1
|
Toledano R, Osorio MT, Osorio R, Toledano M, Jacho D, Yildirim-Ayan E. Tideglusib enhances ALP activity and upregulates RANKL expression in Osteoblast-macrophage Co-cultures within a 3D collagen scaffold. J Dent 2025; 153:105509. [PMID: 39645182 DOI: 10.1016/j.jdent.2024.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
OBJECTIVES Tideglusib (Tx) is known for its osteogenic potential, yet its effects on the interplay between osteoblasts and M1 macrophages remain underexplored. This in vitro study aimed to isolate and evaluate both the individual and combined roles of M1 macrophages and osteoblasts in macrophage differentiation and osteoblast function, specifically focusing on how these interactions influence protein expression of osteogenesis and osteoclastogenesis in the presence or absence of Tx. METHODS Osteoblast and macrophage cells were co-cultured in direct contact for 24 and 48 h, with or without the presence of Tx. ALP activity, the expression of inflammatory-related genes using RT-qPCR, and histological analyses were performed. RESULTS Co-culturing osteoblasts and M1 macrophages with Tx increased alkaline phosphatase production, indicative of enhanced osteoblast activity. Histological assessments revealed that Tx treatment contributed to the stability and maintenance of cell morphology within the scaffold, suggesting a supportive environment for cell viability and function. Tx significantly reduced the expression of pro-inflammatory markers, such as TNF-α and IL-1β, in the co-culture at both 24 and 48 h Tx also effectively inhibited osteoclastogenic differentiation in macrophages, thereby diminishing their pro-inflammatory phenotype. CONCLUSIONS Tx increased ALP activity and produced a significant up-regulation of RANKL expression, indicating enhanced osteoblast differentiation and osteoclast activation. Tx mitigates macrophage-driven inflammation. CLINICAL SIGNIFICANCE Tx may enhance bone regeneration by modulating inflammatory responses and preserving cell integrity.
Collapse
Affiliation(s)
- Raquel Toledano
- Dental School, University of Granada, Colegio Máximo de Cartuja, Granada, Spain
| | - María T Osorio
- Dental School, University of Granada, Colegio Máximo de Cartuja, Granada, Spain
| | - Raquel Osorio
- Dental School, University of Granada, Colegio Máximo de Cartuja, Granada, Spain
| | - Manuel Toledano
- Dental School, University of Granada, Colegio Máximo de Cartuja, Granada, Spain
| | - Diego Jacho
- Bioengineering Department, University of Toledo, Toledo, Ohio, USA
| | | |
Collapse
|
2
|
Sellin ML, Klinder A, Bergschmidt P, Bader R, Jonitz-Heincke A. IL-6-induced response of human osteoblasts from patients with rheumatoid arthritis after inhibition of the signaling pathway. Clin Exp Med 2023; 23:3479-3499. [PMID: 37280473 PMCID: PMC10618393 DOI: 10.1007/s10238-023-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL-) 6 is a critical factor in inflammatory processes of rheumatoid arthritis (RA). This is of high interest as the progression of RA may lead to the implantation of joint endoprostheses, which is associated with a pro-inflammatory increase in IL-6 in the periprosthetic tissue. Biological agents such as sarilumab have been developed to inhibit IL-6-mediated signaling. However, IL-6 signaling blockade should consider the inhibition of inflammatory processes and the regenerative functions of IL-6. This in vitro study investigated whether inhibiting IL-6 receptors can affect the differentiation of osteoblasts isolated from patients with RA. Since wear particles can be generated at the articular surfaces of endoprostheses leading to osteolysis and implant loosening, the potential of sarilumab to inhibit wear particle-induced pro-inflammatory processes should be investigated. Both in monocultures and indirect co-cultures with osteoclast-like cells (OLCs), human osteoblasts were stimulated with 50 ng/mL each of IL-6 + sIL-6R and in combination with sarilumab (250 nM) to characterize cell viability and osteogenic differentiation capacity. Furthermore, the influence of IL-6 + sIL-6R or sarilumab on viability, differentiation, and inflammation was evaluated in osteoblasts exposed to particles. Stimulation with IL-6 + sIL-6R and sarilumab did not affect cell viability. Except for the significant induction of RUNX2 mRNA by IL-6 + sIL-6R and a significant reduction with sarilumab, no effects on cell differentiation and mineralization could be detected. Furthermore, the different stimulations did not affect the osteogenic and osteoclastic differentiation of co-cultured cells. Compared to the osteoblastic monocultures, a decreased release of IL-8 was triggered in the co-culture. Among these, treatment with sarilumab alone resulted in the greatest reduction of IL-8. The co-culture also showed clearly increased OPN concentrations than the respective monocultures, with OPN secretion apparently triggered by the OLCs. Particle exposure demonstrated decreased osteogenic differentiation using different treatment strategies. However, sarilumab administration caused a trend toward a decrease in IL-8 production after stimulation with IL-6 + sIL-6R. The blockade of IL-6 and its pathway have no significant effect on the osteogenic and osteoclastic differentiation of bone cells derived from patients with RA. Nonetheless, observed effects on the reduced IL-8 secretion need further investigation.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Annett Klinder
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Philipp Bergschmidt
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
- Department for Orthopaedic Surgery, Trauma Surgery and Hand Surgery, Suedstadt Hospital Rostock, Suedring 81, 18059, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany.
| |
Collapse
|
3
|
Jacho D, Babaniamansour P, Osorio R, Toledano M, Rabino A, Garcia-Mata R, Yildirim-Ayan E. Deciphering the Cell-Specific Effect of Osteoblast-Macrophage Crosstalk in Periodontitis. Tissue Eng Part A 2023; 29:579-593. [PMID: 37639358 PMCID: PMC10659017 DOI: 10.1089/ten.tea.2023.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
In periodontitis, the bone remodeling process is disrupted by the prevalent involvement of bacteria-induced proinflammatory macrophage cells and their interaction with osteoblast cells residing within the infected bone tissue. The complex interaction between the cells needs to be deciphered to understand the dominant player in tipping the balance from osteogenesis to osteoclastogenesis. Yet, only a few studies have examined the crosstalk interaction between osteoblasts and macrophages using biomimetic three-dimensional (3D) tissue-like matrices. In this study, we created a cell-laden 3D tissue analog to study indirect crosstalk between these two cell types and their direct synergistic effect when cultured on a 3D scaffold. The cell-specific role of osteoclast differentiation was investigated through osteoblast- and proinflammatory macrophage-specific feedback studies. The results suggested that when macrophages were exposed to osteoblasts-derived conditioned media from the mineralized matrix, the M1 macrophages tended to maintain their proinflammatory phenotype. Further, when osteoblasts were exposed to secretions from proinflammatory macrophages, they demonstrated elevated receptor activator of nuclear factor-κB ligand (RANKL) expression and decreased alkaline phosphate (ALP) activities compared to osteoblasts exposed to only osteogenic media. In addition, the upregulation of tumor necrosis factor-alpha (TNF-α) and c-Fos in proinflammatory macrophages within the 3D matrix indirectly increased the RANKL expression and reduced the ALP activity of osteoblasts, promoting osteoclastogenesis. The contact coculturing with osteoblast and proinflammatory macrophages within the 3D matrix demonstrated that the proinflammatory markers (TNF-α and interleukin-1β) expressions were upregulated. In contrast, anti-inflammatory markers (c-c motif chemokine ligand 18 [CCL18]) were downregulated, and osteoclastogenic markers (TNF receptor associated factor 6 [TRAF6] and acid phosphatase 5, tartrate resistant [ACP5]) were unchanged. The data suggested that the osteoblasts curbed the osteoclastogenic differentiation of macrophages while macrophages still preserved their proinflammatory lineages. The osteoblast within the 3D coculture demonstrated increased ALP activity and did not express RANKL significantly different than the osteoblast cultured within a 3D collagen matrix without macrophages. Contact coculturing has an anabolic effect on bone tissue in a bacteria-derived inflammatory environment.
