1
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Radiotolerance of N-cycle bacteria and their transcriptomic response to low-dose space-analogue ionizing irradiation. iScience 2024; 27:109596. [PMID: 38638570 PMCID: PMC11024918 DOI: 10.1016/j.isci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
The advancement of regenerative life support systems (RLSS) is crucial to allow long-distance space travel. Within the Micro-Ecological Life Support System Alternative (MELiSSA), efficient nitrogen recovery from urine and other waste streams is vital to produce liquid fertilizer to feed food and oxygen production in subsequent photoautotrophic processes. This study explores the effects of ionizing radiation on nitrogen cycle bacteria that transform urea to nitrate. In particular, we assess the radiotolerance of Comamonas testosteroni, Nitrosomonas europaea, and Nitrobacter winogradskyi after exposure to acute γ-irradiation. Moreover, a comprehensive whole transcriptome analysis elucidates the effects of spaceflight-analogue low-dose ionizing radiation on the individual axenic strains and on their synthetic community o. This research sheds light on how the spaceflight environment could affect ureolysis and nitrification processes from a transcriptomic perspective.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Siegfried E. Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
2
|
Martocello DE, Wankel SD. Physiological Influence of Fe and Cu Availability on Nitrogen Isotope Fractionation during Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:421-431. [PMID: 38147309 DOI: 10.1021/acs.est.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Microbially mediated cycling processes play central roles in regulating the speciation and availability of nitrogen, a vital nutrient with wide implications for agriculture, water quality, wastewater treatment, ecosystem health, and climate change. Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by bacteria (AOB) and archaea (AOA) that require the trace metal micronutrients copper (Cu) and iron (Fe) for growth and metabolic catalysis. While stable isotope analyses for constraining nitrogen cycling are commonly used, it is unclear whether metal availability may modulate expression of stable isotope fractionation during ammonia oxidation, by varying growth or through regulation of metabolic metalloenzymes. We present the first study examining the influence of Fe and Cu availability on the kinetic nitrogen isotope effect in ammonia oxidation (15εAO). We report a general independence of 15εAO from the growth rate in AOB, except at a low temperature (10 °C). With AOA Nitrosopumilus maritimus SCM1, however, 15εAO decreases nonlinearly at lower oxidation rates. We examine assumptions involved in the interpretation of 15εAO values and suggest these dynamics may arise from physiological constraints that push the system toward isotopic equilibrium. These results suggest important links between isotope fractionation and environmental constraints on physiology in these key N cycling microorganisms.
Collapse
Affiliation(s)
- Donald E Martocello
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Scott D Wankel
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
3
|
Ayub H, Kang MJ, Farooq A, Jung MY. Ecological Aerobic Ammonia and Methane Oxidation Involved Key Metal Compounds, Fe and Cu. Life (Basel) 2022; 12:1806. [PMID: 36362966 PMCID: PMC9693385 DOI: 10.3390/life12111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Interactions between metals and microbes are critical in geomicrobiology and vital in microbial ecophysiological processes. Methane-oxidizing bacteria (MOB) and ammonia-oxidizing microorganisms (AOM) are key members in aerobic environments to start the C and N cycles. Ammonia and methane are firstly oxidized by copper-binding metalloproteins, monooxygenases, and diverse iron and copper-containing enzymes that contribute to electron transportation in the energy gain pathway, which is evolutionally connected between MOB and AOM. In this review, we summarized recently updated insight into the diverse physiological pathway of aerobic ammonia and methane oxidation of different MOB and AOM groups and compared the metabolic diversity mediated by different metalloenzymes. The elevation of iron and copper concentrations in ecosystems would be critical in the activity and growth of MOB and AOM, the outcome of which can eventually influence the global C and N cycles. Therefore, we also described the impact of various concentrations of metal compounds on the physiology of MOB and AOM. This review study could give a fundamental strategy to control MOB and AOM in diverse ecosystems because they are significantly related to climate change, eutrophication, and the remediation of contaminated sites for detoxifying pollutants.
Collapse
Affiliation(s)
- Hina Ayub
- Interdisciplinary Graduate Programm in Advance Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea
| | - Min-Ju Kang
- Interdisciplinary Graduate Programm in Advance Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea
| | - Adeel Farooq
- Research Institute for Basic Sciences (RIBS), Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programm in Advance Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea
- Department of Science Education, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea
| |
Collapse
|
4
|
Yin Z, Yang X, Wang X, Wang S. Effects of operating conditions on microbial consortium of the heterotrophic ammonia oxidation process. BIORESOURCE TECHNOLOGY 2021; 328:124823. [PMID: 33592544 DOI: 10.1016/j.biortech.2021.124823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the ammonia removal by the consortium mainly comprising of ammonia-oxidizing bacteria under different initial pH, temperatures and stress of heavy metals. The results showed that the consortium exhibited a strong adaptation for broad pH ranging from 5 to 9. When the temperature dropped to 15℃, its ammonium removal and nitrate accumulation rates decreased by 72.23% and 95.12%, respectively. Meanwhile, the temperature correction coefficients of the ammonium removal and nitrate accumulation rates reached the maximum. In addition, the consortium could survive in the solutions containing 0-1.0 mg·L-1 Cu2+ and 0-5.0 mg·L-1 Fe3+. Moreover, the inhibition of free nitrous acid (FNA) against nitrite oxidation activity was found to be much more significant than that low-temperature treatment. Microbial diversity analysis showed that the bacterial community structure was shift significantly by the temperature drop, especially change the abundance of Nitrosomonas, Paracoccus, Pseudomonas and Nitrospirae.
