1
|
Lee Y, Bandara WR, Park S, Lee M, Seo C, Yang S, Lim KJ, Moe SM, Warden SJ, Surowiec RK. Integrating deep learning and machine learning for improved CKD-related cortical bone assessment in HRpQCT images: A pilot study. Bone Rep 2025; 24:101821. [PMID: 39866530 PMCID: PMC11763521 DOI: 10.1016/j.bonr.2024.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/18/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
High resolution peripheral quantitative computed tomography (HRpQCT) offers detailed bone geometry and microarchitecture assessment, including cortical porosity, but assessing chronic kidney disease (CKD) bone images remains challenging. This proof-of-concept study merges deep learning and machine learning to 1) improve automatic segmentation, particularly in cases with severe cortical porosity and trabeculated endosteal surfaces, and 2) maximize image information using machine learning feature extraction to classify CKD-related skeletal abnormalities, surpassing conventional DXA and CT measures. We included 30 individuals (20 non-CKD, 10 stage 3 to 5D CKD) who underwent HRpQCT of the distal and diaphyseal radius and tibia and contributed data to develop and validate four different AI models for each anatomical site. Manually annotated cortical bone was used to train each segmentation deep-learning model. Textural features were extracted via Gray-Level Co-occurrence Matrix (GLCM) and classified as CKD or non-CKD using XGBoost with each segmentation model. For comparison, manufacturer-supplied segmentation was used to extract cortical geometry, microarchitecture, and finite element analysis (FEA) outcomes. Model performance was confirmed using the test dataset and a separate independent validation cohort which included HRpQCT imaging from 42 additional individuals (18 non-CKD, 24 CKD stage 5D). For segmentation, the diaphyseal location showed strong performance on test datasets, with Mean IoUs of 0.96 and 0.95, and accuracies of 0.97 for both radius and tibia sites in CKD. Model 4 developed from the diaphyseal tibia region excelled in classifying test and independent validation datasets, achieving F1 scores of 0.99 and 0.96, AUCs of 0.99 and 0.94, sensitivities of 0.99, and specificities of 0.99 and 0.92. No single parameter, including BMD and cortical porosity, among conventional CT outcomes consistently differentiated CKD from non-CKD across all anatomical sites. Integrating HRpQCT with deep and machine learning, this innovative approach enables precise automatic segmentation of severely deteriorated endocortical surfaces and enhances sensitivity to CKD-related cortical bone changes compared to standard DXA and HRpQCT outcomes.
Collapse
Affiliation(s)
- Youngjun Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Wikum R. Bandara
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Sangjun Park
- Department of Radiation Therapy, Samsung Medical Center, The Sungkyunkwan University of Korea, South Korea
| | - Miran Lee
- Department of Electronic Engineering, Sogang University, Cardiac Sonographer at the Department of Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Choongboem Seo
- Department of Radiology, Seoul National University Bundang Hospital, The Seoul National University of Korea, South Korea
| | - Sunwoo Yang
- Department of Radiological Technology, Shingu University, South Korea
| | - Kenneth J. Lim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sharon M. Moe
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Stuart J. Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Rachel K. Surowiec
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
2
|
Jodeh W, Katz AJ, Hart M, Warden SJ, Niziolek P, Alam I, Ing S, Polgreen LE, Imel EA, Econs MJ. Autosomal Dominant Osteopetrosis (ADO) Caused by a Missense Variant in the TCIRG1 Gene. J Clin Endocrinol Metab 2024; 109:1726-1732. [PMID: 38261998 PMCID: PMC11180502 DOI: 10.1210/clinem/dgae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
CONTEXT Autosomal dominant osteopetrosis (ADO) is a rare genetic disorder resulting from impaired osteoclastic bone resorption. Clinical manifestations frequently include fractures, osteonecrosis (particularly of the jaw or maxilla), osteomyelitis, blindness, and/or bone marrow failure. ADO usually results from heterozygous missense variants in the Chloride Channel 7 gene (CLCN7) that cause disease by a dominant negative mechanism. Variants in the T-cell immune regulator 1 gene (TCIRG1) are commonly identified in autosomal recessive osteopetrosis but have only been reported in 1 patient with ADO. CASE DESCRIPTION Here, we report 3 family members with a single heterozygous missense variant (p.Gly579Arg) in TCIRG1 who have a phenotype consistent with ADO. Three of 5 protein prediction programs suggest this variant likely inhibits the function of TCIRG1. CONCLUSION This is the first description of adult presentation of ADO caused by a TCIRG1 variant. Similar to families with ADO from CLCN7 mutations, this variant in TCIRG1 results in marked phenotype variability, with 2 subjects having severe disease and the third having very mild disease. This family report implicates TCIRG1 missense mutations as a cause of ADO and demonstrates that the marked phenotypic variability in ADO may extend to disease caused by TCIRG1 missense mutations.