Collapse
Affiliation(s)
- Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | | | - Raquel Osorio
- Department of Dentistry, University of Granada, Colegio Máximo de Cartuja, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, University of Granada, Granada, Spain
| | - Manuel Toledano
- Department of Dentistry, University of Granada, Colegio Máximo de Cartuja, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, University of Granada, Granada, Spain
| | - Agustín Rabino
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
4
|
Exploring the role of exosomes in rheumatoid arthritis. Inflammopharmacology 2023; 31:119-128. [PMID: 36414831 DOI: 10.1007/s10787-022-01100-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
In prosperous countries, autoimmune illnesses affect minimum 7% of the community. Rheumatoid Arthritis (RA) as an autoimmune illness is thought to be induced through a variety of genomic, physiological, and biological factors. Many experts in the field of nanomedicine have looked to stem cells as a viable strategy to repair human tissue; however, exosomes have demonstrated greater potential in recent years. Exosomes, produced from stem cells in particular, have exhibited a high propensity to give therapeutic effects. To resist local cellular stress, they are secreted in a paracrine manner from cells. As a result, exosomes produced from stem cells can provide enormous health uses. If treatment is not given, autoantibodies produce synovial inflammation and arthritis, which can lead to chronic inflammation, and impairment. Exosomes could be administered for the treatment of RA, by acting as therapeutic vectors. Exosomes are murine extracellular vesicles that influence biological mechanisms and signal transduction by transporting genetic and protein components. Diseases like RA and bone fractures could be treated using cell-free therapeutic strategies if exosomes could be isolated from stem cells efficiently and packaged with specific restorative substances. To get to this position, many breakthroughs must be achieved, and the following review summarises the most recent developments in stem cell-derived exosomes, with a focus on the important literature on exosome dynamics in RA.
Collapse
|
5
|
Fu W, Hettinghouse A, Liu CJ. In Vitro Physical and Functional Interaction Assays to Examine the Binding of Progranulin Derivative Atsttrin to TNFR2 and Its Anti-TNFα Activity. Methods Mol Biol 2021; 2248:109-119. [PMID: 33185871 DOI: 10.1007/978-1-0716-1130-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
TNFα/TNFR signaling plays a critical role in the pathogenesis of various inflammatory and autoimmune diseases, and anti-TNFα therapies have been accepted as the effective approaches for treating several autoimmune diseases. Progranulin (PGRN), a multi-faced growth factor-like molecule, directly binds to TNFR1 and TNFR2, particularly to the latter with higher affinity than TNFα. PGRN derivative Atsttrin is composed of three TNFR-binding domain of PGRN and exhibits even better therapeutic effects than PGRN in several inflammatory disease models, including collagen-induced arthritis. Herein we describe the detailed methodology of using (1) ELISA-based solid phase protein-protein interaction assay to demonstrate the direct binding of Atsttrin to TNFR2 and its inhibition of TNFα/TNFR2 interaction; and (2) tartrate-resistant acid phosphatase (TRAP) staining of in vitro osteoclastogenesis to reveal the cell-based anti-TNFα activity of Atsttrin. Using the protocol described here, the investigators should be able to reproducibly detect the physical inhibition of TNFα binding to TNFR and the functional inhibition of TNFα activity by Atsttrin and various kinds of TNF inhibitors.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA.
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is associated with bone loss leading to osteoporosis and increased fracture risk. Bone loss is the result of changes in the balanced process of bone remodeling. Immune cells and cytokines play an important role in the process of bone remodeling and it is therefore not surprising that cytokines as observed in IBD are involved in bone pathology. This review discusses the role of cytokines in IBD-associated bone loss, including the consequences for treatment. RECENT FINDINGS Many studies have been conducted that showed the effect of a single cytokine on bone cells in vitro, including interleukin (IL)-1β, IL-6, IL-8, IL-12/IL-23, IL-17, IL-18, IL-32 and interferon-γ. Recently new members of the IL-1 family (IL-1F) have been related to IBD but the consequences for bone health remain uncertain. SUMMARY Overall, patients have to deal with a cocktail of cytokines, present in their serum. The combination of cytokines can affect bone cells differently compared to the effects of a single cytokine. This implicates that treatment, focused on reducing the inflammation could work best for bone health as well. Vitamin D might also play a role in this.
Collapse
|
7
|
Torikai M, Higuchi H, Yamamoto N, Ishikawa D, Fujita H, Taguchi K, Sakai F, Soejima K, Nakashima T. A novel monoclonal antibody cross-reactive with both human and mouse α9 integrin useful for therapy against rheumatoid arthritis. J Biochem 2021; 168:231-241. [PMID: 32271918 DOI: 10.1093/jb/mvaa040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/28/2020] [Indexed: 11/14/2022] Open
Abstract
This study introduces a novel monoclonal anti-α9 integrin antibody (MA9-413) with human variable regions, isolated by phage display technology. MA9-413 specifically binds to both human and mouse α9 integrin by recognizing a conserved loop region designated as L1 (amino acids 104-122 of human α9 integrin). MA9-413 inhibits human and mouse α9 integrin-dependent cell adhesion to ligands and suppresses synovial inflammation and osteoclast activation in a mouse model of arthritis. This is the first monoclonal anti-α9 integrin antibody that can react with and functionally inhibit both human and mouse α9 integrin. MA9-413 allows data acquisition both in animal and human pharmacological studies without resorting to surrogate antibodies. Since MA9-413 showed certain therapeutic effects in the mouse arthritis model, it can be considered as a useful therapy against rheumatoid arthritis and other α9 integrin-associated diseases.
