1
|
Wu S, Zhang YF, Gui Y, Jiang T, Zhou CM, Li JY, Suo JL, Li YN, Jin RL, Li SL, Cui JY, Tan BH, Li YC. A detection method for neuronal death indicates abnormalities in intracellular membranous components in neuronal cells that underwent delayed death. Prog Neurobiol 2023; 226:102461. [PMID: 37179048 DOI: 10.1016/j.pneurobio.2023.102461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Acute neuronal degeneration is always preceded under the light and electron microscopes by a stage called microvacuolation, which is characterized by a finely vacuolar alteration in the cytoplasm of the neurons destined to death. In this study, we reported a method for detecting neuronal death using two membrane-bound dyes, rhodamine R6 and DiOC6(3), which may be associated with the so-called microvacuolation. This new method produced a spatiotemporally similar staining pattern to Fluoro-Jade B in kainic acid-damaged brains in mice. Further experiments showed that increased staining of rhodamine R6 and DiOC6(3) was observed only in degenerated neurons, but not in glia, erythrocytes, or meninges. Different from Fluoro-Jade-related dyes, rhodamine R6 and DiOC6(3) staining is highly sensitive to solvent extraction and detergent exposure. Staining with Nile red for phospholipids and filipin III for non-esterified cholesterol supports that the increased staining of rhodamine R6 and DiOC6(3) might be associated with increased levels of phospholipids and free cholesterol in the perinuclear cytoplasm of damaged neurons. In addition to kainic acid-injected neuronal death, rhodamine R6 and DiOC6(3) were similarly useful for detecting neuronal death in ischemic models either in vivo or in vitro. As far as we know, the staining with rhodamine R6 or DiOC6(3) is one of a few histochemical methods for detecting neuronal death whose target molecules have been well defined and therefore may be useful for explaining experimental results as well as exploring the mechanisms of neuronal death. (250 words).
Collapse
Affiliation(s)
- Shuang Wu
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Feng Zhang
- Department of Pediatric Neurology, First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Yue Gui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Tian Jiang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Jilin Province 130041, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jia-Le Suo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yong-Nan Li
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jia-Yue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China.
| |
Collapse
|
2
|
Lebeuf M, Turgeon N, Faubert C, Robillard J, Paradis É, Duchaine C. Managing the bacterial contamination risk in an axenic mice animal facility. Can J Microbiol 2021; 67:657-666. [PMID: 33844954 DOI: 10.1139/cjm-2020-0519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A gap exists between good laboratory practices with axenic animals and the procedures applied. This work examined the efficacy of sodium dichloroisocyanurate (MB-10) and potassium peroxymonosulfate (Virkon™) disinfectants, as well as the appropriate soaking time for materials used with the ISOcage Biosafety Station™. We also compared the microbial load in cage systems hosting mice over 2 weeks in axenic rooms (ARs) and in typical specific-pathogen-free (SPF) non-axenic rooms (NARs) to identify resistant microorganisms, targeted for longer soaking disinfection, and evaluated the necessary procedures for reducing the microbial load in AR. Staphylococcus was the most frequently isolated genus (in both ARs and NARs). An average of three spore-forming microorganisms per cage were counted from AR. The disinfection time to reach 1 log reduction for Bacillus atrophaeus spores varied from 138 s (100 ppm MB-10) to 290 (Virkon™) to <20 s for S. epidermidis (100 ppm MB-10). AR management protocols lead to a microbial load that is 1000 times lower than that found in NARs. Data comparing the microbial load in SPF and axenic facilities can be used to improve the effectiveness of their microbial control procedures.
Collapse
Affiliation(s)
- Maria Lebeuf
- Département de biochimie, microbiologie et bioinformatique, Université Laval, Quebec city, Quebec, Canada
| | - Nathalie Turgeon
- Research center, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Cynthia Faubert
- Research animal facility, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Justin Robillard
- Research animal facility, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Éric Paradis
- Research center, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Caroline Duchaine
- Département de biochimie, microbiologie et bioinformatique, Université Laval, Quebec city, Quebec, Canada; Tier-1, Canada Research Chair on Bioaerosols, Institutuniversitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
McEvoy B, Lynch M, Rowan NJ. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology. J Appl Microbiol 2020; 130:1794-1812. [PMID: 33155740 DOI: 10.1111/jam.14876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Medical devices provide critical care and diagnostic applications through patient contact. Sterility assurance level (SAL) may be defined as the probability of a single viable micro-organism occurring on an item after a sterilization process. Sterilization microbiology often relies upon using an overkill validation method where a 12-log reduction in recalcitrant bacterial endospore population occurs during the process that exploits conventional laboratory-based culture media for enumeration. This timely review explores key assumptions underpinning use of conventional culture-based methods in sterilization microbiology. Consideration is given to how such methods may limit the ability to fully appreciate the inactivation kinetics of a sterilization process such as vaporized hydrogen peroxide (VH2O2) sterilization, and consequently design efficient sterilization processes. Specific use of the real-time flow cytometry (FCM) is described by way of elucidating the practical relevance of these limitation factors with implications and opportunities for the sterilization industry discussed. Application of FCM to address these culture-based limitation factors will inform real-time kinetic inactivation modelling and unlock potential to embrace emerging opportunities for pharma, medical device and sterilization industries including potentially disruptive applications that may involve reduced usage of sterilant.
