1
|
Ingle DN, Porter ME. Microarchitecture of cetacean vertebral trabecular bone among swimming modes and diving behaviors. J Anat 2021; 238:643-652. [PMID: 33058161 PMCID: PMC7855079 DOI: 10.1111/joa.13329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/27/2023] Open
Abstract
Cetaceans (dolphins, whales, and porpoises) are fully aquatic mammals that are supported by water's buoyancy and swim through axial body bending. Swimming is partially mediated by variations in vertebral morphology that creates trade-offs in body flexibility and rigidity between axial regions that either enhance or reduce displacement between adjacent vertebrae. Swimming behavior is linked to foraging ecology, where deep-diving cetaceans glide a greater proportion of the time compared to their shallow-diving counterparts. In this study, we categorized 10 species of cetaceans (Families Delphinidae and Kogiidae) into functional groups determined by swimming patterns (rigid vs. flexible torso) and diving behavior (shallow vs. deep). Here, we quantify vertebral trabecular microarchitecture (a) among functional groups (rigid-torso shallow diver (RS), rigid-torso deep diver (RD), and flexible-torso deep diver (FD)), and (b) among vertebral column regions (posterior thoracic, lumbar, caudal peduncle, and fluke insertion). We microCT scanned vertebral bodies, from which 1-5 volumes of interest were selected to quantify bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (TbTh), trabecular number (TbN), trabecular separation (TbSp), and degree of anisotropy (DA). We found that BV/TV was greatest in the rigid-torso shallow-diving functional group, smallest in flexible-torso deep-diving species, and intermediate in the rigid-torso deep-diving group. DA was significantly greater in rigid-torso caudal oscillators than in their flexible-torso counterparts. We found no variation among vertebral regions for any microarchitectural variables. Despite having osteoporotic skeletons, cetacean vertebrae had greater BV/TV, TbTh, and DA than previously documented in terrestrial mammalian bone. Cetacean species are an ideal model to investigate the long-term adaptations, over an animal's lifetime and over evolutionary time, of trabecular bone in non-weight-bearing conditions.
Collapse
Affiliation(s)
- Danielle N. Ingle
- Department of Biological SciencesFlorida Atlantic UniversityBoca RatonFLUSA
| | - Marianne E. Porter
- Department of Biological SciencesFlorida Atlantic UniversityBoca RatonFLUSA
| |
Collapse
|
2
|
McKay M, Jackman TM, Hussein AI, Guermazi A, Liu J, Morgan EF. Association of vertebral endplate microstructure with bone strength in men and women. Bone 2020; 131:115147. [PMID: 31706053 PMCID: PMC6930346 DOI: 10.1016/j.bone.2019.115147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
Epidemiological and biomechanical evidence indicates that the risk of vertebral fracture differs between men and women, and that vertebral fracture frequently involves failure of the endplate region. The goal of this study was to compare the bone microstructure of the endplate region-defined as the (bony) vertebral endplate and underlying subchondral trabecular bone-between sexes and to determine whether any such sex differences are associated with vertebral strength. The bone density (volume fraction, apparent density and tissue mineral density) of the superior-most 2 mm of the vertebra, and the bone density and trabecular architecture of the next 5 mm were quantified using micro-computed tomography in human T8 (12 female, 16 male) and L1 (13 female, 12 male) vertebrae. Average density of the vertebra (integral bone mineral density (BMD)) was determined by quantitative computed tomography and compressive strength by mechanical testing. Few differences were found between male and female vertebrae in the density of the endplate region; none were found in trabecular architecture. However, whereas endplate volume fraction was positively correlated with integral BMD in male vertebrae (r = 0.654, p < .001), no correlation was found in the female vertebrae (r = 0.157, p = .455). Accounting for the density of the endplate region improved predictions of vertebral strength (p < .034) and eliminated sex-specificity in the strength prediction that was based on integral BMD alone. These results suggest that the density of the endplate region influences vertebral fracture and that non-invasive assessment of this region's density can contribute to predictions of vertebral strength in men and women.