Collapse
Affiliation(s)
- Zhikai Yin
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, PR China
| | - Xiaolong Yang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, PR China
| | - Xingyu Wang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, PR China
| | - Shoubing Wang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, PR China.
| |
Collapse
|
5
|
Ammonia-oxidizing archaea in biological interactions. J Microbiol 2021; 59:298-310. [DOI: 10.1007/s12275-021-1005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
|
6
|
Wang L, Lim CK, Klotz MG. High Synteny and Sequence Identity between Genomes of Nitrosococcus oceani Strains Isolated from Different Oceanic Gyres Reveals Genome Economization and Autochthonous Clonal Evolution. Microorganisms 2020; 8:E693. [PMID: 32397339 PMCID: PMC7285500 DOI: 10.3390/microorganisms8050693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
The ammonia-oxidizing obligate aerobic chemolithoautotrophic gammaproteobacterium, Nitrosococcus oceani, is omnipresent in the world's oceans and as such important to the global nitrogen cycle. We generated and compared high quality draft genome sequences of N. oceani strains isolated from the Northeast (AFC27) and Southeast (AFC132) Pacific Ocean and the coastal waters near Barbados at the interface between the Caribbean Sea and the North Atlantic Ocean (C-27) with the recently published Draft Genome Sequence of N. oceani Strain NS58 (West Pacific Ocean) and the complete genome sequence of N. oceani C-107, the type strain (ATCC 19707) isolated from the open North Atlantic, with the goal to identify indicators for the evolutionary origin of the species. The genomes of strains C-107, NS58, C-27, and AFC27 were highly conserved in content and synteny, and these four genomes contained one nearly sequence-identical plasmid. The genome of strain AFC132 revealed the presence of genetic inventory unknown from other marine ammonia-oxidizing bacteria such as genes encoding NiFe-hydrogenase and a non-ribosomal peptide synthetase (NRPS)-like siderophore biosynthesis module. Comparative genome analysis in context with the literature suggests that AFC132 represents a metabolically more diverse ancestral lineage to the other strains with C-107 and NS58 potentially being the youngest. The results suggest that the N. oceani species evolved by genome economization characterized by the loss of genes encoding catabolic diversity while acquiring a higher redundancy in inventory dedicated to nitrogen catabolism, both of which could have been facilitated by their rich complements of CRISPR/Cas and Restriction Modification systems.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biological Sciences, University of North Carolina, 9201 University City Boulevard, Charlotte, NC 28223, USA; (L.W.); (C.K.L.)
| | - Chee Kent Lim
- Department of Biological Sciences, University of North Carolina, 9201 University City Boulevard, Charlotte, NC 28223, USA; (L.W.); (C.K.L.)
| | - Martin G. Klotz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| |
Collapse
|
7
|
Shafiee RT, Snow JT, Zhang Q, Rickaby REM. Iron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1. THE ISME JOURNAL 2019; 13:2295-2305. [PMID: 31076641 PMCID: PMC6776035 DOI: 10.1038/s41396-019-0434-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Ammonia-oxidising archaea (AOA) mediate the rate-limiting step of nitrification, the central component of the marine nitrogen cycle that converts ammonia to nitrite then nitrate. Competition with phytoplankton for ammonium and light inhibition are considered to restrict AOA activity to below the photic zone, but observations of surface nitrification now demand a further understanding of the factors driving AOA distribution and activity. Pico- to nanomolar concentrations of iron (Fe) limit the growth of microorganisms in a significant portion of the world's surface oceans, yet there is no examination of the role of Fe in AOA growth despite the process of ammonia oxidation being considered to rely on the micronutrient. Here we investigate the Fe requirements and Fe uptake strategies of the Nitrosopumilus maritimus strain SCM1, a strain representative of globally abundant marine AOA. Using trace metal clean culturing techniques, we found that N. maritimus growth is determined by Fe availability, displaying a free inorganic Fe (Fe') half saturation constant 1-2 orders of magnitude greater for cell growth than numerous marine phytoplankton and heterotrophic bacterial species driven by a reduced affinity for Fe'. In addition, we discovered that whilst unable to produce siderophores to enhance access to Fe, N. maritimus is able to use the exogenous siderophore desferrioxamine B (DFB), likely through a reductive uptake pathway analogous to that demonstrated in phytoplankton. Our work suggests AOA growth in surface waters may be Fe limited and advances our understanding of AOA physiology on the cellular and mechanistic levels with implications for ecosystem dynamics and the biogeochemical N-cycle.