Collapse
Affiliation(s)
- Wade Jodeh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amy J Katz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marian Hart
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stuart J Warden
- Department of Physical Therapy, Indiana University School of Health & Human Sciences, Indianapolis, IN 46202, USA
| | - Paul Niziolek
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Imranul Alam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven Ing
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lynda E Polgreen
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Bevers MSAM, Harsevoort AGJ, Gooijer K, Wyers CE, Feenstra J, van Rietbergen B, Boomsma MF, van den Bergh JP, Janus GJM. Bone microarchitecture and strength assessment in adults with osteogenesis imperfecta using HR-pQCT: normative comparison and challenges. J Bone Miner Res 2024; 39:271-286. [PMID: 38477754 DOI: 10.1093/jbmr/zjae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Data on bone microarchitecture in osteogenesis imperfecta (OI) are scarce. The aim of this cross-sectional study was to assess bone microarchitecture and strength in a large cohort of adults with OI using high-resolution peripheral quantitative computed tomography (HR-pQCT) and to evaluate challenges of using HR-pQCT in this cohort. Second-generation HR-pQCT scans were obtained at the distal radius and tibia in 118 men and women with Sillence OI type I, III, or IV using an extremity-length-dependent scan protocol. In total, 102 radius and 105 tibia scans of sufficient quality could be obtained, of which 11 radius scans (11%) and 14 tibia scans (13%) had a deviated axial scan angle as compared with axial angle data of 13 young women. In the scans without a deviated axial angle and compared with normative HR-pQCT data, Z-scores at the radius for trabecular bone mineral density (BMD), number, and separation were -1.6 ± 1.3, -2.5 ± 1.4, and -2.7 (IQR: 2.7), respectively. They were -1.4 ± 1.5 and -1.1 ± 1.2 for stiffness and failure load and between ±1 for trabecular thickness and cortical bone parameters. Z-scores were significantly lower for total and trabecular BMD, stiffness, failure load, and cortical area and thickness at the tibia. Additionally, local microarchitectural inhomogeneities were observed, most pronounced being trabecular void volumes. In the scans with a deviated axial angle, the proportion of Z-scores <-4 or >4 was significantly higher for trabecular BMD and separation (radius) or most total and trabecular bone parameters (tibia). To conclude, especially trabecular bone microarchitecture and bone strength were impaired in adults with OI. HR-pQCT may be used without challenges in most adults with OI, but approximately 12% of the scans may have a deviated axial angle in OI due to bone deformities or scan positioning limitations. Furthermore, standard HR-pQCT parameters may not always be reliable due to microarchitectural inhomogeneities nor fully reflect all inhomogeneities.
Collapse
Affiliation(s)
- M S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - A G J Harsevoort
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - K Gooijer
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - C E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - J Feenstra
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - B van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
- Department of Orthopedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - M F Boomsma
- Department of Radiology, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - G J M Janus
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| |
Collapse
|
4
|
Jacobson AM, Zhao X, Sommer S, Sadik F, Warden SJ, Newman C, Siegmund T, Allen MR, Surowiec RK. A comprehensive set of ultrashort echo time magnetic resonance imaging biomarkers to assess cortical bone health: A feasibility study at clinical field strength. Bone 2024; 181:117031. [PMID: 38311304 PMCID: PMC10923147 DOI: 10.1016/j.bone.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Conventional bone imaging methods primarily use X-ray techniques to assess bone mineral density (BMD), focusing exclusively on the mineral phase. This approach lacks information about the organic phase and bone water content, resulting in an incomplete evaluation of bone health. Recent research highlights the potential of ultrashort echo time magnetic resonance imaging (UTE MRI) to measure cortical porosity and estimate BMD based on signal intensity. UTE MRI also provides insights into bone water distribution and matrix organization, enabling a comprehensive bone assessment with a single imaging technique. Our study aimed to establish quantifiable UTE MRI-based biomarkers at clinical field strength to estimate BMD and microarchitecture while quantifying bound water content and matrix organization. METHODS Femoral bones from 11 cadaveric specimens (n = 4 males 67-92 yrs of age, n = 7 females 70-95 yrs of age) underwent dual-echo UTE MRI (3.0 T, 0.45 mm resolution) with different echo times and high resolution peripheral quantitative computed tomography (HR-pQCT) imaging (60.7 μm voxel size). Following registration, a 4.5 mm HR-pQCT region of interest was divided into four quadrants and used across the multi-modal images. Statistical analysis involved Pearson correlation between UTE MRI porosity index and a signal-intensity technique used to estimate BMD with corresponding HR-pQCT measures. UTE MRI was used to calculate T1 relaxation time and a novel bound water index (BWI), compared across subregions using repeated measures ANOVA. RESULTS The UTE MRI-derived porosity index and signal-intensity-based estimated BMD correlated with the HR-pQCT variables (porosity: r = 0.73, p = 0.006; BMD: r = 0.79, p = 0.002). However, these correlations varied in strength when we examined each of the four quadrants (subregions, r = 0.11-0.71). T1 relaxometry and the BWI exhibited variations across the four subregions, though these differences were not statistically significant. Notably, we observed a strong negative correlation between T1 relaxation time and the BWI (r = -0.87, p = 0.0006). CONCLUSION UTE MRI shows promise for being an innocuous method for estimating cortical porosity and BMD parameters while also giving insight into bone hydration and matrix organization. This method offers the potential to equip clinicians with a more comprehensive array of imaging biomarkers to assess bone health without the need for invasive or ionizing procedures.