Collapse
Affiliation(s)
- B McEvoy
- STERIS Applied Sterilization Technologies, IDA Business and Technology Park, Tullamore, Ireland
| | - M Lynch
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| | - N J Rowan
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
4
|
Ganguly J, Tempelaars M, Abee T, van Kranenburg R. Characterization of sporulation dynamics of Pseudoclostridium thermosuccinogenes using flow cytometry. Anaerobe 2020; 63:102208. [PMID: 32387172 DOI: 10.1016/j.anaerobe.2020.102208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/30/2022]
Abstract
Single-cell analysis of microbial population heterogeneity is a fast growing research area in microbiology due to its potential to identify and quantify the impact of subpopulations on microbial performance in, for example, industrial biotechnology, environmental biology, and pathogenesis. Although several tools have been developed, determination of population heterogenity in anaerobic bacteria, especially spore-forming clostridia species has been amply studied. In this study we applied single cell analysis techniques such as flow cytometry (FCM) and fluorescence-assisted cell sorting (FACS) on the spore-forming succinate producer Pseudoclostridium thermosuccinogenes. By combining FCM and FACS with fluorescent staining, we differentiated and enriched all sporulation-related morphologies of P. thermosuccinogenes. To evaluate the presence of metabolically active vegetative cells, a blend of the dyes propidium iodide (PI) and carboxy fluorescein diacetate (cFDA) tested best. Side scatter (SSC-H) in combination with metabolic indicator cFDA dye provided the best separation of sporulation populations. Based on this protocol, we successfully determined culture heterogeneity of P. thermosuccinogenes by discriminating between mature spores, forespores, dark and bright phase endospores, and vegetative cells populations. Henceforth, this methodology can be applied to further study sporulation dynamics and its impact on fermentation performance and product formation by P. thermosuccinogenes.
Collapse
Affiliation(s)
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Richard van Kranenburg
- Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, the Netherlands; Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Lipidomic adaptations of the Metarhizium robertsii strain in response to the presence of butyltin compounds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:316-326. [DOI: 10.1016/j.bbamem.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
|
6
|
Gao Y, Yu HJ, Wen B. The use of fluorescent techniques in combination with flow cytometry for fast counting of Bifidobacterium longum ATCC BAA-2753 in BIFICO capsule. Food Sci Biotechnol 2018; 27:1405-1410. [PMID: 30319850 DOI: 10.1007/s10068-018-0388-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 10/16/2022] Open
Abstract
BIFICO is a main microecological drug that the main ingredient is Bifidobacterium longum ATCC BAA-2753. It's necessary to detect the number of Bifidobacterium longum ATCC BAA-2753 for quality control during the production of BIFICO. Plate count assay (PCA) is the most commonly used method for counting microbial cells. However, not all microorganisms can be counted by PCA. (e.g. uncultured microorganisms under specific growth conditions). In this study, a method of fluorescent techniques in combination with flow cytometry (FCM) was established for the counting of Bifidobacterium longum BAA-2753. Using SYTO9 and PI stain, flow cytometric analysis could easily differentiate live bacteria and dead bacteria. The number of live bacteria determined by FCM was about fourfold higher than that counted by PCA. Therefore, the FCM method could be a practical tool for the quality control of Bifidobacterium longum BAA-2753 in the industrial production of BIFICO.
