PMR.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- Rheumatology department, CHRU Cavale Blanche, Brest, France; Lymphocytes B et autoimmunité, UMR1227, INSERM, Université de Bretagne Occidentale, Brest, France.
| | | | | | - Damien Loeuille
- Department of Rheumatology, University Hospital of Nancy, 54500 Vandoeuvre-lès-Nancy, France; INSERM, CIC-EC CIE6, Nancy, France University Hospital of Nancy, Epidemiology and Clinical Evaluation, 545 Vandoeuvre-lès-Nancy, France
| | - Alain Saraux
- Rheumatology department, CHRU Cavale Blanche, Brest, France
| | - Divi Cornec
- Rheumatology department, CHRU Cavale Blanche, Brest, France; Lymphocytes B et autoimmunité, UMR1227, INSERM, Université de Bretagne Occidentale, Brest, France
| | - Valérie Devauchelle-Pensec
- Rheumatology department, CHRU Cavale Blanche, Brest, France; Lymphocytes B et autoimmunité, UMR1227, INSERM, Université de Bretagne Occidentale, Brest, France
| | - Yves Renaudineau
- Laboratory of immunology and immunotherapy, UMR1227, CHRU Morvan, Brest, France
| |
Collapse
|
44
|
Dolan E, Varley I, Ackerman KE, Pereira RMR, Elliott-Sale KJ, Sale C. The Bone Metabolic Response to Exercise and Nutrition. Exerc Sport Sci Rev 2020; 48:49-58. [PMID: 31913188 DOI: 10.1249/jes.0000000000000215] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone (re)modeling markers can help determine how the bone responds to different types, intensities, and durations of exercise. They also might help predict those at risk of bone injury. We synthesized evidence on the acute and chronic bone metabolic responses to exercise, along with how nutritional factors can moderate this response. Recommendations to optimize future research efforts are made.
Collapse
Affiliation(s)
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Kathryn E Ackerman
- Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rosa Maria R Pereira
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Jayne Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
45
|
Hamza S, Fathy S, El-Azab S. Effect of diode laser biostimulation compared to Teriparatide on induced osteoporosis in rats: an animal study from Egypt. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1970-1985. [PMID: 32922592 PMCID: PMC7476941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Our aim in this study was to evaluate the effect of low-level laser therapy (LLLT) by means of diode laser bio-stimulation compared to Teriparatide in induced osteoporosis in rats. A total of 45 adult female Egyptian albino rats were used. Rats were divided into five groups: normal control, osteoporotic control, Teriparatide (TPTD) group (T), laser group (L), and laser and teriparatide (T+L) combination group. Osteoporosis was induced by performing double ovariectomy in rats. Lower jaws and left femurs were dissected. The specimens were tested using a Computed tomography unit, scanning EM (SEM) equipped with Energy Dispersive X-Ray Analyzer, and Rat PINP ELISA Kit. The histopathologic examination of experimental rat jaws and femurs revealed changes in bone architecture among the various groups throughout the experiment. CT examination showed a noticeable difference in radiodensity between jaw and femur bones. By SEM, bones of the Normal Control (NC) group showed normal bone porosity. However, bones of the Osteoporotic Control (OC) group showed a great difference as bone pores were large and numerous with irregular outlines. The ELISA test for PINP concentration showed a steady rise in the PINP concentrations in OC, T, L and T+L groups. We concluded that TPTD has osteogenic potential and is capable to enhance bone architecture by inducing the formation of new well-organized bone with narrower bone pore diameter. LLLT can be used as a good alternative local treatment strategy with minimal side effects and superior outcomes.