Collapse
Affiliation(s)
- MeiLissa McKay
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Timothy M Jackman
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Amira I Hussein
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118, USA
| | - Jingjiang Liu
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Silva AMH, Boyd SK, Manske SL, Alves JM, de Carvalho J. Assessment of the elastic properties of human vertebral trabecular bone using computational mechanical tests and x-ray microtomography—a subvolume analysis. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab2c70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Yamada S, Chiba K, Okazaki N, Era M, Nishino Y, Yokota K, Yonekura A, Tomita M, Tsurumoto T, Osaki M. Correlation between vertebral bone microstructure and estimated strength in elderly women: An ex-vivo HR-pQCT study of cadaveric spine. Bone 2019; 120:459-464. [PMID: 30553854 DOI: 10.1016/j.bone.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE A vertebral fracture is the most common complication of osteoporosis, and various factors are involved in its occurrence. The purpose of this study was to investigate the role of trabecular and cortical bone microstructure on vertebral strength using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS Three female cadaveric spines were investigated (average age: 80.3 years). The whole spine (T1-L4) was scanned by second-generation HR-pQCT at a voxel size of 60.7 μm. Bone microstructure analysis and micro finite element analysis were performed after excluding the upper and lower endplates and posterior elements of a total of 48 vertebrae. Correlations between trabecular and cortical bone microstructure parameters and estimated vertebral strength were analyzed by univariate and multivariate regression models. RESULTS Cortical thickness (Ct.Th) and trabecular thickness (Tb.Th) were strongly correlated with estimated failure load on univariate analysis (r = 0.89, 0.82). Trabecular volumetric bone mineral density (Tb.vBMD), bone volume fraction (BV/TV), trabecular number (Tb.N), and Ct.Th were correlated with estimated failure load on multivariate regression analysis. CONCLUSIONS It was suggested that, in addition to trabecular bone (Tb.vBMD, BV/TV, Tb.N), cortical bone (Ct.Th) contributed significantly to vertebral strength in elderly women.
Collapse
Affiliation(s)
- Shuta Yamada
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Makoto Era
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yuichiro Nishino
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Kazuaki Yokota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Masato Tomita
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Toshiyuki Tsurumoto
- Department of Macroscopic Anatomy, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
5
|
Abstract
Bio-additive manufacturing is a promising tool to fabricate porous scaffold structures for expediting the tissue regeneration processes. Unlike the most traditional bulk material objects, the microstructures of tissue and organs are mostly highly anisotropic, heterogeneous, and porous in nature. However, modelling the internal heterogeneity of tissues/organs structures in the traditional CAD environment is difficult and oftentimes inaccurate. Besides, the de facto STL conversion of bio-models introduces loss of information and piles up more errors in each subsequent step (build orientation, slicing, tool-path planning) of the bio-printing process plan. We are proposing a topology based scaffold design methodology to accurately represent the heterogeneous internal architecture of tissues/organs. An image analysis technique is used that digitizes the topology information contained in medical images of tissues/organs. A weighted topology reconstruction algorithm is implemented to represent the heterogeneity with parametric functions. The parametric functions are then used to map the spatial material distribution. The generated information is directly transferred to the 3D bio-printer and heterogeneous porous tissue scaffold structure is manufactured without STL file. The proposed methodology is implemented to verify the effectiveness of the approach and the designed example structure is bio-fabricated with a deposition based bio-additive manufacturing system.
Collapse
|
6
|
Arentsen L, Hansen KE, Yagi M, Takahashi Y, Shanley R, McArthur A, Bolan P, Magome T, Yee D, Froelich J, Hui SK. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density. J Bone Miner Metab 2017; 35:428-436. [PMID: 27942979 PMCID: PMC5689468 DOI: 10.1007/s00774-016-0796-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/24/2016] [Indexed: 11/25/2022]
Abstract
Temporal and spatial variations in bone marrow adipose tissue (MAT) can be indicative of several pathologies and confound current methods of assessing immediate changes in bone mineral remodeling. We present a novel dual-energy computed tomography (DECT) method to monitor MAT and marrow-corrected volumetric BMD (mcvBMD) throughout the body. Twenty-three cancellous skeletal sites in 20 adult female cadavers aged 40-80 years old were measured using DECT (80 and 140 kVp). vBMD was simultaneous recorded using QCT. MAT was further sampled using MRI. Thirteen lumbar vertebrae were then excised from the MRI-imaged donors and examined by microCT. After MAT correction throughout the skeleton, significant differences (p < 0.05) were found between QCT-derived vBMD and DECT-derived mcvBMD results. McvBMD was highly heterogeneous with a maximum at the posterior skull and minimum in the proximal humerus (574 and 0.7 mg/cc, respectively). BV/TV and BMC have a nearly significant correlation with mcvBMD (r = 0.545, p = 0.057 and r = 0.539, p = 0.061, respectively). MAT assessed by DECT showed a significant correlation with MRI MAT results (r = 0.881, p < 0.0001). Both DECT- and MRI-derived MAT had a significant influence on uncorrected vBMD (r = -0.86 and r = -0.818, p ≤ 0.0001, respectively). Conversely, mcvBMD had no correlation with DECT- or MRI-derived MAT (r = 0.261 and r = 0.067). DECT can be used to assess MAT while simultaneously collecting mcvBMD values at each skeletal site. MAT is heterogeneous throughout the skeleton, highly variable, and should be accounted for in longitudinal mcvBMD studies. McvBMD accurately reflects the calcified tissue in cancellous bone.