Collapse
Affiliation(s)
- Yuan Gao
- Pharmaceutical R&D Center of SPH Sine Pharmaceutical Laboratories Co., Ltd., Shanghai Engineering Research Center of Innovative Probiotic Drugs, No. 905 Xinjinqiao Road, Shanghai, 201206 China
| | - Hong-Jing Yu
- Pharmaceutical R&D Center of SPH Sine Pharmaceutical Laboratories Co., Ltd., Shanghai Engineering Research Center of Innovative Probiotic Drugs, No. 905 Xinjinqiao Road, Shanghai, 201206 China
| | - Bin Wen
- Pharmaceutical R&D Center of SPH Sine Pharmaceutical Laboratories Co., Ltd., Shanghai Engineering Research Center of Innovative Probiotic Drugs, No. 905 Xinjinqiao Road, Shanghai, 201206 China
| |
Collapse
|
7
|
The use of a simple flow cytometry method for rapid detection of spores in probiotic Bacillus licheniformis-containing tablets. Food Sci Biotechnol 2017; 26:167-171. [PMID: 30263524 DOI: 10.1007/s10068-017-0022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/25/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022] Open
Abstract
Detection of the number of vegetative cells and endospores is necessary for quality control during the production of orally administered probiotic Bacillus licheniformis-containing tablets (BCT). However, there is no standard method for the rapid detection of vegetative cells and endospores in China. In this study, a simple flow cytometry (FCM) method was used to monitor the population dynamics of BCT. Using a specific fluorescent stain, SYBR green I, flow cytometric analysis could easily differentiate two morphological states of B. licheniformis. Compared with plate count assay (PCA) for determining the number of vegetative cells and endospores, the percentage of endospores determined by FCM was ~10% higher than that by PCA. Advantages of the FCM method over conventional methods include lower labor work, shorter detection time, and higher accuracy. Therefore, this simple FCM method could be a practical tool for monitoring quality control during the production of probiotic BCT.
Collapse
|
8
|
Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol 2015; 91:fiv106. [PMID: 26324854 PMCID: PMC4629873 DOI: 10.1093/femsec/fiv106] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/04/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022] Open
Abstract
The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries and microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via (15)N2 and (13)C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a (13)C-labeled carbon source and deuterium oxide (D2O, a general activity marker). The described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.
Collapse
Affiliation(s)
- Stephanie A Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| | - Florian Strasser
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Arno Schintlmeister
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna 1090 Austria
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna 1090 Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| |
Collapse
|
9
|
Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 2015; 39:688-728. [PMID: 25994609 DOI: 10.1093/femsre/fuv020] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Karyn L Rogers
- Rensselaer Polytechnic Institute, Earth and Environmental Sciences, Jonsson-Rowland Science Center, 1W19, 110 8th Street, Troy, NY 12180, USA
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee at Knoxville, M409 Walters Life Sciences, Knoxville, TN 37996-0845, USA
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, P.O. Box 55 60, D-78457 Konstanz, Germany
| | - Rudolf K Thauer
- Max Planck Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, Germany
| | - Tori M Hoehler
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA 94035-1000, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Abstract
UNLABELLED Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. IMPORTANCE Perturbing bacterial growth by the use of antibiotics targeting replication, transcription, or translation has been a subject of study for many years; however, the consequences of a more dramatic event, in which the entire bacterial chromosome is lost, have not been described. Here, we followed the fate of bacterial cells encountering an abrupt loss of their entire genome. Surprisingly, the cells preserved an intact envelope and functioning macromolecules. Furthermore, cells lacking their genome could still elongate and divide hours after the loss of DNA. Our data suggest that the information stored in the transient reservoir of macromolecules is sufficient to carry out complex and lengthy processes even in the absence of the chromosome. Based on our study, the formation of DNA-less bacteria could serve as a novel vaccination strategy, enabling an efficient induction of the immune system without the risk of bacterial propagation within the host.
Collapse
|
11
|
Zabrocka L, Langer K, Michalski A, Kocik J, Langer JJ. A microfluidic device for real-time monitoring of Bacillus subtilis bacterial spores during germination based on non-specific physicochemical interactions on the nanoscale level. LAB ON A CHIP 2015; 15:274-282. [PMID: 25363735 DOI: 10.1039/c4lc01009d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A microfluidic device for studies on the germination of bacterial spores (e.g. Bacillus subtilis) based on non-specific interactions on the nanoscale is presented. A decrease in the population of spores during germination followed by the appearance of transition forms and an increase in the number of vegetative cells can be registered directly and simultaneously by using the microfluidic device, which is equipped with a conductive polymer layer (polyaniline) in the form of a nano-network. The lab-on-a-chip-type device, operating in a continuous flow regime, allows monitoring of germination of bacterial spores and analysis of the process in detail. The procedure is fast and accurate enough for quantitative real-time monitoring of the main steps of germination, including final transformation of the spores into vegetative cells. All of this is done without the use of biomarkers or any bio-specific materials, such as enzymes, antibodies and aptamers, and is simply based on an analysis of physicochemical interactions on the nanoscale level.