Collapse
Affiliation(s)
- Andrea M Jacobson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Xuandong Zhao
- Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Stefan Sommer
- Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland; Advanced Clinical Imaging Technology (ACIT), Siemens Healthineers International AG, Zurich, Switzerland.
| | - Farhan Sadik
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, USA.
| | - Christopher Newman
- Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Thomas Siegmund
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Matthew R Allen
- Dept. of Anatomy, Physiology, and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Warden SJ, Fuchs RK, Liu Z, Toloday KR, Surowiec R, Moe SM. Am I big boned? Bone length scaled reference data for HRpQCT measures of the radial and tibial diaphysis in White adults. Bone Rep 2024; 20:101735. [PMID: 38292934 PMCID: PMC10824696 DOI: 10.1016/j.bonr.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Cross-sectional size of a long bone shaft influences its mechanical properties. We recently used high-resolution peripheral quantitative computed tomography (HRpQCT) to create reference data for size measures of the radial and tibial diaphyses. However, data did not take into account the impact of bone length. Human bone exhibits relatively isometric allometry whereby cross-sectional area increases proportionally with bone length. The consequence is that taller than average individuals will generally have larger z-scores for bone size outcomes when length is not considered. The goal of the current work was to develop a means of determining whether an individual's cross-sectional bone size is suitable for their bone length. HRpQCT scans performed at 30 % of bone length proximal from the distal end of the radius and tibia were acquired from 1034 White females (age = 18.0 to 85.3 y) and 392 White males (age = 18.4 to 83.6 y). Positive relationships were confirmed between bone length and cross-sectional areas and estimated mechanical properties. Scaling factors were calculated and used to scale HRpQCT outcomes to bone length. Centile curves were generated for both raw and bone length scaled HRpQCT data using the LMS approach. Excel-based calculators are provided to facilitate calculation of z-scores for both raw and bone length scaled HRpQCT outcomes. The raw z-scores indicate the magnitude that an individual's HRpQCT outcomes differ relative to expected sex- and age-specific values, with the scaled z-scores also considering bone length. The latter enables it to be determined whether an individual or population of interest has normal sized bones for their length, which may have implications for injury risk. In addition to providing a means of expressing HRpQCT bone size outcomes relative to bone length, the current study also provides centile curves for outcomes previously without reference data, including tissue mineral density and moments of inertia.