Collapse
Affiliation(s)
- Masaharu Torikai
- Research & Development Division, KM Biologics Co., Ltd, 1314-1 Kyokushi-Kawabe, Kikuchi, Kumamoto 869-1298, Japan
| | - Hirofumi Higuchi
- Research & Development Division, KM Biologics Co., Ltd, 1314-1 Kyokushi-Kawabe, Kikuchi, Kumamoto 869-1298, Japan
| | | | - Daisuke Ishikawa
- Research & Development Division, KM Biologics Co., Ltd, 1314-1 Kyokushi-Kawabe, Kikuchi, Kumamoto 869-1298, Japan
| | - Hirotada Fujita
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Katsunari Taguchi
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Fumihiko Sakai
- EVEC Inc., 6 Odori Nishi, Chuo-ku, Sapporo 060-0042, Japan
| | - Kenji Soejima
- Research & Development Division, KM Biologics Co., Ltd, 1314-1 Kyokushi-Kawabe, Kikuchi, Kumamoto 869-1298, Japan
| | - Toshihiro Nakashima
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), 4-7 Hanabatacho, Chuo-ku, Kumamoto 860-0806, Japan
| |
Collapse
|
8
|
Yan F, Zhong Z, Wang Y, Feng Y, Mei Z, Li H, Chen X, Cai L, Li C. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnology 2020; 18:115. [PMID: 32819405 PMCID: PMC7441703 DOI: 10.1186/s12951-020-00675-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) show powerful treatment effect on rheumatoid arthritis (RA). However, the clinical application is limited by their nonspecific distribution after systemic administration, serious adverse reactions during long-term administration. To achieve better treatment, reduce side effect, we here established a biomimetic exosome (Exo) encapsulating dexamethasone sodium phosphate (Dex) nanoparticle (Exo/Dex), whose surface was modified with folic acid (FA)-polyethylene glycol (PEG)-cholesterol (Chol) compound to attain FPC-Exo/Dex active targeting drug delivery system. RESULTS The size of FPC-Exo/Dex was 128.43 ± 16.27 nm, with a polydispersity index (PDI) of 0.36 ± 0.05, and the Zeta potential was - 22.73 ± 0.91 mV. The encapsulation efficiency (EE) of the preparation was 10.26 ± 0.73%, with drug loading efficiency (DLE) of 18.81 ± 2.05%. In vitro study showed this system displayed enhanced endocytosis and excellent anti-inflammation effect against RAW264.7 cells by suppressing pro-inflammatory cytokines and increasing anti-inflammatory cytokine. Further biodistribution study showed the fluorescence intensity of FPC-Exo/Dex was stronger than other Dex formulations in joints, suggesting its enhanced accumulation to inflammation sites. In vivo biodistribution experiment displayed FPC-Exo/Dex could preserve the bone and cartilage of CIA mice better and significantly reduce inflamed joints. Next in vivo safety evaluation demonstrated this biomimetic drug delivery system had no obvious hepatotoxicity and exhibited desirable biocompatibility. CONCLUSION The present study provides a promising strategy for using exosome as nanocarrier to enhance the therapeutic effect of GCs against RA.
Collapse
Affiliation(s)
- Feili Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yao Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Hui Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Xiang Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Liang Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China.
- Engineering Research Center in Biomaterials, Sichuan University, 610064, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Wielińska J, Kolossa K, Świerkot J, Dratwa M, Iwaszko M, Bugaj B, Wysoczańska B, Chaszczewska-Markowska M, Jeka S, Bogunia-Kubik K. Polymorphisms within the RANK and RANKL Encoding Genes in Patients with Rheumatoid Arthritis: Association with Disease Progression and Effectiveness of the Biological Treatment. Arch Immunol Ther Exp (Warsz) 2020; 68:24. [PMID: 32815001 PMCID: PMC7438366 DOI: 10.1007/s00005-020-00590-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Inconsistency of the results regarding the genetic variability within genes coding for receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) in rheumatoid arthritis (RA) prompted us to study the RANK and RANKL polymorphisms as potential biomarkers associated with disease predisposition and response to anti-TNF treatment in a group of Polish patients with RA. This study enrolled 318 RA patients and 163 controls. RANK (rs8086340, C > G; rs1805034, C > T) and RANKL (rs7325635, G > A; rs7988338 G > A) alleles were determined by real-time PCR with melting curve analysis and related with clinical parameters. In addition, RANKL serum levels were measured by ELISA. The RANK rs8086340-G allele was overrepresented among patients as compared to controls (OD = 1.777, p = 0.038). C-reactive protein (CRP) levels were significantly (p < 0.05) associated with RANK rs8086340 polymorphism and were higher in the CC-homozygotes at the baseline while lower in the GG-carriers at the 12th week of the treatment. At the latter time point RANKL rs7325635-GG-positive patients also showed significantly lower CRP concentrations. Higher alkaline phosphatase levels before induction of anti-TNF therapy were observed in RANK rs8086340 and RANK rs1805034 CC homozygotes (p = 0.057 and p = 0.035, respectively). The GG homozygosity of both RANKL single nucleotide polymorphisms was significantly associated with the number of swollen joints (rs7988338 and rs7325635, before and at the 12th week of therapy, respectively, p < 0.05 in both cases). These results imply that polymorphisms within the RANK and RANKL genes affect RA susceptibility and anti-TNF treatment outcome.
Collapse
Affiliation(s)
- Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Kolossa
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Bydgoszcz, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Milena Iwaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Bartosz Bugaj
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Bydgoszcz, Poland
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
10
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
11
|
Bastidas‐Coral AP, Hogervorst JMA, Forouzanfar T, Kleverlaan CJ, Koolwijk P, Klein‐Nulend J, Bakker AD. IL-6 counteracts the inhibitory effect of IL-4 on osteogenic differentiation of human adipose stem cells. J Cell Physiol 2019; 234:20520-20532. [PMID: 31016754 PMCID: PMC6767193 DOI: 10.1002/jcp.28652] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
Fracture repair is characterized by cytokine production and hypoxia. To better predict cytokine modulation of mesenchymal stem cell (MSC)-aided bone healing, we investigated whether interleukin 4 (IL-4), IL-6, and their combination, affect osteogenic differentiation, vascular endothelial growth factor (VEGF) production, and/or mammalian target of rapamycin complex 1 (mTORC1) activation by MSCs under normoxia or hypoxia. Human adipose stem cells (hASCs) were cultured with IL-4, IL-6, or their combination for 3 days under normoxia (20% O 2 ) or hypoxia (1% O 2 ), followed by 11 days without cytokines under normoxia or hypoxia. Hypoxia did not alter IL-4 or IL-6-modulated gene or protein expression by hASCs. IL-4 alone decreased runt-related transcription factor 2 (RUNX2) and collagen type 1 (COL1) gene expression, alkaline phosphatase (ALP) activity, and VEGF protein production by hASCs under normoxia and hypoxia, and decreased mineralization of hASCs under hypoxia. In contrast, IL-6 increased mineralization of hASCs under normoxia, and enhanced RUNX2 gene expression under normoxia and hypoxia. Neither IL-4 nor IL-6 affected phosphorylation of the mTORC1 effector protein P70S6K. IL-4 combined with IL-6 diminished the inhibitory effect of IL-4 on ALP activity, bone nodule formation, and VEGF production, and decreased RUNX2 and COL1 expression, similar to IL-4 alone, under normoxia and hypoxia. In conclusion, IL-4 alone, but not in combination with IL-6, inhibits osteogenic differentiation and angiogenic stimulation potential of hASCs under normoxia and hypoxia, likely through pathways other than mTORC1. These results indicate that cytokines may differentially affect bone healing and regeneration when applied in isolation or in combination.