Collapse
Affiliation(s)
- L Zabrocka
- Biological Threats Identification and Countermeasure Centre of Military Institute of Hygiene and Epidemiology, Pulawy, 24100, Poland
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cell size is a key ecological trait of soil microorganisms that determines a wide range of life history attributes, including the efficiency of nutrient acquisition. However, because of the methodological issues associated with determining cell sizes in situ, we have a limited understanding of how cell abundances vary across cell size fractions and whether certain microbial taxa have consistently smaller cells than other taxa. In this study, we extracted cells from three distinct soils and fractionated them into seven size ranges (5 μm to 0.2 μm) by filtration. Cell abundances in each size fraction were determined by direct microscopy, with the taxonomic composition of each size fraction determined by high-throughput sequencing of the 16S rRNA gene. Most of the cells were smaller than cells typically grown in culture, with 59 to 67% of cells <1.2 μm in diameter. Furthermore, each size fraction harbored distinct bacterial and archaeal communities in each of the three soils, and many of the taxa exhibited distinct size distribution patterns, with the smaller size fractions having higher relative abundances of taxa that are rare or poorly characterized (including Acidobacteria, Gemmatimonadetes, Crenarchaeota, Verrucomicrobia, and Elusimicrobia). In general, there was a direct relationship between average cell size and culturability, with those soil taxa that are poorly represented in culture collections tending to be smaller. Size fractionation not only provides important insight into the life history strategies of soil microbial taxa but also is a useful tool to enable more focused investigations into those taxa that remain poorly characterized.
Collapse
|
13
|
Mohapatra BR, La Duc MT. Detecting the dormant: a review of recent advances in molecular techniques for assessing the viability of bacterial endospores. Appl Microbiol Biotechnol 2013; 97:7963-75. [PMID: 23912118 DOI: 10.1007/s00253-013-5115-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Due to their contribution to gastrointestinal and pulmonary disease, their ability to produce various deadly exotoxins, and their resistance to extreme temperature, pressure, radiation, and common chemical disinfecting agents, bacterial endospores of the Firmicutes phylum are a major concern for public and environmental health. In addition, the hardy and dormant nature of endospores renders them a particularly significant threat to the integrity of robotic extraterrestrial life-detection investigations. To prevent the contamination of critical surfaces with seemingly ubiquitous bacterial endospores, clean rooms maintained at exceedingly stringent cleanliness levels (i.e., fewer than 100,000 airborne particles per ft(3)) are used for surgical procedures, pharmaceutical processing and packaging, and fabrication and assembly of medical devices and spacecraft components. However, numerous spore-forming bacterial species have been reported to withstand typical clean room bioreduction strategies (e.g., UV lights, maintained humidity, paucity of available nutrients), which highlights the need for rapid and reliable molecular methods for detecting, enumerating, and monitoring the incidence of viable endospores. Robust means of evaluating and tracking spore burden not only provide much needed information pertaining to endospore ecophysiology in different environmental niches but also empower decontamination and bioreduction strategies aimed at sustaining the reliability and integrity of clean room environments. An overview of recent molecular advances in detecting and enumerating viable endospores, as well as the expanding phylogenetic diversity of pathogenic and clean room-associated spore-forming bacteria, ensues.