Collapse
Affiliation(s)
- Stuart J. Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, United States of America
- Indiana Center for Musculoskeletal Health, Indiana University, IN, United States of America
| | - Robyn K. Fuchs
- Indiana Center for Musculoskeletal Health, Indiana University, IN, United States of America
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States of America
| | - Ziyue Liu
- Indiana Center for Musculoskeletal Health, Indiana University, IN, United States of America
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Katelynn R. Toloday
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, United States of America
| | - Rachel Surowiec
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN, United States of America
| | - Sharon M. Moe
- Indiana Center for Musculoskeletal Health, Indiana University, IN, United States of America
- Division of Nephrology and Hypertension, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States of America
| |
Collapse
|
6
|
He CY, Lee DJ, Foster KL, Gordon CM. Impact of ovarian insufficiency on bone health in childhood cancer survivors: Two cases. Bone 2024; 178:116930. [PMID: 37844715 DOI: 10.1016/j.bone.2023.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE To investigate the skeletal phenotype of adolescent girls with premature ovarian insufficiency (POI). METHODS Data are presented from two adolescent girls who participated in a clinical research protocol to evaluate axial bone mineral density (BMD) (via dual-energy x-ray absorptiometry, DXA) and appendicular bone density, microarchitecture, and strength (via high-resolution peripheral quantitative computed tomography, HRpQCT). Anthropometric data were also obtained, and pubertal staging was performed by a clinician. RESULTS Both cases presented with an undetectable estradiol concentration and an elevated follicle stimulating hormone (FSH), meeting the criteria for POI. Each also received alkylating agents as part of their chemotherapy and radiotherapy, but in different locations as one presented with stage IV neuroblastoma and the other, metastatic medulloblastoma. Both had a low BMD of the axial and appendicular skeleton, as well as microarchitectural changes of the latter. The low BMD Z-score (<-2.0) seen when interpreting their DXA measurements for chronological age improved when adjusted for short stature, but it was not normalized. Lastly, most variables obtained by HRpQCT were abnormal for each participant, indicating that appendicular bone structure and strength were compromised. CONCLUSIONS Chemotherapy and radiation affect growth, puberty, and bone accrual deleteriously. However, as these cases show, POI in an adolescent is not always classic primary ovarian insufficiency. Adolescents with brain cancer can present with signs of estrogen deficiency but may not be able to secrete FSH to the extent of elevation typically seen in long-term cancer survivors. Estrogen deficiency is almost universally present in either clinical setting and prompt recognition facilitates early provision of hormone replacement therapy that may then allow for a resumption of bone accrual as an adolescent approaches her peak bone mass.
Collapse
Affiliation(s)
- Cara Y He
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Danielle J Lee
- USDA/ARS Children's Nutrition Research Center, 1100 Bates Avenue, Houston, TX 77030, United States of America.
| | - Kayla L Foster
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Section of Hematology/Oncology, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, United States of America.
| | - Catherine M Gordon
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; USDA/ARS Children's Nutrition Research Center, 1100 Bates Avenue, Houston, TX 77030, United States of America.
| |
Collapse
|
7
|
Kemp TD, Besler BA, Gabel L, Boyd SK. Predicting Bone Adaptation in Astronauts during and after Spaceflight. Life (Basel) 2023; 13:2183. [PMID: 38004323 PMCID: PMC10672697 DOI: 10.3390/life13112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A method was previously developed to identify participant-specific parameters in a model of trabecular bone adaptation from longitudinal computed tomography (CT) imaging. In this study, we use these numerical methods to estimate changes in astronaut bone health during the distinct phases of spaceflight and recovery on Earth. Astronauts (N = 16) received high-resolution peripheral quantitative CT (HR-pQCT) scans of their distal tibia prior to launch (L), upon their return from an approximately six-month stay on the international space station (R+0), and after six (R+6) and 12 (R+12) months of recovery. To model trabecular bone adaptation, we determined participant-specific parameters at each time interval and estimated their bone structure at R+0, R+6, and R+12. To assess the fit of our model to this population, we compared static and dynamic bone morphometry as well as the Dice coefficient and symmetric distance at each measurement. In general, modeled and observed static morphometry were highly correlated (R2> 0.94) and statistically different (p < 0.0001) but with errors close to HR-pQCT precision limits. Dynamic morphometry, which captures rates of bone adaptation, was poorly estimated by our model (p < 0.0001). The Dice coefficient and symmetric distance indicated a reasonable local fit between observed and predicted bone volumes. This work applies a general and versatile computational framework to test bone adaptation models. Future work can explore and test increasingly sophisticated models (e.g., those including load or physiological factors) on a participant-specific basis.
Collapse
Affiliation(s)
- Tannis D. Kemp
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Bryce A. Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Leigh Gabel
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Steven K. Boyd
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
8
|
Gabel L, Kent K, Hosseinitabatabaei S, Burghardt AJ, Leonard MB, Rauch F, Willie BM. Recommendations for High-resolution Peripheral Quantitative Computed Tomography Assessment of Bone Density, Microarchitecture, and Strength in Pediatric Populations. Curr Osteoporos Rep 2023; 21:609-623. [PMID: 37428435 PMCID: PMC10543577 DOI: 10.1007/s11914-023-00811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize current approaches and provide recommendations for imaging bone in pediatric populations using high-resolution peripheral quantitative computed tomography (HR-pQCT). RECENT FINDINGS Imaging the growing skeleton is challenging and HR-pQCT protocols are not standardized across centers. Adopting a single-imaging protocol for all studies is unrealistic; thus, we present three established protocols for HR-pQCT imaging in children and adolescents and share advantages and disadvantages of each. Limiting protocol variation will enhance the uniformity of results and increase our ability to compare study results between different research groups. We outline special cases along with tips and tricks for acquiring and processing scans to minimize motion artifacts and account for growing bone. The recommendations in this review are intended to help researchers perform HR-pQCT imaging in pediatric populations and extend our collective knowledge of bone structure, architecture, and strength during the growing years.