Collapse
Affiliation(s)
- Luke Arentsen
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Karen E Hansen
- Department of Medicine, Division of Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Yutaka Takahashi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ryan Shanley
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Angela McArthur
- Anatomy Bequest Program, University of Minnesota, Minneapolis, MN, USA
| | - Patrick Bolan
- Center for Magnetic Resonance Research, Minneapolis, MN, USA
| | - Taiki Magome
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jerry Froelich
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Susanta K Hui
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Radiation Oncology, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Wong AL, Meals CG, Ruff CB. Computed tomographic analysis of the internal structure of the metacarpals and its implications for hand use, pathology, and surgical intervention. Anat Sci Int 2017; 93:231-237. [PMID: 28341969 DOI: 10.1007/s12565-017-0400-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
The variation of bone structure and biomechanics between the metacarpals is not well characterized. It was hypothesized that their structure would reflect their common patterns of use (i.e., patterns of hand grip), specifically that trabecular bone density would be greater on the volar aspect of all metacarpal bases, that this would be most pronounced in the thumb, and that the thumb diaphysis would have the greatest bending strength. Cross-sections at basal and mid-diaphyseal locations of 50 metacarpals from 10 human hands were obtained by peripheral quantitative computed tomography. The volar and dorsal trabecular densities of each base were measured and characterized using the volar/dorsal density ratio. The polar stress-strain index (SSIp), a surrogate measure of torsional/bending strength, was measured for each diaphysis and standardized for bone length and mass. Comparisons were made using mixed-model analyses of variance (ANOVAs) and post hoc tests. Volar/dorsal trabecular density ratios showed even distribution in all metacarpal bases except for the thumb, which showed greater values on the volar aspect. The thumb, second, and third metacarpals all had high bending strength (SSIp), but the thumb's SSIp relative to its length and trabecular mass was much higher than those of the other metacarpals. Trabecular density of the metacarpal bases was evenly distributed except in the thumb, which also showed higher bending strength relative to its length and mass. Understanding of how these indicators of strength differ across metacarpals may improve both fracture diagnosis and treatment and lays the groundwork for investigating changes with age, hand dominance, and occupation.
Collapse
Affiliation(s)
- Alison L Wong
- Center for Bioengineering Innovation and Design, Johns Hopkins University, 3400 N. Charles Street, Clark Hall, Suite 200, Baltimore, MD, 21218, USA. .,Division of Plastic and Reconstructive Surgery, Dalhousie University, Room 4714 Halifax Infirmary Site, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada.
| | - Clifton G Meals
- The Curtis National Hand Center, MedStar Union Memorial Hospital, 3333 North Calvert Street, Baltimore, MD, 21218, USA
| | - Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Room 302, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Osteoporosis and osteoarthritis are different diseases, with differences in risk factors, bone mineral density (BMD), BMI, phenotype, morbidity and mortality. We review new data on the role of bone metabolism in osteoporosis and osteoarthritis. RECENT FINDINGS The insights in the common convergent and divergent risk factors between osteoarthritis and osteoporosis have resulted in new findings on the role of BMD, BMI, falls, genetics and epigenetics in the pathophysiology of both diseases and on the increased fracture risk in osteoporosis and osteoarthritis. The relation between BMD, BMI and fracture risk in osteoarthritis is dependent on the stage, definition and location of the osteoarthritis and method of BMD measurement. It has been suggested that osteoarthritis should be further specified in terms of bone involvement. SUMMARY These new findings open the way to better understand the bone subtypes of osteoarthritis (osteoporotic, bone forming and erosive) and the common and different ways bone is involved in osteoporosis and osteoarthritis. Much can be expected from further prospective studies, when taking into account the heterogeneous nature of both osteoporosis and osteoarthritis.