Collapse
Affiliation(s)
- Bidyut R Mohapatra
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
| | | |
Collapse
|
14
|
Reineke K, Schlumbach K, Baier D, Mathys A, Knorr D. The release of dipicolinic acid — The rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process. Int J Food Microbiol 2013; 162:55-63. [DOI: 10.1016/j.ijfoodmicro.2012.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 11/09/2012] [Accepted: 12/05/2012] [Indexed: 11/26/2022]
|
15
|
|
16
|
Mohapatra BR, La Duc MT. Rapid detection of viable Bacillus pumilus SAFR-032 encapsulated spores using novel propidium monoazide-linked fluorescence in situ hybridization. J Microbiol Methods 2012; 90:15-9. [PMID: 22537819 DOI: 10.1016/j.mimet.2012.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/08/2012] [Accepted: 04/09/2012] [Indexed: 11/19/2022]
Abstract
The survival of Bacillus pumilus SAFR-032 spores to standard industrial clean room sterilization practices necessitates the development of rapid molecular diagnostic tool(s) for detection and enumeration of viable bacterial spores in industrial clean room environments. This is of importance to maintaining the sterility of clean room processing products. This paper describes the effect of propidium monoazide (PMA) on fluorescence in situ hybridization (FISH) for detecting and enumerating B. pumilus SAFR-032 viable spores having been artificially encapsulated within poly(methylmethacrylate) (Lucite, Plexiglas) and released via an organic solvent (PolyGone-500). The results of the PMA-FISH experiments discussed herein indicate that PMA was able to permeate only the compromised coat layers of non-viable spores, identifying PMA treatment of bacterial spores prior to FISH analysis as a novel method for selecting out the fraction of the spore population that is non-viable from fluorescence detection. The ability of novel PMA-FISH to selectively distinguish and enumerate only the living spores present in a sample is of potential significance for development of improved strategies to minimize spore-specific microbial burden in a given environment.
Collapse
Affiliation(s)
- Bidyut R Mohapatra
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| | | |
Collapse
|
17
|
David F, Berger A, Hänsch R, Rohde M, Franco-Lara E. Single cell analysis applied to antibody fragment production with Bacillus megaterium: development of advanced physiology and bioprocess state estimation tools. Microb Cell Fact 2011; 10:23. [PMID: 21496219 PMCID: PMC3101136 DOI: 10.1186/1475-2859-10-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single cell analysis for bioprocess monitoring is an important tool to gain deeper insights into particular cell behavior and population dynamics of production processes and can be very useful for discrimination of the real bottleneck between product biosynthesis and secretion, respectively. RESULTS Here different dyes for viability estimation considering membrane potential (DiOC2(3), DiBAC4(3), DiOC6(3)) and cell integrity (DiBAC4(3)/PI, Syto9/PI) were successfully evaluated for Bacillus megaterium cell characterization. It was possible to establish an appropriate assay to measure the production intensities of single cells revealing certain product secretion dynamics. Methods were tested regarding their sensitivity by evaluating fluorescence surface density and fluorescent specific concentration in relation to the electronic cell volume. The assays established were applied at different stages of a bioprocess where the antibody fragment D1.3 scFv production and secretion by B. megaterium was studied. CONCLUSIONS It was possible to distinguish between live, metabolic active, depolarized, dormant, and dead cells and to discriminate between high and low productive cells. The methods were shown to be suitable tools for process monitoring at single cell level allowing a better process understanding, increasing robustness and forming a firm basis for physiology-based analysis and optimization with the general application for bioprocess development.
Collapse
Affiliation(s)
- Florian David
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|
18
|
Privorotskaya N, Liu YS, Lee J, Zeng H, Carlisle JA, Radadia A, Millet L, Bashir R, King WP. Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. LAB ON A CHIP 2010; 10:1135-1141. [PMID: 20390131 DOI: 10.1039/b923791g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper presents the design and application of microcantilever heaters for biochemical applications. Thermal lysis of biological cells was demonstrated as a specific example. The microcantilever heaters, fabricated from selectively doped single crystal silicon, provide local resistive heating with highly uniform temperature distribution across the cantilevers. Very importantly, the microcantilever heaters were coated with a layer of 100 nm thick electrically insulating ultrananocrystalline diamond (UNCD) layer used for cell immobilization on the cantilever surface. Fibroblast cells or bacterial cells were immobilized on the UNCD/cantilever surfaces and thermal lysis was demonstrated via optical fluorescence microscopy. Upon electrical heating of the cantilever structures to 93 degrees C for 30 seconds, fibroblast cell and nuclear membrane were compromised and the cells were lysed. Over 90% of viable bacteria were also lysed after 15 seconds of heating at 93 degrees C. This work demonstrates the utility of silicon-UNCD heated microcantilevers for rapid cell lysis and forms the basis for other rapid and localized temperature-regulated microbiological experiments in cantilever-based lab on chip applications.