Collapse
Affiliation(s)
- L Gabel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - K Kent
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - S Hosseinitabatabaei
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - A J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - M B Leonard
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - F Rauch
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Pediatrics, McGill University, Montreal, Canada
| | - B M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Gazzotti S, Aparisi Gómez MP, Schileo E, Taddei F, Sangiorgi L, Fusaro M, Miceli M, Guglielmi G, Bazzocchi A. High-resolution peripheral quantitative computed tomography: research or clinical practice? Br J Radiol 2023; 96:20221016. [PMID: 37195008 PMCID: PMC10546468 DOI: 10.1259/bjr.20221016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023] Open
Abstract
High-resolution peripheral quantitative CT (HR-pQCT) is a low-dose three-dimensional imaging technique, originally developed for in vivo assessment of bone microarchitecture at the distal radius and tibia in osteoporosis. HR-pQCT has the ability to discriminate trabecular and cortical bone compartments, providing densitometric and structural parameters. At present, HR-pQCT is mostly used in research settings, despite evidence showing that it may be a valuable tool in osteoporosis and other diseases. This review summarizes the main applications of HR-pQCT and addresses the limitations that currently prevent its integration into routine clinical practice. In particular, the focus is on the use of HR-pQCT in primary and secondary osteoporosis, chronic kidney disease (CKD), endocrine disorders affecting bone, and rare diseases. A section on novel potential applications of HR-pQCT is also present, including assessment of rheumatic diseases, knee osteoarthritis, distal radius/scaphoid fractures, vascular calcifications, effect of medications, and skeletal muscle. The reviewed literature seems to suggest that a more widespread implementation of HR-pQCT in clinical practice would offer notable opportunities. For instance, HR-pQCT can improve the prediction of incident fractures beyond areal bone mineral density provided by dual-energy X-ray absorptiometry. In addition, HR-pQCT may be used for the monitoring of anti-osteoporotic therapy or for the assessment of mineral and bone disorder associated with CKD. Nevertheless, several obstacles currently prevent a broader use of HR-pQCT and would need to be targeted, such as the small number of installed machines worldwide, the uncertain cost-effectiveness, the need for improved reproducibility, and the limited availability of reference normative data sets.
Collapse
Affiliation(s)
- Silvia Gazzotti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Sangiorgi
- Department of Medical Genetics and Rare Orthopaedic Diseases, and CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
10
|
Schlacht TZ, Haque I, Skelton DA. What are the Effects of Exercise on Trabecular Microarchitecture in Older Adults? A Systematic Review and Meta-analysis of HR-pQCT Studies. Calcif Tissue Int 2023; 113:359-382. [PMID: 37725127 PMCID: PMC10516781 DOI: 10.1007/s00223-023-01127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
The objective of this review was to determine the effects of exercise on high-resolution peripheral quantitative computed tomography (HR-pQCT) derived trabecular microarchitecture parameters in older adults. Five electronic databases were systematically searched by two independent reviewers. Inclusion criteria were adults age ≥ 50, any type of exercise as part of the intervention, and trabecular microarchitecture assessed via HR-pQCT. Data was extracted from included studies, and where suitable, included in a meta-analysis. Quality of included studies was appraised. Seven studies (397 participants) were included. All participants were postmenopausal women. Interventions included jumping, whole-body vibration, and power/plyometric training. All studies were rated as either weak or moderate quality. Meta-analysis (5 studies) showed no significant changes in any parameters when considering all exercise or sub-analysing based on type. Exercise was not found to have significant effects on trabecular microarchitecture in postmenopausal women over the age of 50. These findings should be interpreted with caution due to the small number of studies investigating few modes of exercise, their weak to moderate quality, and risk of bias. High-quality studies are needed to determine the effects of additional types of exercise in a more diverse population of older adults, including men.
Collapse
Affiliation(s)
- Thomas Z Schlacht
- Research Centre for Health (ReaCH), Physiotherapy and Paramedicine, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Inaya Haque
- Research Centre for Health (ReaCH), Physiotherapy and Paramedicine, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Dawn A Skelton
- Research Centre for Health (ReaCH), Physiotherapy and Paramedicine, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK.