Collapse
Affiliation(s)
- Shymaa Hamza
- Department of Oral Pathology, Faculty of Dentistry, Cairo University Cairo, Egypt
| | - Safa Fathy
- Department of Oral Pathology, Faculty of Dentistry, Cairo University Cairo, Egypt
| | - Samia El-Azab
- Department of Oral Pathology, Faculty of Dentistry, Cairo University Cairo, Egypt
| |
Collapse
|
46
|
Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, Farooki A, Harris ST, Hurley DL, Kelly J, Lewiecki EM, Pessah-Pollack R, McClung M, Wimalawansa SJ, Watts NB. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS/AMERICAN COLLEGE OF ENDOCRINOLOGY CLINICAL PRACTICE GUIDELINES FOR THE DIAGNOSIS AND TREATMENT OF POSTMENOPAUSAL OSTEOPOROSIS-2020 UPDATE. Endocr Pract 2020; 26:1-46. [PMID: 32427503 DOI: 10.4158/gl-2020-0524suppl] [Citation(s) in RCA: 591] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPGs). Methods: Recommendations are based on diligent reviews of the clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. Results: The Executive Summary of this 2020 updated guideline contains 52 recommendations: 21 Grade A (40%), 24 Grade B (46%), 7 Grade C (14%), and no Grade D (0%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 368 citations: 123 (33.5%) evidence level (EL) 1 (highest), 132 (36%) EL 2 (intermediate), 20 (5.5%) EL 3 (weak), and 93 (25%) EL 4 (lowest). New or updated topics in this CPG include: clarification of the diagnosis of osteoporosis, stratification of the patient according to high-risk and very-high-risk features, a new dual-action therapy option, and transitions from therapeutic options. Conclusion: This guideline is a practical tool for endocrinologists, physicians in general, regulatory bodies, health-related organizations, and interested laypersons regarding the diagnosis, evaluation, and treatment of post-menopausal osteoporosis. Abbreviations: 25(OH)D = 25-hydroxyvitamin D; AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AFF = atypical femoral fracture; ASBMR = American Society for Bone and Mineral Research; BEL = best evidence level; BMD = bone mineral density; BTM = bone turnover marker; CI = confidence interval; CPG = clinical practice guideline; CTX = C-terminal telopeptide type-I collagen; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = U.S. Food and Drug Administration; FRAX® = Fracture Risk Assessment Tool; GI = gastrointestinal; HORIZON = Health Outcomes and Reduced Incidence with Zoledronic acid ONce yearly Pivotal Fracture Trial (zoledronic acid and zoledronate are equivalent terms); ISCD = International Society for Clinical Densitometry; IU = international units; IV = intravenous; LSC = least significant change; NOF = National Osteoporosis Foundation; ONJ = osteonecrosis of the jaw; PINP = serum amino-terminal propeptide of type-I collagen; PTH = parathyroid hormone; R = recommendation; ROI = region of interest; RR = relative risk; SD = standard deviation; TBS = trabecular bone score; VFA = vertebral fracture assessment; WHO = World Health Organization.
Collapse
|
47
|
Rathnayake H, Lekamwasam S, Wickramatilake C, Lenora J. Variation of urinary and serum bone turnover marker reference values among pre and postmenopausal women in Asia: a systematic review. Arch Osteoporos 2020; 15:57. [PMID: 32300898 DOI: 10.1007/s11657-020-00722-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/26/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Bone turnover markers (BTMs) are not widely used in clinical decision-making partly due to the wide variation of the reference values. This paper describes the geographical variation in BTMs reported from Asian countries. METHOD A systematic search was conducted using the PubMed, EMBASE, and Ovid. We searched for BTMs or individual BTMs in Asia or different countries in the Asian region. Original research which published BTM values were included while reviews, comments, and meta-analyses were excluded. RESULTS Of 650 articles, 23 fulfilled the selection criteria and were considered for this study. Among premenopausal women, mean intact OC ranged from 3.35 in Japan to 7.38 ng/mL (55%) in Thailand while it ranged between 3.35 and 5.8 ng/mL (42%) within Japan. Mean BALP varied from 15.9 in India to 41.2 U/L (61%) in Japan whereas in India, it ranged between 15.9 and 53.7 U/L (70%). Mean sP1NP ranged from 29.5 in Japan to 38.02 ng/mL in China (22%) whereas sCTX varied from 0.26 in Thailand to 0.099 ng/mL (62%) in Japan. Among postmenopausal women, mean total OC ranged from 10.02 in India to 29.8 ng/mL (66%) in Japan and intact OC ranged between 2.69 and 9.49 ng/mL (72%) within China. Mean BALP ranged from 20.9 in Japan to 60.28 U/L (65%) in China, and within China, it ranged from 28.2 to 60.28 U/L (53%). Mean sP1NP ranged from 40.11 in China to 56.4 ng/mL (29%) in Japan whereas it ranged within China from 40.11 to 53.76 ng/mL (25%). Mean sCTX varied from 0.25 to 0.433 ng/mL (42%) between the same countries respectively while within China, it varied from 0.25 to 0.395 ng/mL (37%). Urinary BTMs showed a lesser variation. CONCLUSION A wide inter-country and intra-country variation of serum BTMs was observed among pre and postmenopausal women in Asia. Differences in selection criteria of subjects and those inherited to analytical methods may have contributed to these differences.