Collapse
Affiliation(s)
- Natalya Privorotskaya
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
van Melis CCJ, Nierop Groot MN, Tempelaars MH, Moezelaar R, Abee T. Characterization of germination and outgrowth of sorbic acid-stressed Bacillus cereus ATCC 14579 spores: phenotype and transcriptome analysis. Food Microbiol 2010; 28:275-83. [PMID: 21315984 DOI: 10.1016/j.fm.2010.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/01/2010] [Accepted: 04/10/2010] [Indexed: 11/15/2022]
Abstract
Sorbic acid (SA) is widely used as a preservative, but the effect of SA on spore germination and outgrowth has gained limited attention up to now. Therefore, the effect of sorbic acid on germination of spores of Bacillus cereus strain ATCC 14579 was analyzed both at phenotype and transcriptome level. Spore germination and outgrowth were assessed at pH 5.5 without and with 0.75, 1.5 and 3.0 mM (final concentrations) undissociated sorbic acid (HSA). This resulted in distinct HSA concentration-dependent phenotypes, varying from reduced germination and outgrowth rates to complete blockage of germination at 3.0 mM HSA. The phenotypes reflecting different stages in the germination process could be confirmed using flow cytometry and could be recognized at transcriptome level by distinct expression profiles. In the absence and presence of 0.75 and 1.5 mM HSA, similar cellular ATP levels were found up to the initial stage of outgrowth, suggesting that HSA-induced inhibition of outgrowth is not caused by depletion of ATP. Transcriptome analysis revealed the presence of a limited number of transcripts in dormant spores, outgrowth related expression, and genes specifically associated with sorbic acid stress, including alterations in cell envelope and multidrug resistance. The potential role of these HSA-stress associated genes in spore outgrowth is discussed.
Collapse
Affiliation(s)
- C C J van Melis
- Top Institute Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Cronin U, Wilkinson M. The potential of flow cytometry in the study of Bacillus cereus. J Appl Microbiol 2010; 108:1-16. [DOI: 10.1111/j.1365-2672.2009.04370.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Lopes da Silva T, Piekova L, Mileu J, Roseiro JC. A comparative study using the dual staining flow cytometric protocol applied to Lactobacillus rhamnosus and Bacillus licheniformis batch cultures. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Sadeghian S, Neyestani TR, Shirazi MH, Ranjbarian P. Bacteriostatic effect of dill, fennel, caraway and cinnamon extracts againstHelicobacter pylori. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/13590840500535313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Filion G, Laflamme C, Turgeon N, Ho J, Duchaine C. Permeabilization and hybridization protocols for rapid detection of Bacillus spores using fluorescence in situ hybridization. J Microbiol Methods 2009; 77:29-36. [DOI: 10.1016/j.mimet.2008.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 11/17/2022]
|
24
|
Abstract
AIMS To determine roles of coats in staining Bacillus subtilis spores, and whether spores have membrane potential. METHODS AND RESULTS Staining by four dyes and autofluorescence of B. subtilis spores that lack some (cotE, gerE) or most (cotE gerE) coat protein was measured. Wild-type, cotE and gerE spores autofluorescenced and bound dyes, but cotE gerE spores did not autofluorescence and were stained only by two dyes. A membrane potential-sensitive dye DiOC6(3) bound to dormant Bacillus megaterium and B. subtilis spores. While this binding was abolished by the protonophore FCCP, DiOC6(3) bound to heat-killed spores, but not to dormant B. subtilis cotE gerE spores. However, DiOC6(3) bound well to all germinated spores. CONCLUSIONS The autofluorescence of dormant B. subtilis spores and the binding of some dyes are due to the coat. There is no membrane potential in dormant Bacillus spores, although membrane potential is generated when spores germinate. SIGNIFICANCE AND IMPACT OF THE STUDY The elimination of the autofluorescence of B. subtilis spores may allow assessment of the location of low abundance spore proteins using fluorescent reporter technology. The dormant spore's lack of membrane potential may allow tests of spore viability by assessing membrane potential in germinating spores.