Collapse
Affiliation(s)
- Angela P. Bastidas‐Coral
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial SurgeryAmsterdam University Medical Centers (Amsterdam UMC)/ACTA, location VUmc, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Cornelis J. Kleverlaan
- Department of Dental Materials ScienceAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Pieter Koolwijk
- Department of PhysiologyAmsterdam Cardiovascular Sciences, Amsterdam University Medical Centers (Amsterdam UMC)AmsterdamThe Netherlands
| | - Jenneke Klein‐Nulend
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
12
|
Huang L, Zeng J, Bosch-Tijhof C, Ling J, Wei X, van Loveren C, Crielaard W, Deng DM. Effects of bacterial physiological states and bacterial species on host-microbe interactions. BIOFOULING 2018; 34:870-879. [PMID: 30326724 DOI: 10.1080/08927014.2018.1514026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
This study investigated how the physiological states of Aggregatibacter actinomycetemcomitans (Aa) and Streptococcus mitis affect their intracellular invasion capabilities and the resulting host cell responses. The physiological states included two forms of planktonic states, floating or sedimented (by centrifugation) and the biofilm state (with centrifugation). Confluent epithelial Ca9-22 cells were challenged with floating or sedimented planktonic cultures, or with 24-h biofilms for 3 h. The results show that intracellular invasion efficiencies were clearly affected by the bacterial physiological states. For both bacterial species, the sedimented-cells displayed 2-10 times higher invasion efficiency than the floating-cells (p < 0.05). The invasion efficiency of Aa biofilms was three fold lower than sedimented cells, whereas those of S. mitis biofilms were similar to sedimented cells. Unlike invasion, the metabolic activities of Ca9-22 were unaffected by different bacterial physiological states. However, Aa biofilms induced higher IL-1β expression than planktonic cultures. In conclusion, different bacterial physiological states can affect the outcomes of (in vitro) host-microbe interaction in different ways.
Collapse
Affiliation(s)
- Lijia Huang
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Jinfeng Zeng
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Caroline Bosch-Tijhof
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Junqi Ling
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Xi Wei
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Cor van Loveren
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Dong Mei Deng
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| |
Collapse
|
13
|
Bi W, Liu Y, Guo J, Lin Z, Liu J, Zhou M, Wismeijer D, Pathak JL, Wu G. All-trans retinoic-acid inhibits heterodimeric bone morphogenetic protein 2/7-stimulated osteoclastogenesis, and resorption activity. Cell Biosci 2018; 8:48. [PMID: 30159139 PMCID: PMC6107948 DOI: 10.1186/s13578-018-0246-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Bone regenerative heterodimeric bone morphogenetic protein 2/7 (BMP2/7) enhances but all-trans retinoic acid (ATRA) inhibits osteoclastogenesis. However, the effect of ATRA on physiological and/or BMP2/7-induced osteoclastogenesis in still unclear. In this study, we aimed to test the effect of combined treatment of BMP2/7 and ATRA on osteoclastogenesis, and resorption activity. Results All-trans retinoic acid (1 µM) ± BMP2/7 (5 or 50 ng/ml) was added in murine pre-osteoclasts cell line RAW264.7 or mouse bone marrow derived macrophages (BMM) cultures. Osteoclast marker gene expression, osteoclastogenesis, and resorption activity were analyzed. BMP2/7 robustly enhanced osteoclast maker gene expression, osteoclastogenesis, and resorption activity. Interestingly, ATRA completely inhibited osteoclast formation in presence or absence of BMP2/7. Pan-antagonist of retinoic acid receptors (RARs) and antagonist of RARα, β or γ failed to reverse the inhibitory effect of ATRA on osteoclastogenesis. ATRA strongly inhibited Rank and Nfatc1 expression. Conclusions All-trans retinoic acid inhibits BMP2/7-induced osteoclastogenesis, and resorption activity possibly via RANKL-RANK pathway. Our findings from previous and current study suggest that combination of ATRA and BMP2/7 could be a novel approach to treat hyperactive osteoclast-induced bone loss such as in inflammation-induced severe osteoporosis and bone loss caused by cancer metastasis to bone.
Collapse
Affiliation(s)
- Wenjuan Bi
- 1School of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Yi Liu
- 2Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,3Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jing Guo
- 2Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen Lin
- 4Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jinsong Liu
- 5School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Miao Zhou
- 2Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daniel Wismeijer
- 3Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Janak L Pathak
- 2Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gang Wu
- 3Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Comparative Studies of Different Extracts from Eucommia ulmoides Oliv. against Rheumatoid Arthritis in CIA Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7379893. [PMID: 30105062 PMCID: PMC6076936 DOI: 10.1155/2018/7379893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022]
Abstract
To compare efficacy of different extracts from Eucommia ulmoides Oliv. with both immune inflammation and joint destruction in collagen induced arthritis (CIA) rat model. Rats were divided into normal group (Nor), control group (CIA), TG group (treated with tripterygium glycoside), E70 group (treated with 70% ethanol extract from Eucommia ulmoides Oliv.), EA group (treated with ethyl acetate fraction from E70), and EN group (treated with n-butyl alcohol fraction from E70). All extracts from Eucommia ulmoides Oliv. could significantly inhibit ankle swelling, pathological manifestations, and cytokine levels in serum and spleen, by using foot volume measurement, H&E staining, ELISA, and RT-QPCR methods, respectively. All extracts could significantly inhibit rough joint surface and marginal osteophytes, improve RANKL/OPG ratio, and decrease MMP-9 expression, by using micro-CT and immunohistochemical staining. The activation of IKK/NF-κB signaling pathway was also inhibited by all extracts. In addition, ethyl acetate fraction from E70 presented better effect on RANKL/OPG system. This study identified effective extracts from Eucommia ulmoides Oliv. relieving immune inflammation and maintaining structural integrity of joints in CIA rats.
Collapse
|
15
|
Luo G, Li F, Li X, Wang ZG, Zhang B. TNF‑α and RANKL promote osteoclastogenesis by upregulating RANK via the NF‑κB pathway. Mol Med Rep 2018; 17:6605-6611. [PMID: 29512766 PMCID: PMC5928634 DOI: 10.3892/mmr.2018.8698] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 02/27/2017] [Indexed: 12/24/2022] Open
Abstract
Although tumor necrosis factor alpha (TNF-α) is known to serve a critical role in the pathogenesis of inflammatory osteolysis, the exact mechanisms underlying the effects of TNF-α on osteoclast recruitment and differentiation remain unclear. To investigate the mechanisms by which TNF-α influences osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs) were used as osteoclast precursors, and osteoclastogenesis was induced by macrophage colony-stimulating factor and receptor activator of nuclear factor (NF)-κB ligand (RANKL) with or without TNF-α for 4 days. Then, NF-κB was inhibited using the inhibitor, BAY 11–7082. The results indicated that treatment with TNF-α alone did not induce osteoclastogenesis of BMMs. However, TNF-α in combination with RANKL dramatically stimulated the differentiation of osteoclasts and positively regulated the expression of mRNA markers of osteoclasts. Finally, treatment of BMMs with BAY 11–7082 prevented the formation of mature osteoclasts by BMMs treated with TNF-α only or with RANKL, as well as the upregulation of osteoclast marker genes. Therefore, although TNF-α does not induce osteoclastogenesis alone, it does work with RANKL to induce osteoclastic differentiation, and the NF-κB pathway may serve an important role in this process.
