1
|
Bayanova M, Abilova A, Rakhimzhanova M, Bazenova A, Nazarova L, Malik D, Tanko NM, Altaeva N, Bolatov A. Genetic landscape and phenotypic spectrum of osteogenesis imperfecta in the Kazakhstani pediatric population. Sci Rep 2025; 15:11223. [PMID: 40175636 PMCID: PMC11965289 DOI: 10.1038/s41598-025-95877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
This study investigates the genetic landscape and phenotypic spectrum of osteogenesis imperfecta (OI) in the Kazakhstani pediatric population, focusing on 40 children diagnosed and treated at the "University Medical Center" Corporate Fund from July 2021 to June 2023. Genetic analysis was conducted using whole-genome sequencing for 22 participants at the "National Laboratory Astana" (Nazarbayev University, Astana, Kazakhstan) and whole-exome sequencing for 18 participants in private laboratories. Clinically significant genetic variants were found in 35 cases (87.5%). Mutations in the COL1A1 and COL1A2 genes were detected in 24 cases (68.6%), among them 5 variants were described for the first time. Among the rare cases of OI, variants in the IFITM5 (n = 2), SERPINF1 (n = 7), and SERPINH1 (n = 1) genes were identified. At the same time, seven unrelated cases had identical variants in the SERPINF1 gene (c.907C > T, 6 of which in the homozygous and 1 in the compound heterozygous state) and two cases in the IFITM1 gene (c.-14C > T). Novel disease-causing variants were identified in 17% of cases, and a higher proportion of collagen defects were seen. The relatively high proportion of autosomal recessive inherited OI determined in the current study should be investigated at the population level in Kazakhstan and in the countries of Central Asia. Moreover, this study described the genotype-phenotype correlation, which complements and expands the existing knowledge about the OI.
Collapse
Affiliation(s)
- Mirgul Bayanova
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan
| | - Aigerim Abilova
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan
| | - Marzhan Rakhimzhanova
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan
| | - Assiya Bazenova
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan
| | - Lyazzat Nazarova
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan
| | - Dias Malik
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan
| | - Naanlep Matthew Tanko
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Nursulu Altaeva
- Astana Medical University, Beybitshilik St. 49A, 010000, Astana, Kazakhstan
| | - Aidos Bolatov
- "University Medical Center" Corporate Fund, Turan Ave. 38, 010000, Astana, Kazakhstan.
- Astana Medical University, Beybitshilik St. 49A, 010000, Astana, Kazakhstan.
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
2
|
Demir K, Güleç Ç, Aslanger A, Öztürk AP, Özsait Selçuk B, Tuna İnce EB, Toksoy G. Investigation of oral health findings and genotype correlations in osteogenesis imperfecta. Odontology 2024:10.1007/s10266-024-01036-7. [PMID: 39674968 DOI: 10.1007/s10266-024-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Osteogenesis imperfecta, a common genetic connective tissue disorder affecting bone with multisystemic implications, is caused by genomic alterations at various levels that disrupt the biosynthesis stages of collagen Type I. This study evaluated the intraoral and clinical findings of 43 OI cases in relation to genetic variants, aiming to contribute new insights into the roles of collagen and non-collagen genes in the oral-dental pathology of OI. Significant associations were found between OI variants and dental anomalies such as dentinogenesis imperfecta, enamel hypoplasia, taurodontism, and hypodontia. COL1A1/2-truncated variants were linked to atypical intercanine width, and midface hypoplasia correlated with reduced overjet and overbite. Bisphosphonate treatment, especially when initiated before age two, was associated with enamel hypoplasia. Oral hygiene habits, including brushing frequency and use of additional products, were linked to lower DMFT. In the OI group, significant associations were noted between Angle Class III malocclusion and reduced brushing frequency, as well as between deep palatal vault and increased DMFT. A correlation was also observed between maximum mouth opening and joint hypermobility. These findings, along with new dental observations related to non-collagen variants, shed light on the oral health challenges in OI patients. Our study underscores the importance of multidisciplinary collaboration between dentistry and medical genetics in understanding complex conditions like OI. The comprehensive analysis of oral and dental findings in OI cases is expected to inform future research and enhance clinical approaches to managing the dental challenges associated with this disorder.