Collapse
Affiliation(s)
- Hasanga Rathnayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | - Sarath Lekamwasam
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | - Janaka Lenora
- Department of Physiology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
48
|
Cho DH, Chung JO, Chung MY, Cho JR, Chung DJ. Reference Intervals for Bone Turnover Markers in Korean Healthy Women. J Bone Metab 2020; 27:43-52. [PMID: 32190608 PMCID: PMC7064366 DOI: 10.11005/jbm.2020.27.1.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/11/2022] Open
Abstract
Background Adequate suppression of bone turnover rate is important to decrease fracture risk without mineralization defect due to oversuppression. This study was performed to determine reference intervals (RIs) for 2 bone turnover markers, serum C-terminal telopeptide of type I collagen (CTX) and osteocalcin, in Korean women. Methods A total of 461 Korean women (287 premenopausal and 174 postmenopausal) without any disease or drug history affecting bone metabolism was included. Serum CTX and osteocalcin were measured after overnight fasting. Bone mineral density (BMD) was measured at the 1st to 4th lumbar vertebra using dual energy X-ray absorptiometry. Subjects with normal spinal BMD (T-score ≥-1.0) were included in this study. Results After stable concentrations were maintained, both CTX and osteocalcin were abruptly increased in 50 to 59 years, and then decreased with increasing age. Median levels and interquartile range of serum CTX and osteocalcin in all subjects were 0.322 (0.212-0.461) ng/mL and 15.68 (11.38-19.91) ng/mL. RIs for serum CTX and osteocalcin in all subjects were 0.115 to 0.861 ng/mL and 6.46 to 36.76 ng/mL. Those were higher in postmenopausal women (CTX, 0.124-1.020 ng/mL, osteocalcin, 5.42-41.57 ng/mL) than in premenopausal women (CTX, 0.101-0.632 ng/mL, osteocalcin, 6.73-24.27 ng/mL). If we use target reference levels as lower half of premenopausal 30 to 45 years in patients with antiresorptive drugs, those were 0.101 to 0.251 ng/mL and 6.40 to 13.36 ng/mL. Conclusions We established RIs for serum CTX and osteocalcin in healthy Korean women with normal lumbar spine BMD. Premenopausal RIs for serum CTX and osteocalcin would be useful to monitor patients with low bone mass using osteoporosis drugs.
Collapse
Affiliation(s)
- Dong Hyeok Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jin Ook Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Min Young Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong-Ran Cho
- Department of Health Administration, Kwangju Women's University, Gwangju, Korea
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
49
|
Macías I, Alcorta-Sevillano N, Rodríguez CI, Infante A. Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21051653. [PMID: 32121265 PMCID: PMC7084428 DOI: 10.3390/ijms21051653] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis, the most common chronic metabolic bone disease, is characterized by low bone mass and increased bone fragility. Nowadays more than 200 million individuals are suffering from osteoporosis and still the number of affected people is dramatically increasing due to an aging population and longer life, representing a major public health problem. Current osteoporosis treatments are mainly designed to decrease bone resorption, presenting serious adverse effects that limit their safety for long-term use. Numerous studies with mesenchymal stem cells (MSCs) have helped to increase the knowledge regarding the mechanisms that underlie the progression of osteoporosis. Emerging clinical and molecular evidence suggests that inflammation exerts a significant influence on bone turnover, thereby on osteoporosis. In this regard, MSCs have proven to possess broad immunoregulatory capabilities, modulating both adaptive and innate immunity. Here, we will discuss the role that MSCs play in the etiopathology of osteoporosis and their potential use for the treatment of this disease.