Collapse
Affiliation(s)
- Gang Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Department 4, Research Institute of Field Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Fangfei Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department 4, Research Institute of Field Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaoming Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department 4, Research Institute of Field Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zheng-Guo Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department 4, Research Institute of Field Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Bo Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department 4, Research Institute of Field Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
16
|
Boldine isolated from Litsea cubeba inhibits bone resorption by suppressing the osteoclast differentiation in collagen-induced arthritis. Int Immunopharmacol 2017; 51:114-123. [DOI: 10.1016/j.intimp.2017.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022]
|
17
|
Li DQ, Wan QL, Pathak JL, Li ZB. Platelet-derived growth factor BB enhances osteoclast formation and osteoclast precursor cell chemotaxis. J Bone Miner Metab 2017; 35:355-365. [PMID: 27628046 DOI: 10.1007/s00774-016-0773-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/24/2016] [Indexed: 11/30/2022]
Abstract
Enhanced osteoclast formation increases bone resorption, which triggers bone remodeling. Platelet-derived growth factor BB (PDGF-BB) enhances precursor cell homing, angiogenesis, and bone healing, and thereby could also treat osteoporosis. However, the effect of PDGF-BB on osteoclast formation is not fully understood. We investigated whether exogenous recombinant PDGF-BB directly affects osteoclast formation and osteoclast precursor cell chemotaxis. The murine monocyte-macrophage cell line RAW264.7 and bone-marrow-derived macrophages were cultured with recombinant mouse PDGF-BB with or without a platelet-derived growth factor receptor β inhibitor (AG-1295) or a Janus kinase 2 inhibitor (AG-490) to analyze the effect on osteoclastogenesis in vitro. PDGF-BB with or without AG-490 or AG-1295 was locally administrated in the mandibular fracture of 16-week-old Sprague Dawley rats (n = 18) for 1-2 weeks to analyze the effect on osteoclastogenesis in vivo. The effect of the treatments on osteoclast formation, osteoclast precursor cell migration, and expression of osteoclastogenic signaling molecules was analyzed. PDGF-BB enhanced osteoclast formation both in vitro and in vivo, but AG-490 and AG-1295 inhibited this effect. PDGF-BB enhanced phosphorylation of extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, and signal transducer and activator of transcription 3 (STAT3) in RAW264.7 cells. AG-490 inhibited PDGF-BB-induced STAT3 phosphorylation. PDGF-BB enhanced RAW264.7 cell migration and gene expression of osteoclastogenic signaling molecules (i.e., nuclear factor of activated T cells 1, dendrocyte-expressed seven transmembrane protein, and B-cell lymphoma 2), and treatment with AG-1295, AG-490, or S3I-201 (a STAT3 inhibitor) reduced this effect. PDGF-BB enhanced osteoclast formation, osteoclast precursor cell chemotaxis, and phosphorylation of STAT3, Akt, and ERK1/2. but AG-1295 and AG-490 reduced this effect. These findings reflect the complexity of PDGF-BB in bone biology.
Collapse
Affiliation(s)
- Dian-Qi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
- Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Qi-Long Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
- Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Janak L Pathak
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zu-Bing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Trauma and Plastic Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
18
|
Yu K, Ma Y, Li X, Wu X, Liu W, Li X, Shen J, Wang H. Lipopolysaccharide increases IL-6 secretion via activation of the ERK1/2 signaling pathway to up-regulate RANKL gene expression in MLO-Y4 cells. Cell Biol Int 2016; 41:84-92. [PMID: 27778412 DOI: 10.1002/cbin.10696] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Abstract
Lipopolysaccharide (LPS) plays an important role in bone resorption, which involves numerous cytokines through various signaling pathways. RANKL and interleukin (IL)-6 are two important cytokines that are involved in bone remodeling. The aim of this study was to evaluate the effect of LPS on RANKL and IL-6 gene expression, the relationship of RANKL and IL-6, and the role of extracellular signal-regulated kinases 1/2 (ERK1/2) on IL-6 secretion induced by LPS in MLO-Y4 cells. The cells were stimulated by LPS at different concentrations (1, 10, 100, 500, and 1000 ng/mL) for different durations (0.5, 1, 2, 4, and 8 h and 0.5, 1, 1.5, 2, and 4 h), and the mRNA expressions of RANKL and IL-6 were determined by PCR. In the presence of 100 ng/mL LPS at different time points (0.5, 1, 1.5, 2, and 4 h), IL-6 secretion and ERK1/2 phosphorylation in the cells were determined by ELISA and western blotting, respectively. STAT3 phosphorylation in cells simulated by 100 ng/mL LPS at different time points (0.5, 1, 2, 4, and 8 h) was assessed by western blotting. We found that LPS significantly up-regulated RANKL expression and activated the ERK1/2 pathway to induce IL-6 mRNA expression and protein synthesis in MLO-Y4 cells. However, the increased IL-6 was blocked by pre-treatment of MLO-Y4 cells with the ERK1/2 inhibitor U0126 (10 µM), and the enhanced RANKL was blocked by the STAT3 inhibitor S3I-201 (100 µM). Our results indicate that LPS up-regulates osteocyte expression of RANKL and IL-6, and the increased RANKL is associated with the up-regulation of IL-6, which involves the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ke Yu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China.,College of Stomatology, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xianxian Li
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610041, China
| | - Xiangnan Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenjia Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Osteoimmunology: memorandum for rheumatologists. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1241-1258. [DOI: 10.1007/s11427-016-5105-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
|
20
|
Cytokines TNF-α, IL-6, IL-17F, and IL-4 Differentially Affect Osteogenic Differentiation of Human Adipose Stem Cells. Stem Cells Int 2016; 2016:1318256. [PMID: 27667999 PMCID: PMC5030432 DOI: 10.1155/2016/1318256] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
During the initial stages of bone repair, proinflammatory cytokines are released within the injury site, quickly followed by a shift to anti-inflammatory cytokines. The effect of pro- and anti-inflammatory cytokines on osteogenic differentiation of mesenchymal stem cells is controversial. Here, we investigated the effect of the proinflammatory cytokines TNF-α, IL-6, IL-8, and IL-17F and the anti-inflammatory cytokine IL-4 on proliferation and osteogenic differentiation of human adipose stem cells (hASCs). hASCs were treated with TNF-α, IL-6, IL-8, IL-17F, or IL-4 (10 ng/mL) for 72 h mimicking bone repair. TNF-α reduced collagen type I gene expression but increased hASC proliferation and ALP activity. IL-6 also strongly enhanced ALP activity (18-fold), as well as bone nodule formation by hASCs. IL-8 did not affect proliferation or osteogenic gene expression but reduced bone nodule formation. IL-17F decreased hASC proliferation but enhanced ALP activity. IL-4 enhanced osteocalcin gene expression and ALP activity but reduced RUNX2 gene expression and bone nodule formation. In conclusion, all cytokines studied have both enhancing and reducing effects on osteogenic differentiation of hASCs, even when applied for 72 h only. Some cytokines, specifically IL-6, may be suitable to induce osteogenic differentiation of mesenchymal stem cells as a strategy for enhancing bone repair.