Collapse
Affiliation(s)
- A Magge
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center Farmington, CT 06030-3305, USA
| | | | | | | |
Collapse
|
25
|
LAFLAMME CHRISTIAN, GENDRON LOUIS, TURGEON NATHALIE, FILION GENEVIEVE, HO JIM, DUCHAINE CAROLINE. RAPID DETECTION OF GERMINATINGBACILLUS CEREUSCELLS USING FLUORESCENTIN SITUHYBRIDIZATION. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1745-4581.2009.00159.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Cronin UP, Wilkinson MG. Physiological response of Bacillus cereus vegetative cells to simulated food processing treatments. J Food Prot 2008; 71:2168-76. [PMID: 19044257 DOI: 10.4315/0362-028x-71.11.2168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vegetative cells of the spore-former Bacillus cereus were exposed to a number of treatments commonly used in commercial food preparation or during equipment cleaning and decontamination. Treated suspensions were then analyzed for reductions (CFU per milliliter) by plate counting and changes in levels of ATP and ADP released from cells with a bioluminescence-based assay. With the use of flow cytometry (FCM), the physiological status of individual cells before and after exposure to treatments was determined by staining of control and treated cells with three pairs of physiological dyes (SYTO 9/propidium iodide, carboxyfluorescein diacetate/Hoechst 33342, and C12-resazurin/SYTOX Green). Good agreement was found between plate counting and FCM. In general, treatments giving rise to the highest count reductions also had the greatest effects on cell membrane permeability (measured with the use of propidium iodide or SYTOX Green), esterase activity (measured with carboxyfluorescein diacetate), or redox activity (C12-resazurin). FCM data demonstrated the extent of heterogeneity of vegetative cell responses to treatments in, for example, the treatment with 5% H2O2, which caused a 6-log reduction in which approximately 95% of the population was composed of membrane-damaged cells (as reflected by their permeability to SYTOX Green), whereas in treatment with 0.09% (wt/vol) potassium sorbate, which caused only a 1-log reduction, not more than 40% of cells were membrane damaged. The approaches described in this work can be applied to gain a greater understanding of bacterial responses to food control measures, generate more accurate inactivation models, or screen novel prospective food control measures.
Collapse
Affiliation(s)
- Ultan P Cronin
- Department of Life Sciences, University of Limerick, Castletroy, County Limerick, Ireland
| | | |
Collapse
|
27
|
Abstract
The lantibiotic nisin has previously been reported to inhibit the outgrowth of spores from several Bacillus species. However, the mode of action of nisin responsible for outgrowth inhibition is poorly understood. By using B. anthracis Sterne 7702 as a model, nisin acted against spores with a 50% inhibitory concentration (IC(50)) and an IC(90) of 0.57 microM and 0.90 microM, respectively. Viable B. anthracis organisms were not recoverable from cultures containing concentrations of nisin greater than the IC(90). These studies demonstrated that spores lose heat resistance and become hydrated in the presence of nisin, thereby ruling out a possible mechanism of inhibition in which nisin acts to block germination initiation. Rather, germination initiation is requisite for the action of nisin. This study also revealed that nisin rapidly and irreversibly inhibits growth by preventing the establishment of oxidative metabolism and the membrane potential in germinating spores. On the other hand, nisin had no detectable effects on the typical changes associated with the dissolution of the outer spore structures (e.g., the spore coats, cortex, and exosporium). Thus, the action of nisin results in the uncoupling of two critical sequences of events necessary for the outgrowth of spores: the establishment of metabolism and the shedding of the external spore structures.
Collapse
|
28
|
Abstract
Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy. However, the cotE gerE spores did retain a thin layer of insoluble coat material that was most easily seen by microscopy following digestion of these spores with lysozyme. These severely coat-deficient spores germinated relatively normally with nutrients and even better with dodecylamine but not with a 1:1 chelate of Ca(2+) and dipicolinic acid. These spores were also quite resistant to wet heat, to mechanical disruption, and to treatment with detergents at an elevated temperature and pH but were exquisitely sensitive to killing by sodium hypochlorite. These results provide new insight into the role of the coat layer in spore properties.
Collapse
|
29
|
Mathys A, Chapman B, Bull M, Heinz V, Knorr D. Flow cytometric assessment of Bacillus spore response to high pressure and heat. INNOV FOOD SCI EMERG 2007. [DOI: 10.1016/j.ifset.2007.06.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Cherepnev GV, Velizhinskaya TA, Yakovleva GY, Denivarova NA, Kurinenko BM. Assessing the toxic effect of 2,4,6-trinitrotoluene on cells of Escherichia coli K12 by flow cytofluorometry. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707030101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Kobayashi M, Shimizu H, Shioya S. Physiological analysis of yeast cells by flow cytometry during serial-repitching of low-malt beer fermentation. J Biosci Bioeng 2007; 103:451-6. [PMID: 17609161 DOI: 10.1263/jbb.103.451] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Indexed: 11/17/2022]
Abstract
At the end of beer brewing fermentation, yeast cells are collected and repitched for economical reasons. Although it is generally accepted that the physiological state of inoculated yeast cells affects their subsequent fermentation performance, the effect of serial-repitching on the physiological state of such yeast cells has not been well clarified. In this study, the fermentation performance of yeast cells during serial-repitching was investigated. After multiple repitchings, the specific growth rate and maximum optical density (OD(660)) decreased, and increases in isoamyl alcohol, which causes an undesirable flavor, and residual free amino acid nitrogen (FAN) concentrations were observed. The physiological state of individual cells before inoculation was characterized by flow cytometry using the fluorescent dyes dehydrorhodamine 123 (DHR) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (OXN). The fluorescence intensities of DHR, an indicator of reactive oxygen species (ROSs), and OXN, which indicates membrane potential, gradually increased as the number of serial-repitching cycles increased. Fluorescence intensity correlated strongly with cell growth. The subsequent fermentation performance can be predicted from this correlation.