Collapse
|
9
|
Carballido-Gamio J, Bonaretti S, Kazakia GJ, Khosla S, Majumdar S, Lang TF, Burghardt AJ. Statistical Parametric Mapping of HR-pQCT Images: A Tool for Population-Based Local Comparisons of Micro-Scale Bone Features. Ann Biomed Eng 2016; 45:949-962. [PMID: 27830488 DOI: 10.1007/s10439-016-1754-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
Abstract
HR-pQCT enables in vivo multi-parametric assessments of bone microstructure in the distal radius and distal tibia. Conventional HR-pQCT image analysis approaches summarize bone parameters into global scalars, discarding relevant spatial information. In this work, we demonstrate the feasibility and reliability of statistical parametric mapping (SPM) techniques for HR-pQCT studies, which enable population-based local comparisons of bone properties. We present voxel-based morphometry (VBM) to assess trabecular and cortical bone voxel-based features, and a surface-based framework to assess cortical bone features both in cross-sectional and longitudinal studies. In addition, we present tensor-based morphometry (TBM) to assess trabecular and cortical bone structural changes. The SPM techniques were evaluated based on scan-rescan HR-pQCT acquisitions with repositioning of the distal radius and distal tibia of 30 subjects. For VBM and surface-based SPM purposes, all scans were spatially normalized to common radial and tibial templates, while for TBM purposes, rescans (follow-up) were spatially normalized to their corresponding scans (baseline). VBM was evaluated based on maps of local bone volume fraction (BV/TV), homogenized volumetric bone mineral density (vBMD), and homogenized strain energy density (SED) derived from micro-finite element analysis; while the cortical bone framework was evaluated based on surface maps of cortical bone thickness, vBMD, and SED. Voxel-wise and vertex-wise comparisons of bone features were done between the groups of baseline and follow-up scans. TBM was evaluated based on mean square errors of determinants of Jacobians at baseline bone voxels. In both anatomical sites, voxel- and vertex-wise uni- and multi-parametric comparisons yielded non-significant differences, and TBM showed no artefactual bone loss or apposition. The presented SPM techniques demonstrated robust specificity thus warranting their application in future clinical HR-pQCT studies.
Collapse
Affiliation(s)
| | - Serena Bonaretti
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Galateia J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas F Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
|
11
|
Lekadir K, Noble C, Hazrati-Marangalou J, Hoogendoorn C, van Rietbergen B, Taylor ZA, Frangi AF. Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors. Ann Biomed Eng 2015; 44:234-46. [DOI: 10.1007/s10439-015-1432-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
|
12
|
Lekadir K, Hoogendoorn C, Hazrati-Marangalou J, Taylor Z, Noble C, van Rietbergen B, Frangi AF. A Predictive Model of Vertebral Trabecular Anisotropy From Ex Vivo Micro-CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1747-1759. [PMID: 25561590 DOI: 10.1109/tmi.2014.2387114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spine-related disorders are amongst the most frequently encountered problems in clinical medicine. For several applications such as 1) to improve the assessment of the strength of the spine, as well as 2) to optimize the personalization of spinal interventions, image-based biomechanical modeling of the vertebrae is expected to play an important predictive role. However, this requires the construction of computational models that are subject-specific and comprehensive. In particular, they need to incorporate information about the vertebral anisotropic micro-architecture, which plays a central role in the biomechanical function of the vertebrae. In practice, however, accurate personalization of the vertebral trabeculae has proven to be difficult as its imaging in vivo is currently infeasible. Consequently, this paper presents a statistical approach for accurate prediction of the vertebral fabric tensors based on a training sample of ex vivo micro-CT images. To the best of our knowledge, this is the first predictive model proposed and validated for vertebral datasets. The method combines features selection and partial least squares regression in order to derive optimal latent variables for the prediction of the fabric tensors based on the more easily extracted shape and density information. Detailed validation with 20 ex vivo T12 vertebrae demonstrates the accuracy and consistency of the approach for the personalization of trabecular anisotropy.