Collapse
|
21
|
Shang W, Zhao LJ, Dong XL, Zhao ZM, Li J, Zhang BB, Cai H. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep 2016; 14:3620-6. [PMID: 27572279 PMCID: PMC5042742 DOI: 10.3892/mmr.2016.5674] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to determine the effects of curcumin on the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs) obtained from patients with rheumatoid arthritis (RA), and to investigate the underlying molecular mechanisms. PBMCs from patients with RA (n=12) and healthy controls (n=10) were cultured to assess osteoclastogenic potential. The number of tartrate-resistant acid phosphatase-positive osteoclasts differentiated from PBMCs isolated from patients with RA was significantly increased compared with that of the healthy controls. In addition, the osteoclast number in patients with RA was correlated with the clinical indicators, Sharp score (r=0.810; P=0.001) and lumbar T-score (r=−0.685; P=0.014). Furthermore, the resorption area was increased in the RA group compared with the healthy controls. The mRNA and protein expression levels in PBMC-derived osteoclasts treated with curcumin were measured by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Curcumin inhibited the osteoclastogenic potential of PBMCs, potentially by suppressing activation of extracellular signal-regulated kinases 1 and 2, p38 and c-Jun N-terminal kinase, and inhibiting receptor activator of nuclear factor κB (RANK), c-Fos and nuclear factor of activated T cells (NFATc1) expression. The results of the present study demonstrated that curcumin may inhibit the osteoclastogenic potential of PBMCs from patients with RA through the suppression of the mitogen-activated protein kinase/RANK/c-Fos/NFATc1 signaling pathways, and that curcumin may be a potential novel therapeutic agent for the treatment of bone deterioration in inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Wei Shang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Ling-Jie Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Xiao-Lei Dong
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Zhi-Ming Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Bei-Bei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Hui Cai
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
22
|
Pathak JL, Bakker AD, Luyten FP, Verschueren P, Lems WF, Klein-Nulend J, Bravenboer N. Systemic Inflammation Affects Human Osteocyte-Specific Protein and Cytokine Expression. Calcif Tissue Int 2016; 98:596-608. [PMID: 26887974 DOI: 10.1007/s00223-016-0116-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Bone remodeling can be disturbed in active rheumatoid arthritis (RA), possibly as a result of elevated levels of circulating inflammatory cytokines. Osteocyte-specific proteins and cytokines play a vital role in bone remodeling by orchestrating bone formation and/or bone resorption. Therefore, we aimed to investigate the effect of RA-serum or inflammatory cytokines on expression of human osteocyte-specific proteins and cytokines. Human trabecular bone chips were cultured with RA-serum or inflammatory cytokines for 7-days. Live-dead staining was performed to assess cell viability. Gene expression of osteocyte-specific proteins and cytokines was analyzed by qPCR. Immuno-staining was performed for osteocyte-specific markers. Approximately 60 % of the osteocytes on the bone chips were alive at day-7. Cells in or on the bone chips did express the gene for osteocyte markers SOST, FGF23, DMP1, and MEPE, and the cytokines IL-1β, IL-6, and TNFα at day 0 and 7. Active RA-serum treatment enhanced IL-1β, TNFα, SOST, and DKK1 gene expression. IL-1β treatment enhanced IL-1β, TNFα, IL-6, IL-8, FGF23, and SOST gene expression. TNFα treatment enhanced IL-1β, TNFα, IL-6, IL-8, and FGF23 gene expression. IL-8 treatment enhanced TNFα, IL-8, and FGF23 gene expression. A combination of IL-1β, IL-6, and TNFα treatment synergistically upregulated IL-1β, IL-6, and IL-8 gene expression, as well as enhanced TNFα, OPG, SOST, and FGF23, and inhibited DKK1 gene expression. In conclusion, gene expression of human osteocyte-specific proteins and cytokines was affected by RA-serum, and exogenous recombinant cytokines treatment suggesting that osteocytes could provide a new target to prevent systemic inflammation-induced bone loss in RA.
Collapse
Affiliation(s)
- Janak L Pathak
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China.
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Willem F Lems
- Department of Rheumatology, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Pathak JL, Verschueren P, Lems WF, Bravenboer N, Klein-Nulend J, Bakker AD, Luyten FP. Serum of patients with active rheumatoid arthritis inhibits differentiation of osteochondrogenic precursor cells. Connect Tissue Res 2016; 57:226-35. [PMID: 27050327 DOI: 10.3109/03008207.2016.1146714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Delayed fracture healing is frequently experienced in patients with systemic inflammation such as during rheumatoid arthritis (RA). The reasons for this are diverse, but could also be caused by inflammatory cytokines and/or growth factors in serum from patients with active disease. We hypothesized that serum from patients with active RA contains circulating inflammatory factors that inhibit differentiation of osteochondrogenic precursors. Serum was obtained from 15 patients with active RA (active RA-sera) and from the same patients in clinical remission 1 year later (remission RA-sera; controls). The effect of active RA-sera on osteochondrogenic differentiation of chondrogenic ATDC5 cells and primary human periosteum-derived progenitor cells (HPDC) was determined in micromass culture. In ATDC5 cells, active RA-sera reduced Ki67 transcription levels by 40% and cartilage matrix accumulation by 14% at day 14, and Alp transcription levels by 16%, and matrix mineralization by 17% at day 21 compared with remission RA-sera. In HPDCs, active RA-sera inhibited metabolic activity by 8%, SOX9 transcription levels by 14%, and cartilage matrix accumulation by 7% at day 7 compared with remission RA-sera. In conclusion, sera from patients with active RA negatively affect differentiation of osteochondrogenic precursors, and as a consequence may contribute to delayed fracture healing in these patients.
Collapse
Affiliation(s)
- Janak L Pathak
- a Department of Oral Cell Biology , Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands.,b Skeletal Biology and Engineering Research Center , KU Leuven, Leuven , Belgium.,c Department of Molecular and Cellular Pharmacology , School of Pharmaceutical Science and Technology (SPST), Tianjin University , Tianjin , China
| | - Patrick Verschueren
- b Skeletal Biology and Engineering Research Center , KU Leuven, Leuven , Belgium
| | - Willem F Lems
- d Department of Rheumatology , VU University Medical Center, MOVE Research Institute Amsterdam , Amsterdam , The Netherlands
| | - Nathalie Bravenboer
- e Department of Clinical Chemistry , VU University Medical Center, MOVE Research Institute Amsterdam , Amsterdam , The Netherlands
| | - Jenneke Klein-Nulend
- a Department of Oral Cell Biology , Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Astrid D Bakker
- a Department of Oral Cell Biology , Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Frank P Luyten
- b Skeletal Biology and Engineering Research Center , KU Leuven, Leuven , Belgium
| |
Collapse
|
24
|
Tarapore RS, Lim J, Tian C, Pacios S, Xiao W, Reid D, Guan H, Mattos M, Yu B, Wang CY, Graves DT. NF-κB Has a Direct Role in Inhibiting Bmp- and Wnt-Induced Matrix Protein Expression. J Bone Miner Res 2016; 31:52-64. [PMID: 26179215 PMCID: PMC4713353 DOI: 10.1002/jbmr.2592] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 11/08/2022]
Abstract
The host response to pathogens through nuclear factor κB (NF-κB) is an essential defense mechanism for eukaryotic organisms. NF-κB-mediated host responses inhibit bone and other connective tissue synthesis and are thought to affect the transcription of matrix proteins through multiple indirect pathways. We demonstrate that inhibiting NF-κB in osteoblasts increases osteocalcin expression in vivo in mice with periodontal disease. Mutating NF-κB binding sites on osteocalcin (OC) or bone sialoprotein (Bsp) promoters rescues the negative impact of NF-κB on their transcription and that NF-κB can inhibit Wnt- and Bmp-induced OC and Bsp transcription, even when protein synthesis is inhibited, indicating a direct effect of NF-κB. This inhibition depends on p65-p50 NF-κB heterodimer formation and deacetylation by HDAC1 but is not affected by the noncanonical NF-κB pathway. Moreover, NF-κB reduces Runx2 and β-catenin binding to OC/Bsp promoters independently of their nuclear localization. Thus, inflammatory signals stimulate the direct interaction of NF-κB with response elements to inhibit binding of β-catenin and Runx2 binding to nearby consensus sites and reduce expression of matrix proteins. This direct mechanism provides a new explanation for the rapid decrease in new bone formation after inflammation-related NF-κB activation.