Collapse
Affiliation(s)
- Kübra Demir
- Department of Genetics, Institute of Health Sciences, Istanbul University, Istanbul, Turkey.
| | - Çağrı Güleç
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayça Aslanger
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayşe Pınar Öztürk
- Department of Internal Medicine, Department of Child Health and Diseases, Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bilge Özsait Selçuk
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Bahar Tuna İnce
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Holtz AP, Souza LT, Ribeiro EM, Acosta AX, Lago RMRS, Simoni G, Llerena JC, Félix TM. Genetic analysis of osteogenesis imperfecta in a large Brazilian cohort. Bone 2023; 169:116683. [PMID: 36709916 DOI: 10.1016/j.bone.2023.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a genetically and clinically heterogeneous disorder caused by disruption of type I collagen synthesis. Previous Brazilian molecular OI studies have been restricted to case reports or small cohorts. The Brazilian OI Network (BOIN) is a multicenter study collecting clinical OI treatment data from five reference centers in three regions of Brazil. OBJECTIVE To describe the molecular analysis of a large cohort of OI registered at BOIN. METHODS Targeted next-generation sequencing (NGS) was performed at a centralized laboratory with the Ion Torrent platform, covering 99.6 % of the coding regions of 18 OI-associated genes. Clinical information was obtained from a clinical database. RESULTS We included 156 subjects in the molecular analyses. Variants were detected in 121 subjects: 65 (53.7 %) in COL1A1, 42 (34.7 %) in COL1A2, 2 (1.7 %) in IFITM5, one (0.8 %) in CRTAP, three (2.5 %) in P3H1, two (1.7 %) in PPIB, four (3.3 %) FKBP10, one (0.8 %) in SERPINH1, and one (0.8 %) in TMEM38B. Ninety-one distinct variants were identified, of which 26 were novel. Of the 107 variants identified in COL1A1 and COL1A2, 24.5 % cause mild OI, while the remaining 75.5 % cause moderate, severe, or lethal OI, of which 49.3 % are glycine to serine substitutions. A single variant in FKBP10 (c.179A>C; p.Gln60Pro) was found in three unrelated and non-consanguineous participants living in the same geographic area in Northeast Brazil, suggesting a possible founder effect. CONCLUSION Consistent with the literature, 88.4 % of the subjects had a variant in the COL1A1 and COL1A2 genes, with 10 % inherited in an autosomal recessive manner. Notably, one variant in FKBP10 with a potential founder effect requires further investigation. Data from this large cohort improves our understanding of genotype-phenotype correlations for OI in Brazil.
Collapse
Affiliation(s)
- A P Holtz
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomic Medicine Laboratory, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - L T Souza
- Genomic Medicine Laboratory, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - E M Ribeiro
- Genetics Service, Hospital Infantil Albert Sabin, Fortaleza, Brazil
| | - A X Acosta
- Pediatric Department, Hospital Universitário Prof. Edgar Santos, Salvador, Brazil
| | - R M R S Lago
- Pediatric Department, Hospital Universitário Prof. Edgar Santos, Salvador, Brazil
| | - G Simoni
- Pediatric Endocrinology Department, Hospital Infantil Joana de Gusmão, Florianópolis, Brazil
| | - J C Llerena
- Medical Genetics Department, Instituto Nacional Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - T M Félix
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomic Medicine Laboratory, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil; Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Tüysüz B, Elkanova L, Uludağ Alkaya D, Güleç Ç, Toksoy G, Güneş N, Yazan H, Bayhan AI, Yıldırım T, Yeşil G, Uyguner ZO. Osteogenesis imperfecta in 140 Turkish families: Molecular spectrum and, comparison of long-term clinical outcome of those with COL1A1/A2 and biallelic variants. Bone 2022; 155:116293. [PMID: 34902613 DOI: 10.1016/j.bone.2021.116293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous group of diseases characterized by increased bone fragility and deformities. Although most patients with OI have heterozygous mutations in COL1A1 or COL1A2, 17 genes have been reported to cause OI, most of which are autosomal recessive (AR) inherited, during the last years. The aim of this study is to determine the mutation spectrum in Turkish OI cohort and to investigate the genotype-phenotype correlation. METHODS 150 patients from 140 Turkish families with OI phenotype were included in this study. Mutations in OI-related genes were identified using targeted gene panel, MLPA analysis for COL1A1 and whole exome sequencing. 113 patients who had OI disease-causing variants were followed for 1-20 years. RESULTS OI disease-causing variants were detected in 117 families, of which 62.4% in COL1A1/A2, 35.9% in AR-related genes. A heterozygous variant in IFITM5 and a hemizygous in MBTPS2 were also described, one in each patient. Eighteen biallelic variants (13 novel) were identified in nine genes (FKBP10, P3H1, SERPINF1, TMEM38B, WNT1, BMP1, CRTAP, FAM46A, MESD) among which FKBP10, P3H1 and SERPINF1 were most common. The most severe phenotypes were in patients with FKBP10, SERPINF1, CRTAP, FAM46A and MESD variants. P3H1 patients had moderate, while BMP1 had the mild phenotype. Clinical phenotypes were variable in patients with WNT1 and TMEM38B mutations. We also found mutations in ten genes (PLS3, LRP5, ANO5, SLC34A1, EFEMP2, PRDM5, GORAB, OCRL1, TNFRSF11B, DPH1) associated with diseases presenting clinical features which overlap OI, in eleven families. CONCLUSION We identified disease-causing mutations in 83.6% in a large Turkish pediatric OI cohort. 40 novel variants were described. Clinical features and long-term follow-up findings of AR inherited OI types and especially very rare biallelic variants were presented for the first time. Unlike previously reported studies, the mutations that we found in P3H1 were all missense, causing a moderate phenotype.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey.