Collapse
Affiliation(s)
- Michiko Kobayashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | |
Collapse
|
32
|
Cronin UP, Wilkinson MG. The use of flow cytometry to study the germination ofBacillus cereus endospores. Cytometry A 2007; 71:143-53. [PMID: 17200957 DOI: 10.1002/cyto.a.20368] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND At present the study of endospore germination is conducted using microbiological methods which are slow and yield data based on the means of large heterogeneous populations. Flow cytometry (FCM) offers the potential to rapidly quantify and identify germination and outgrowth events for large numbers of individual endospores. METHODS Standard methods were employed to arrest the germination of Bacillus cereus endospores at defined stages. Endospores were then stained with SYTO 9 alone or carboxyfluorescein diacetate (CFDA) together with Hoechst 33342 and analysed using FCM. Comparisons were made between FCM as a method to measure germination rate and standard microbiological techniques. RESULTS Germinating endospores displayed increases in permeability to SYTO 9 and hydrolysis of CFDA compared with controls. Statistically significant correlations were found between the standard plate count method and both FCM methods for measuring the percentage of germinating and outgrowing endospores up to 75 min after addition of germinant. CONCLUSIONS Using FCM, the percentage of germinating or outgrowing endospores at various time points during germination and/or outgrowth can be quantified. FCM with CFDA/Hoechst 33342 staining may be used to estimate overall germination rate, whereas FCM with SYTO 9 staining may be used to quantify ungerminated, germinating and outgrowing endospores.
Collapse
Affiliation(s)
- Ultan P Cronin
- Department of Life Sciences, University of Limerick, Castletroy, Co. Limerick, Ireland
| | | |
Collapse
|
33
|
Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 2007; 71:592-8. [PMID: 17421025 DOI: 10.1002/cyto.a.20402] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Viability measurements of individual bacteria are applied in various scopes of research and industry using approaches where propidium iodide (PI) serves as dead cell indicator. The reliability of PI uptake as a cell viability indicator for dead (PI permeable) and viable (PI impermeable) bacteria was tested using two soil bacteria, the gram(-) Sphingomonas sp. LB126 and the gram(+) Mycobacterium frederiksbergense LB501T. METHODS Bacterial proliferation activities observed viaDAPI and Hoechst 33342 staining were linked to the energy charge and the proportion of dead cells as obtained by diOC(6) (3)-staining and PI-uptake, respectively. Calibration and verification experiments were performed using batch cultures grown on different substrates. RESULTS PI uptake depended on the physiological state of the bacterial cells. Unexpectedly, up to 40% of both strains were stained by PI during early exponential growth on glucose when compared to 2-5% of cells in the early stationary phase of growth. CONCLUSIONS The results question the utility of PI as a universal indicator for the viability of (environmental) bacteria. It rather appears that in addition to nonviable cells, PI also stains growing cells of Sphingomonas sp. and M. frederiksbergense during a short period of their life cycle.
Collapse
Affiliation(s)
- Lei Shi
- Department of Environmental Microbiology, UFZ, Helmholtz Centre for Environmental Research, Leipzig-Halle, 04318 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Vullev VI, Wan J, Heinrich V, Landsman P, Bower PE, Xia B, Millare B, Jones G. Nonlithographic Fabrication of Microfluidic Devices. J Am Chem Soc 2006; 128:16062-72. [PMID: 17165759 DOI: 10.1021/ja061776o] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile nonlithographic method for expedient fabrication of microfluidic devices of poly(dimethylsiloxane) is described. Positive-relief masters for the molds are directly printed on smooth substrates. For the formation of connecting channels and chambers inside the polymer components of the microfluidic devices, cavity-forming elements are adhered to the surfaces of the masters. Using this nonlithographic approach, we fabricated microfluidic devices for detection of bacterial spores on the basis of enhancement of the emission of terbium (III) ions.
Collapse
Affiliation(s)
- Valentine I Vullev
- Photonics Center and Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|