Collapse
Affiliation(s)
- Rohinton S Tarapore
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Lim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chen Tian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Pacios
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenmei Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Daniel Reid
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hancheng Guan
- Division of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo Mattos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bo Yu
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Algate K, Haynes DR, Bartold PM, Crotti TN, Cantley MD. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J Periodontal Res 2015; 51:549-66. [DOI: 10.1111/jre.12339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/22/2022]
Affiliation(s)
- K. Algate
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
| | - D. R. Haynes
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
| | - P. M. Bartold
- School of Dentistry; University of Adelaide; Adelaide SA Australia
| | - T. N. Crotti
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
| | - M. D. Cantley
- Discipline of Anatomy and Pathology; University of Adelaide; Adelaide SA Australia
- Myeloma Research Laboratory; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
26
|
Swift JM, Swift SN, Smith JT, Kiang JG, Allen MR. Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss. Bone 2015; 81:487-494. [PMID: 26335157 DOI: 10.1016/j.bone.2015.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022]
Abstract
The present study investigated the detrimental effects of non-lethal, high-dose (whole body) γ-irradiation on bone, and the impact that radiation combined with skin trauma (i.e. combined injury) has on long-term skeletal tissue health. Recovery of bone after an acute dose of radiation (RI; 8 Gy), skin wounding (15-20% of total body skin surface), or combined injury (RI+Wound; CI) was determined 3, 7, 30, and 120 days post-irradiation in female B6D2F1 mice and compared to non-irradiated mice (SHAM) at each time-point. CI mice demonstrated long-term (day 120) elevations in serum TRAP 5b (osteoclast number) and sclerostin (bone formation inhibitor), and suppression of osteocalcin levels through 30 days as compared to SHAM (p<0.05). Radiation-induced reductions in distal femur trabecular bone volume fraction and trabecular number through 120 days post-exposure were significantly greater than non-irradiated mice (p<0.05) and were exacerbated in CI mice by day 30 (p<0.05). Negative alterations in trabecular bone microarchitecture were coupled with extended reductions in cancellous bone formation rate in both RI and CI mice as compared to Sham (p<0.05). Increased osteoclast surface in CI animals was observed for 3 days after irradiation and remained elevated through 120 days (p<0.01). These results demonstrate a long-term, exacerbated response of bone to radiation when coupled with non-lethal wound trauma. Changes in cancellous bone after combined trauma were derived from extended reductions in osteoblast-driven bone formation and increases in osteoclast activity.
Collapse
Affiliation(s)
- Joshua M Swift
- Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA; Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814 USA; Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814 USA.
| | - Sibyl N Swift
- Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA; Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814 USA.
| | - Joan T Smith
- Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA.
| | - Juliann G Kiang
- Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA; Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814 USA; Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814 USA.
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202 USA.
| |
Collapse
|
27
|
Pathak JL, Bravenboer N, Luyten FP, Verschueren P, Lems WF, Klein-Nulend J, Bakker AD. Mechanical loading reduces inflammation-induced human osteocyte-to-osteoclast communication. Calcif Tissue Int 2015; 97:169-78. [PMID: 25967362 PMCID: PMC4491366 DOI: 10.1007/s00223-015-9999-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
Multiple factors contribute to bone loss in inflammatory diseases such as rheumatoid arthritis (RA), but circulating inflammatory factors and immobilization play a crucial role. Mechanical loading prevents bone loss in the general population, but the effects of mechanical loading in patients with RA are less clear. Therefore, we aimed to investigate whether mechanical stimuli reverse the stimulatory effect of RA serum on osteocyte-to-osteoclast communication. Human primary osteocytes were pretreated with 10 % RA serum or healthy control serum for 7 days, followed by 1 h ± mechanical loading by pulsating fluid flow (PFF). Nitric oxide (NO) and prostaglandin E2 were measured in the medium. Receptor activator of nuclear factor-kappaB ligand (RANKL), osteoprotegerin (OPG), interleukin-6 (IL-6), cyclooxygenase-2 (COX2), matrix-extracellular phosphoglycoprotein (MEPE), cysteine-rich protein 61 (CYR61), and SOST gene expression was quantified by qPCR. Osteoclast precursors were cultured with PFF-conditioned medium (PFF-CM) or static-conditioned medium (stat-CM), and osteoclast formation was assessed. RA serum alone did not affect IL-6, CYR61, COX2, MEPE, or SOST gene expression in osteocytes. However, RA serum enhanced the RANKL/OPG expression ratio by 3.4-fold, while PFF nullified this effect. PFF enhanced NO production to the same extent in control serum (2.6-3.5-fold) and RA serum-pretreated (2.7-3.6-fold) osteocytes. Stat-CM from RA serum-pretreated osteocytes enhanced osteoclastogenesis compared with stat-CM from control serum-pretreated osteocytes, while PFF nullified this effect. In conclusion, RA serum, containing inflammatory factors, did not alter the intrinsic capacity of osteocytes to sense mechanical stimuli, but upregulated osteocyte-to-osteoclast communication. Mechanical loading nullified this upregulation, suggesting that mechanical stimuli could contribute to the prevention of osteoporosis in inflammatory disease.
Collapse
Affiliation(s)
- Janak L. Pathak
- />Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- />Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - N. Bravenboer
- />Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Frank P. Luyten
- />Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Patrick Verschueren
- />Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Willem F. Lems
- />Department of Rheumatology, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- />Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Astrid D. Bakker
- />Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Pathak JL, Bakker AD, Verschueren P, Lems WF, Luyten FP, Klein-Nulend J, Bravenboer N. CXCL8 and CCL20 Enhance Osteoclastogenesis via Modulation of Cytokine Production by Human Primary Osteoblasts. PLoS One 2015; 10:e0131041. [PMID: 26103626 PMCID: PMC4477884 DOI: 10.1371/journal.pone.0131041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022] Open
Abstract
Generalized osteoporosis is common in patients with inflammatory diseases, possibly because of circulating inflammatory factors that affect osteoblast and osteoclast formation and activity. Serum levels of the inflammatory factors CXCL8 and CCL20 are elevated in rheumatoid arthritis, but whether these factors affect bone metabolism is unknown. We hypothesized that CXCL8 and CCL20 decrease osteoblast proliferation and differentiation, and enhance osteoblast-mediated osteoclast formation and activity. Human primary osteoblasts were cultured with or without CXCL8 (2–200 pg/ml) or CCL20 (5–500 pg/ml) for 14 days. Osteoblast proliferation and gene expression of matrix proteins and cytokines were analyzed. Osteoclast precursors were cultured with CXCL8 (200 pg/ml) and CCL20 (500 pg/ml), or with conditioned medium (CM) from CXCL8 and CCL20-treated osteoblasts with or without IL-6 inhibitor. After 3 weeks osteoclast formation and activity were determined. CXCL8 (200 pg/ml) and CCL20 (500 pg/ml) enhanced mRNA expression of KI67 (2.5–2.7-fold), ALP (1.6–1.7-fold), and IL-6 protein production (1.3–1.6-fold) by osteoblasts. CXCL8-CM enhanced the number of osteoclasts with 3–5 nuclei (1.7-fold), and with >5 nuclei (3-fold). CCL20-CM enhanced the number of osteoclasts with 3–5 nuclei (1.3-fold), and with >5 nuclei (2.8-fold). IL-6 inhibition reduced the stimulatory effect of CXCL8-CM and CCL20-CM on formation of osteoclasts. In conclusion, CXCL8 and CCL20 did not decrease osteoblast proliferation or gene expression of matrix proteins. CXCL8 and CCL20 did not directly affect osteoclastogenesis. However, CXCL8 and CCL20 enhanced osteoblast-mediated osteoclastogenesis, partly via IL-6 production, suggesting that CXCL8 and CCL20 may contribute to osteoporosis in rheumatoid arthritis by affecting bone cell communication.