| |
Collapse
|
11
|
Heilbronner AK, Koff MF, Breighner R, Kim HJ, Cunningham M, Lebl DR, Dash A, Clare S, Blumberg O, Zaworski C, McMahon DJ, Nieves JW, Stein EM. Opportunistic Evaluation of Trabecular Bone Texture by MRI Reflects Bone Mineral Density and Microarchitecture. J Clin Endocrinol Metab 2023; 108:e557-e566. [PMID: 36800234 PMCID: PMC10516518 DOI: 10.1210/clinem/dgad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
CONTEXT Many individuals at high risk for fracture are never evaluated for osteoporosis and subsequently do not receive necessary treatment. Utilization of magnetic resonance imaging (MRI) is burgeoning, providing an ideal opportunity to use MRI to identify individuals with skeletal deficits. We previously reported that MRI-based bone texture was more heterogeneous in postmenopausal women with a history of fracture compared to controls. OBJECTIVE The present study aimed to identify the microstructural characteristics that underlie trabecular texture features. METHODS In a prospective cohort, we measured spine volumetric bone mineral density (vBMD) by quantitative computed tomography (QCT), peripheral vBMD and microarchitecture by high-resolution peripheral QCT (HRpQCT), and areal BMD (aBMD) by dual-energy x-ray absorptiometry. Vertebral trabecular bone texture was analyzed using T1-weighted MRIs. A gray level co-occurrence matrix was used to characterize the distribution and spatial organization of voxelar intensities and derive the following texture features: contrast (variability), entropy (disorder), angular second moment (ASM; uniformity), and inverse difference moment (IDM; local homogeneity). RESULTS Among 46 patients (mean age 64, 54% women), lower peripheral vBMD and worse trabecular microarchitecture by HRpQCT were associated with greater texture heterogeneity by MRI-higher contrast and entropy (r ∼ -0.3 to 0.4, P < .05), lower ASM and IDM (r ∼ +0.3 to 0.4, P < .05). Lower spine vBMD by QCT was associated with higher contrast and entropy (r ∼ -0.5, P < .001), lower ASM and IDM (r ∼ +0.5, P < .001). Relationships with aBMD were less pronounced. CONCLUSION MRI-based measurements of trabecular bone texture relate to vBMD and microarchitecture, suggesting that this method reflects underlying microstructural properties of trabecular bone. Further investigation is required to validate this methodology, which could greatly improve identification of patients with skeletal fragility.
Collapse
Affiliation(s)
- Alison K Heilbronner
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Matthew F Koff
- Department of Radiology and Imaging—MRI, Hospital for Special Surgery, New York, NY 10021, USA
| | - Ryan Breighner
- Department of Radiology and Imaging—MRI, Hospital for Special Surgery, New York, NY 10021, USA
| | - Han Jo Kim
- Spine Service, Hospital for Special Surgery, New York, NY 10021, USA
| | | | - Darren R Lebl
- Spine Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Alexander Dash
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Shannon Clare
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Olivia Blumberg
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Caroline Zaworski
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Donald J McMahon
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Jeri W Nieves
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Emily M Stein
- Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
12
|
Heilbronner AK, Dash A, Straight BE, Snyder LJ, Ganesan S, Adu KB, Jae A, Clare S, Billings E, Kim HJ, Cunningham M, Lebl DR, Donnelly E, Stein EM. Peripheral cortical bone density predicts vertebral bone mineral properties in spine fusion surgery patients. Bone 2023; 169:116678. [PMID: 36646265 PMCID: PMC10081687 DOI: 10.1016/j.bone.2023.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Spine fusion surgery is one of the most common orthopedic procedures, with over 400,000 performed annually to correct deformities and pain. However, complications occur in approximately one third of cases. While many of these complications may be related to poor bone quality, it is difficult to detect bone abnormalities prior to surgery. Areal BMD (aBMD) assessed by DXA may be artifactually high in patients with spine pathology, leading to missed diagnosis of deficits. In this study, we related preoperative imaging characteristics of both central and peripheral sites to direct measurements of bone quality in vertebral biopsies. We hypothesized that pre-operative imaging outcomes would relate to vertebral bone mineralization and collagen properties. Pre-operative assessments included DXA measurements of aBMD of the spine, hip, and forearm, central quantitative computed tomography (QCT) of volumetric BMD (vBMD) at the lumbar spine, and high resolution peripheral quantitative computed tomography (HRpQCT; Xtreme CT2) measurements of vBMD and microarchitecture at the distal radius and tibia. Bone samples were collected intraoperatively from the lumbar vertebrae and analyzed using Fourier-transform Infrared (FTIR) spectroscopy. Bone samples were obtained from 23 postmenopausal women (mean age 67 ± 7 years, BMI 28 ± 8 kg/m2). We found that patients with more mature bone by FTIR, measured as lower acid phosphate content and carbonate to phosphate ratio, and greater collagen maturity and mineral maturity/crystallinity (MMC), had greater cortical vBMD at the tibia and greater aBMD at the lumbar spine and one-third radius. Our data suggests that bone quality at peripheral sites may predict bone quality at the spine. As bone quality at the spine is challenging to assess prior to surgery, there is a great need for additional screening tools. Pre-operative peripheral bone imaging may provide important insight into vertebral bone quality and may foster identification of patients with bone quality deficits.