Collapse
|
50
|
Galindo-Zavala R, Bou-Torrent R, Magallares-López B, Mir-Perelló C, Palmou-Fontana N, Sevilla-Pérez B, Medrano-San Ildefonso M, González-Fernández MI, Román-Pascual A, Alcañiz-Rodríguez P, Nieto-Gonzalez JC, López-Corbeto M, Graña-Gil J. Expert panel consensus recommendations for diagnosis and treatment of secondary osteoporosis in children. Pediatr Rheumatol Online J 2020; 18:20. [PMID: 32093703 PMCID: PMC7041118 DOI: 10.1186/s12969-020-0411-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteoporosis incidence in children is increasing due to the increased survival rate of patients suffering from chronic diseases and the increased use of drugs that can damage bones. Recent changes made to the definition of childhood osteoporosis, along with the lack of guidelines or national consensuses regarding its diagnosis and treatment, have resulted in a wide variability in the approaches used to treat this disease. For these reasons, the Osteogenesis Imperfecta and Childhood Osteoporosis Working Group of the Spanish Society of Pediatric Rheumatology has sounded the need for developing guidelines to standardize clinical practice with regard to this pathology. METHODS An expert panel comprised of 6 pediatricians and 5 rheumatologists carried out a qualitative literature review and provided recommendations based on evidence, when that was available, or on their own experience. The level of evidence was determined for each section using the Oxford Centre for Evidence-based Medicine (CEBM) system. A Delphi survey was conducted for those recommendations with an evidence level of IV or V. This survey was sent to all members of the SERPE. All recommendations that had a level of agreement higher or equal to 70% were included. RESULTS Fifty-one recommendations, categorized into eight sections, were obtained. Twenty-four of them presented an evidence level 4 or 5, and therefore a Delphi survey was conducted. This was submitted electronically and received a response rate of 40%. All recommendations submitted to the Delphi round obtained a level of agreement of 70% or higher and were therefore accepted. CONCLUSION In summary, we present herein guidelines for the prevention, diagnosis and treatment of secondary childhood osteoporosis based on the available evidence and expert clinical experience. We believe it can serve as a useful tool that will contribute to the standardization of clinical practice for this pathology. Prophylactic measures, early diagnosis and a proper therapeutic approach are essential to improving bone health, not only in children and adolescents, but also in the adults they will become in the future.
Collapse
Affiliation(s)
- Rocío Galindo-Zavala
- UGC Pediatría. Sección Reumatología Pediátrica, Hospital Regional Universitario de Málaga, Málaga, Spain.
| | - Rosa Bou-Torrent
- 0000 0001 0663 8628grid.411160.3Unidad de Reumatología Pediátrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Berta Magallares-López
- 0000 0004 1768 8905grid.413396.aServicio de Reumatología, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Concepción Mir-Perelló
- 0000 0004 1796 5984grid.411164.7Unidad de Pediatría, Sección Reumatología Pediátrica, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Natalia Palmou-Fontana
- 0000 0001 0627 4262grid.411325.0Unidad de Reumatología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Belén Sevilla-Pérez
- UGC Pediatría, Sección Reumatología Pediátrica, Hospital Campus de la Salud, Granada, Spain
| | | | - Mª. Isabel González-Fernández
- 0000 0001 0360 9602grid.84393.35Unidad de Pediatría, Sección de Reumatología Pediátrica, Hospital La Fe, Valencia, Spain
| | | | - Paula Alcañiz-Rodríguez
- Unidad de Pediatría, Sección de Reumatología Pediátrica, Hospital Virgen de la Arriaxaca, Murcia, Spain
| | - Juan Carlos Nieto-Gonzalez
- 0000 0001 0277 7938grid.410526.4Servicio de Reumatología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mireia López-Corbeto
- 0000 0001 0675 8654grid.411083.fServicio de Reumatología Hospital Vall d’Hebron, Barcelona, Spain
| | - Jenaro Graña-Gil
- 0000 0004 1771 0279grid.411066.4Servicio de Reumatología, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain ,Osteogenesis Imperfecta and Secondary Osteoporosis Working Group from the Spanish Pediatric Rheumatology Society, Madrid, Spain
| |
Collapse
|