Collapse
|
13
|
Lu Y, Krause M, Bishop N, Sellenschloh K, Glüer CC, Püschel K, Amling M, Morlock MM, Huber G. The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women's thoracic vertebral body. Osteoporos Int 2015; 26:237-44. [PMID: 25135580 DOI: 10.1007/s00198-014-2846-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/07/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED The correlations between the failure load of 20 T12 vertebral bodies, their patient-mode high-resolution peripheral quantitative computed tomography (HR-pQCT) indices, and the L1 areal bone mineral density (aBMD) were investigated. For the prediction of the T12 vertebral failure load, the T12 HR-pQCT microarchitectural parameters added significant information to that of L1 aBMD and to that of cortical BMD, but not to that of T12 vertebral BMD and not to that of T12 trabecular BMD. INTRODUCTION HR-pQCT is a new in vivo imaging technique for assessing the three-dimensional microarchitecture of cortical and trabecular bone at the distal radius and tibia. But little is known about this technique in the direct measurement of vertebral body. METHODS Twenty female donors with the mean age of 80.1 (7.6) years were included in the study. Dual X-ray absorptiometry of the lumbar spine and femur was performed. The spinal specimens (T11/T12/L1) were dissected, scanned using HR-pQCT scanner, and mechanically tested under 4° wedge compression. The L1 aBMD, T12 patient-mode HR-pQCT indices, and T12 vertebral failure loads were analyzed. RESULTS For the prediction of vertebral failure load, the inclusion of BV/TV into L1 aBMD was the best model (R (2) = 0.52), Tb.N and Tb.Sp added significant information to the L1 aBMD and to the cortical BMD, but none of the vertebral microarchitectural parameters yielded additional significant information to the trabecular BMD (or BV/TV) and to the vertebral BMD. CONCLUSION Vertebral microarchitectural parameters obtained from the patient-mode HR-pQCT analysis provide significant information on bone strength complementary to that of aBMD and to that of cortical BMD, but not to that of vertebral BMD and not to that of trabecular BMD.
Collapse
Affiliation(s)
- Y Lu
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A novel approach to estimate trabecular bone anisotropy from stress tensors. Biomech Model Mechanobiol 2014; 14:39-48. [DOI: 10.1007/s10237-014-0584-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
|
15
|
Hazrati Marangalou J, Ito K, Taddei F, van Rietbergen B. Inter-individual variability of bone density and morphology distribution in the proximal femur and T12 vertebra. Bone 2014; 60:213-20. [PMID: 24370733 DOI: 10.1016/j.bone.2013.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/16/2023]
Abstract
Bone geometry, density and microstructure can vary widely between subjects. Knowledge about this variation in a population is of interest in particular for the design of orthopedic implants and interventions. The goal of this study is to investigate the local variability of bone density and microstructural parameters between subjects using a novel inter-subject image registration approach. Human proximal femora of 29 and T12 vertebrae of 20 individuals were scanned using a HR-pQCT and a micro-CT system, respectively. A pre-defined iso-anatomic mesh template was morphed to each micro-CT scan. For each element bone volume fraction and other morphological parameters (Tb.Th, Tb.N, Tb.Sp, SMI, DA) were determined and assigned to the element. A coefficient of variation (CV) was calculated for each parameter at each element location of the 29 femora and 20 T12 vertebrae. Contour plots of the CV distribution revealed very detailed information about the inter-individual variation in bone density and morphology. It is also shown that analyzing large sub-volumes, as commonly done in previous studies, would miss much of this variation. Detailed quantitative information of bone morphological parameters for each sample in the femur and the T12 database and their inter-individual variability are available from the mesh templates as supplementary data (http://w3.bmt.tue.nl/nl/fe_database/). We expect that these results can help to optimize implants and orthopedic procedures by taking local bone morphological parameter variations into account.
Collapse
Affiliation(s)
- Javad Hazrati Marangalou
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fulvia Taddei
- Laboratorio di Tecnologia Medica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|