Collapse
Affiliation(s)
- Alison K Heilbronner
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Alexander Dash
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Beth E Straight
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Leah J Snyder
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Sandhya Ganesan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Kobby B Adu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Andy Jae
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Shannon Clare
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Emma Billings
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Han Jo Kim
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Matthew Cunningham
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Darren R Lebl
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research Institute, Hospital for Special Surgery, New York, NY, United States of America
| | - Emily M Stein
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
13
|
Warden SJ, Sventeckis AM, Surowiec RK, Fuchs RK. Enhanced Bone Size, Microarchitecture, and Strength in Female Runners with a History of Playing Multidirectional Sports. Med Sci Sports Exerc 2022; 54:2020-2030. [PMID: 35941520 PMCID: PMC9669197 DOI: 10.1249/mss.0000000000003016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Female runners have high rates of bone stress injuries (BSIs), including stress reactions and fractures. The current study explored multidirectional sports (MDS) played when younger as a potential means of building stronger bones to reduce BSI risk in these athletes. METHODS Female collegiate-level cross-country runners were recruited into groups: 1) RUN, history of training and/or competing in cross-country, recreational running/jogging, swimming, and/or cycling only, and 2) RUN + MDS, additional history of training and/or competing in soccer or basketball. High-resolution peripheral quantitative computed tomography was used to assess the distal tibia, common BSI sites (diaphysis of the tibia, fibula, and second metatarsal), and high-risk BSI sites (base of the second metatarsal, navicular, and proximal diaphysis of the fifth metatarsal). Scans of the radius were used as control sites. RESULTS At the distal tibia, RUN + MDS ( n = 18) had enhanced cortical area (+17.1%) and thickness (+15.8%), and greater trabecular bone volume fraction (+14.6%) and thickness (+8.3%) compared with RUN ( n = 14; all P < 0.005). Failure load was 19.5% higher in RUN + MDS ( P < 0.001). The fibula diaphysis in RUN + MDS had an 11.6% greater total area and a 11.1% greater failure load (all P ≤ 0.03). At the second metatarsal diaphysis, total area in RUN + MDS was 10.4% larger with greater cortical area and thickness and 18.6% greater failure load (all P < 0.05). RUN + MDS had greater trabecular thickness at the base of the second metatarsal and navicular and greater cortical area and thickness at the proximal diaphysis of the fifth metatarsal (all P ≤ 0.02). No differences were observed at the tibial diaphysis or radius. CONCLUSIONS These findings support recommendations that athletes delay specialization in running and play MDS when younger to build a more robust skeleton and potentially prevent BSIs.
Collapse
Affiliation(s)
- Stuart J. Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, AUSTRALIA
| | - Austin M. Sventeckis
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis
| | - Rachel K. Surowiec
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis
- Department of Biomedical Engineering¸ Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis
| | - Robyn K. Fuchs
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis
| |
Collapse
|
14
|
Collins CJ, Atkins PR, Ohs N, Blauth M, Lippuner K, Müller R. Clinical observation of diminished bone quality and quantity through longitudinal HR-pQCT-derived remodeling and mechanoregulation. Sci Rep 2022; 12:17960. [PMID: 36289391 PMCID: PMC9606273 DOI: 10.1038/s41598-022-22678-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
High resolution peripheral quantitative computed tomography (HR-pQCT) provides methods for quantifying volumetric bone mineral density and microarchitecture necessary for early diagnosis of bone disease. When combined with a longitudinal imaging protocol and finite element analysis, HR-pQCT can be used to assess bone formation and resorption (i.e., remodeling) and the relationship between this remodeling and mechanical loading (i.e., mechanoregulation) at the tissue level. Herein, 25 patients with a contralateral distal radius fracture were imaged with HR-pQCT at baseline and 9-12 months follow-up: 16 patients were prescribed vitamin D3 with/without calcium supplement based on a blood biomarker measures of bone metabolism and dual-energy X-ray absorptiometry image-based measures of normative bone quantity which indicated diminishing (n = 9) or poor (n = 7) bone quantity and 9 were not. To evaluate the sensitivity of this imaging protocol to microstructural changes, HR-pQCT images were registered for quantification of bone remodeling and image-based micro-finite element analysis was then used to predict local bone strains and derive rules for mechanoregulation. Remodeling volume fractions were predicted by both average values of trabecular and cortical thickness and bone mineral density (R2 > 0.8), whereas mechanoregulation was affected by dominance of the arm and group classification (p < 0.05). Overall, longitudinal, extended HR-pQCT analysis enabled the identification of changes in bone quantity and quality too subtle for traditional measures.