| | - Leyla Elkanova
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Hakan Yazan
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - A Ilhan Bayhan
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Timur Yıldırım
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Gözde Yeşil
- Department of Medical Genetics, Bezmialem University, Istanbul, Turkey
| | - Z Oya Uyguner
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| |
Collapse
|
5
|
Moreira MLM, de Araújo IM, de Molfetta GA, Silva WA, de Paula FJA. Repetitive stress fracture: a warning sign of genetic susceptibility to fracture? A case report of a heterozygous variant in SERPINF1. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:500-504. [PMID: 34283899 PMCID: PMC10522185 DOI: 10.20945/2359-3997000000375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
The occurrence of fractures in young individuals is frequently overlooked by physicians, especially when associated with exercise or trauma. Nevertheless, multiple fractures should always be investigated since underlying conditions can predispose to such events. We describe here the case of a young, healthy woman who sustained multiple fractures in the lower limbs, which were initially considered to be "stress fractures". Further investigation, including a panel of genes associated with osteogenesis imperfecta, revealed that the patient is a heterozygous carrier of a SERPINF1 variant. According to criteria recommended by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, this variant is classified as likely benign (PM2, PP3, PP4, BP1, and BP4). The patient's mother and brother were also asymptomatic carriers of the variant and had sustained previous minor fractures. The patient had normal biochemical profile and bone density. This condition has been rarely described and is not associated with low bone mineral density or altered bone turnover markers. This case highlights the importance of investigating multiple fractures in young patients who are otherwise healthy since these may be a warning sign of rare genetic conditions associated with fragility fractures.
Collapse
Affiliation(s)
| | - Iana Mizumukai de Araújo
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Greice Andreotti de Molfetta
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Wilson Araújo Silva
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | |
Collapse
|
6
|
Higuchi Y, Hasegawa K, Futagawa N, Yamashita M, Tanaka H, Tsukahara H. Genetic analysis in Japanese patients with osteogenesis imperfecta: Genotype and phenotype spectra in 96 probands. Mol Genet Genomic Med 2021; 9:e1675. [PMID: 33939306 PMCID: PMC8222851 DOI: 10.1002/mgg3.1675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/14/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare connective-tissue disorder characterized by bone fragility. Approximately 90% of all OI cases are caused by variants in COL1A1 or COL1A2. Additionally, IFITM5 variants are responsible for the unique OI type 5. We previously analyzed COL1A1/2 variants in 22 Japanese families with OI through denaturing high-performance liquid chromatography screening, but our detection rate was low (41%). METHODS To expand the genotype-phenotype correlations, we performed a genetic analysis of COL1A1/2 and IFITM5 in 96 non-consanguineous Japanese OI probands by Sanger sequencing. RESULTS Of these individuals, 54, 41, and 1 had type 1 (mild), type 2-4 (moderate-to-severe), and type 5 phenotypes, respectively. In the mild group, COL1A1 nonsense and splice-site variants were prevalent (n = 30 and 20, respectively), but there were also COL1A1 and COL1A2 triple-helical glycine substitutions (n = 2 and 1, respectively). In the moderate-to-severe group, although COL1A1 and COL1A2 glycine substitutions were common (n = 14 and 18, respectively), other variants were also detected. The single case of type 5 had the characteristic c.-14C>T variant in IFITM5. CONCLUSION These results increase our previous detection rate for COL1A1/2 variants to 99% and provide insight into the genotype-phenotype correlations in OI.
Collapse
Affiliation(s)
- Yousuke Higuchi
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Natsuko Futagawa
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Miho Yamashita
- Faculty of Human Life Sciences, Notre Dame Seishin University, Okayama, Japan
| | - Hiroyuki Tanaka
- Department of Pediatrics, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 2020; 183:R95-R106. [PMID: 32621590 PMCID: PMC7694877 DOI: 10.1530/eje-20-0299] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by bone fragility and skeletal deformities. While the majority of cases are associated with pathogenic variants in COL1A1 and COL1A2, the genes encoding type I collagen, up to 25% of cases are associated with other genes that function within the collagen biosynthesis pathway or are involved in osteoblast differentiation and bone mineralization. Clinically, OI is heterogeneous in features and variable in severity. In addition to the skeletal findings, it can affect multiple systems including dental and craniofacial abnormalities, muscle weakness, hearing loss, respiratory and cardiovascular complications. A multi-disciplinary approach to care is recommended to address not only the fractures, reduced mobility, growth and bone pain but also other extra-skeletal manifestations. While bisphosphonates remain the mainstay of treatment in OI, new strategies are being explored, such as sclerostin inhibitory antibodies and TGF beta inhibition, to address not only the low bone mineral density but also the inherent bone fragility. Studies in animal models have expanded the understanding of pathomechanisms of OI and, along with ongoing clinical trials, will allow to develop better therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Brien M. Rabenhorst
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|