Collapse
Affiliation(s)
- Janak L. Pathak
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Willem F. Lems
- Department of Rheumatology, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Zavala-Cerna MG, Moran-Moguel MC, Cornejo-Toledo JA, Gonzalez-Montoya NG, Sanchez-Corona J, Salazar-Paramo M, Nava-Zavala AH, Aguilar-Chavez EA, Alcaraz-Lopez MF, Gonzalez-Sanchez AG, Gonzalez-Lopez L, Gamez-Nava JI. Osteoprotegerin Polymorphisms in a Mexican Population with Rheumatoid Arthritis and Generalized Osteoporosis: A Preliminary Report. J Immunol Res 2015; 2015:376197. [PMID: 26065000 PMCID: PMC4433710 DOI: 10.1155/2015/376197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022] Open
Abstract
Bone disease in rheumatoid arthritis (RA) is a complex phenomenon where genetic risk factors have been partially evaluated. The system formed by receptor activator for nuclear factor-κB (RANK), receptor activator for nuclear factor-κB ligand (RANKL), and osteoprotegerin (OPG): RANK/RANKL/OPG is a crucial molecular pathway for coupling between osteoblasts and osteoclasts, since OPG is able to inhibit osteoclast differentiation and activation. We aim to evaluate the association between SNPs C950T (rs2073617), C209T (rs3134069), T245G (rs3134070) in the TNFRSF11B (OPG) gene, and osteoporosis in RA. We included 81 women with RA and 52 healthy subjects in a cross-sectional study, genotyped them, and measured bone mineral density (BMD) at the lumbar spine and the femoral neck. Mean age in RA was 50 ± 12 with disease duration of 12 ± 8 years. According to BMD results, 23 (33.3%) were normal and 46 (66.7%) had osteopenia/osteoporosis. We found a higher prevalence of C allele for C950T SNP in RA. Polymorphisms C209T and T245G did not reach statistical significance in allele distribution. Further studies including patients from other regions of Latin America with a multicenter design to increase the sample size are required to confirm our findings and elucidate if C950T SNP could be associated with osteoporosis in RA.
Collapse
Affiliation(s)
| | - Maria Cristina Moran-Moguel
- Division de Medicina Molecular del Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
| | - Jesus Alejandro Cornejo-Toledo
- Division de Medicina Molecular del Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
| | - Norma Guadalupe Gonzalez-Montoya
- Programa de Becarios en Investigacion del Instituto Mexicano del Seguro Social, Programa de Doctorado en Farmacologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Jose Sanchez-Corona
- Division de Medicina Molecular del Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
| | - Mario Salazar-Paramo
- Division de Investigacion en Salud, UMAE, Hospital de Especialidades, CMNO, IMSS and Departamento de Fisiologia, CUCS, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Arnulfo Hernan Nava-Zavala
- Programa Internacional, Facultad de Medicina, Universidad Autonoma de Guadalajara, 44100 Zapopan, JAL, Mexico
- Unidad de Investigacion en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional de Occidente del Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
- Servicio de Medicina Interna, Inmunologia y Reumatologia, Hospital General de Occidente, Secretaria de Salud Jalisco, 45170 Guadalajara, JAL, Mexico
| | | | - Miriam Fabiola Alcaraz-Lopez
- Departamento de Medicina Interna-Reumatologia, Hospital General de Zona 14, Instituto Mexicano del Seguro Social, 44860 Guadalajara, JAL, Mexico
| | - Alicia Guadalupe Gonzalez-Sanchez
- Programa de Becarios en Investigacion del Instituto Mexicano del Seguro Social, Programa de Doctorado en Farmacologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Laura Gonzalez-Lopez
- Departamento de Medicina Interna-Reumatologia del Hospital General Regional No. 110, Instituto Mexicano del Seguro Social y Programa de Doctorado en Salud Publica, CUCS, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Jorge Ivan Gamez-Nava
- Unidad de Investigación en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional de Occidente del Instituto Mexicano del Seguro Social y Programa de Doctorado en Salud Publica, CUCS, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| |
Collapse
|
30
|
Napimoga MH, Demasi APD, Jarry CR, Ortega MC, de Araújo VC, Martinez EF. In vitro evaluation of the biological effect of SOFAT on osteoblasts. Int Immunopharmacol 2015; 26:378-83. [PMID: 25916677 DOI: 10.1016/j.intimp.2015.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/30/2015] [Accepted: 04/14/2015] [Indexed: 01/12/2023]
Abstract
Osteoclastogenesis is regulated by osteoblasts especially through the production of receptor activator of nuclear factor kappa-B ligand (RANKL). Immune cells present in inflamed tissues markedly increase this process by upregulating RANKL directly or by secreting proinflammatory cytokines, which stimulate RANKL expression by osteoblasts. A novel T-cell-secreted cytokine, termed secreted osteoclastogenic factor of activated T cells (SOFAT) was recently described. To better understand how SOFAT affects bone metabolism, we investigated its effect on osteoblastic cells. We demonstrate here that SOFAT did not influence MC3T3 cells viability and proliferation, evaluated by trypan blue exclusion and MTT tests, respectively. SOFAT stimulated the secretion of IL-6, IL-10 and GM-CSF in MC3T3 cells, as shown by the analysis of an inflammatory cytokines ELISA array. The upregulation of the corresponding genes was checked by qPCR. Both RANKL mRNA and protein levels did not significantly change in the presence of SOFAT, evaluated by qPCR and western blotting, respectively. In addition, analysis of a PCR array for IL6/STAT3 pathway demonstrated that SOFAT induced the expression of BCL2, IL1B, IL10, IL22, IL2RA, IL4, IL6, TNFSF10 and PIAS3, while IL2, IL21, CD4, CSF3R and TNF were repressed. Our results confirm that the SOFAT mechanism of action is RANKL-independent and indicate that, by co-opting osteoblasts to increase the production of osteoclastogenic cytokines, SOFAT may exacerbate inflammation and support osteoclast formation and bone destruction.
Collapse
Affiliation(s)
- Marcelo Henrique Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil.
| | - Ana Paula Dias Demasi
- Laboratory of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | - Christian Rado Jarry
- Periodontal Medicine Research Group, Department of Periodontology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | - Mauricio Cardoso Ortega
- Periodontal Medicine Research Group, Department of Periodontology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | - Vera Cavalcanti de Araújo
- Laboratory of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | | |
Collapse
|