Collapse
Affiliation(s)
- Caitlyn J. Collins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.438526.e0000 0001 0694 4940Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA USA
| | - Penny R. Atkins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland ,grid.223827.e0000 0001 2193 0096Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT USA
| | - Nicholas Ohs
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Michael Blauth
- grid.5361.10000 0000 8853 2677Department of Orthopedics and Trauma Surgery, Medical University of Innsbruck, Innsbruck, Austria ,Clinical Medical Department DePuy Synthes, Zuchwil, Switzerland
| | - Kurt Lippuner
- grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph Müller
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Stürznickel J, Schmidt FN, Schweizer C, Mushumba H, Krause M, Püschel K, Rolvien T. Superior Bone Microarchitecture in Anatomic Versus Nonanatomic Fibular Drill Tunnels for Reconstruction of the Posterolateral Corner of the Knee. Orthop J Sports Med 2022; 10:23259671221126475. [PMID: 36186711 PMCID: PMC9523853 DOI: 10.1177/23259671221126475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Several fibula-based reconstruction techniques have been introduced to address ligamentous injuries of the posterolateral corner of the knee. These techniques involve a drill tunnel with auto- or allograft placement through the proximal fibula. Purpose: To determine the skeletal microarchitecture of the proximal fibula and its association with age and to compare the microarchitecture within the regions of different drill tunnel techniques for reconstruction of the posterolateral corner. Study Design: Descriptive laboratory study. Methods: A total of 30 human fibulae were analyzed in this cadaveric imaging study. High-resolution peripheral quantitative computed tomography measurements were performed in a 4.5 cm–long volume of interest at the proximal fibula. Three-dimensional microarchitectural data sets of cortical and trabecular compartments were evaluated using customized scripts. The quadrants representing the entry and exit drill tunnel positions corresponding to anatomic techniques (LaPrade/Arciero) and the Larson technique were analyzed. Linear regression models and group comparisons were applied. Results: Trabecular microarchitecture parameters declined significantly with age in women but not men. Analysis of subregions with respect to height revealed stable cortical and decreasing trabecular values from proximal to distal in both sexes. Along with a structural variability in axial slices, superior values were found for the densitometric and microarchitectural parameters corresponding to the fibular drill tunnels in the anatomic versus Larson technique (mean ± SD; bone volume to tissue volume at the entry position, 0.273 ± 0.079 vs 0.175 ± 0.063; P < .0001; cortical thickness at the entry position, 0.501 ± 0.138 vs 0.353 ± 0.081 mm; P < .0001). Conclusion: Age represented a relevant risk factor for impaired skeletal microarchitecture in the proximal fibula in women but not men. The region of drill tunnels according to anatomic techniques showed superior bone microarchitecture versus that according to the Larson technique.
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Conradin Schweizer
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Krause
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Hoenig T, Ackerman KE, Beck BR, Bouxsein ML, Burr DB, Hollander K, Popp KL, Rolvien T, Tenforde AS, Warden SJ. Bone stress injuries. Nat Rev Dis Primers 2022; 8:26. [PMID: 35484131 DOI: 10.1038/s41572-022-00352-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 01/11/2023]
Abstract
Bone stress injuries, including stress fractures, are overuse injuries that lead to substantial morbidity in active individuals. These injuries occur when excessive repetitive loads are introduced to a generally normal skeleton. Although the precise mechanisms for bone stress injuries are not completely understood, the prevailing theory is that an imbalance in bone metabolism favours microdamage accumulation over its removal and replacement with new bone via targeted remodelling. Diagnosis is achieved by a combination of patient history and physical examination, with imaging used for confirmation. Management of bone stress injuries is guided by their location and consequent risk of healing complications. Bone stress injuries at low-risk sites typically heal with activity modification followed by progressive loading and return to activity. Additional treatment approaches include non-weight-bearing immobilization, medications or surgery, but these approaches are usually limited to managing bone stress injuries that occur at high-risk sites. A comprehensive strategy that integrates anatomical, biomechanical and biological risk factors has the potential to improve the understanding of these injuries and aid in their prevention and management.
Collapse
Affiliation(s)
- Tim Hoenig
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Boston Children's Hospital, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Belinda R Beck
- School of Health Sciences & Social Work, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,The Bone Clinic, Brisbane, Queensland, Australia
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David B Burr
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam S Tenforde
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.
| | - Stuart J Warden
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA. .,Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN, USA. .,La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|