Collapse
Affiliation(s)
- Roxana T Shafiee
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxfordshire, OX1 3AN, UK.
| | - Joseph T Snow
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxfordshire, OX1 3AN, UK
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxfordshire, OX1 3AN, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxfordshire, OX1 3AN, UK
| |
Collapse
|
8
|
Zheng Z, Li W, Zhang D, Qin W, Zhao Y, Lv L. Effect of iron and manganese on ammonium removal from micro-polluted source water by immobilized HITLi7 T at 2 °C. BIORESOURCE TECHNOLOGY 2019; 285:121367. [PMID: 31022577 DOI: 10.1016/j.biortech.2019.121367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, trace metals (Fe & Mn) were applied to enhance NH4+-N removal in source water at 2 °C, and 22.7% of initial 2.20 mg/L NH4+-N was removed by pre-treating granular activated carbon (GAC) with Fe & Mn before immobilizing Acinetobacter harbinensis HITLi7T to form biological activated carbon (BAC). Biomass and dehydrogenase activity (DHA) on this modified BAC were 2.80 × 108 CFU/g-DW C and 0.50 mg/L/g-DW C, respectively, both the highest. Additionally, 4.76 times more biomass and 9.76 times higher DHA of HITLi7T were observed in the cultivation with Fe & Mn dosing. Extracellular polymeric substances (EPS) measurements found Fe & Mn dosing could increase total EPS amount (44.3% higher) and polysaccharide (PS) ratio (1.50% higher) secreted by HITLi7T. According to the results of 3D-excitation-emission matrix (3D-EEM) fluorescence spectra and infrared spectra (FTIR) analysis, Fe and Mn promoted the secretion of tryptophan-like substances and changed functional groups COH, COC, CO and COOH, which are associated with protein and PS.
Collapse
Affiliation(s)
- Zejia Zheng
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin, China
| | - Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Longyi Lv
- School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
9
|
Miyamoto T, Yokota A, Ota Y, Tsuruga M, Aoi R, Tsuneda S, Noda N. Nitrosomonas europaea MazF Specifically Recognises the UGG Motif and Promotes Selective RNA Degradation. Front Microbiol 2018; 9:2386. [PMID: 30349517 PMCID: PMC6186784 DOI: 10.3389/fmicb.2018.02386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Toxin-antitoxin (TA) systems are implicated in prokaryotic stress adaptation. Previously, bioinformatics analysis predicted that such systems are abundant in some slowly growing chemolithotrophs; e.g., Nitrosomonas europaea. Nevertheless, the molecular functions of these stress-response modules remain largely unclear, limiting insight regarding their physiological roles. Herein, we show that one of the putative MazF family members, encoded at the ALW85_RS04820 locus, constitutes a functional toxin that engenders a TA pair with its cognate MazE antitoxin. The coordinate application of a specialised RNA-Seq and a fluorescence quenching technique clarified that a unique triplet, UGG, serves as the determinant for MazF cleavage. Notably, statistical analysis predicted that two transcripts, which are unique in the autotroph, comprise the prime targets of the MazF endoribonuclease: hydroxylamine dehydrogenase (hao), which is essential for ammonia oxidation, and a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL), which plays an important role in carbon assimilation. Given that N. europaea obtains energy and reductants via ammonia oxidation and the carbon for its growth from carbon dioxide, the chemolithotroph might use the MazF endoribonuclease to modulate its translation profile and subsequent biochemical reactions.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuri Ota
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masako Tsuruga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Rie Aoi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
10
|
Laloo AE, Wei J, Wang D, Narayanasamy S, Vanwonterghem I, Waite D, Steen J, Kaysen A, Heintz-Buschart A, Wang Q, Schulz B, Nouwens A, Wilmes P, Hugenholtz P, Yuan Z, Bond PL. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5386-5397. [PMID: 29620869 DOI: 10.1021/acs.est.7b04273] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.
Collapse
Affiliation(s)
- Andrew E Laloo
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Justin Wei
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education , Hunan University , Changsa 410082 , China
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - David Waite
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Jason Steen
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Anne Kaysen
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy , Griffith University , Nathan , QLD 4111 , Australia
| | - Benjamin Schulz
- School of Chemistry and Molecular Biosciences , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Philip L Bond
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| |
Collapse
|
11
|
Le QN, Yoshimura C, Fujii M. Effects of the chemical characteristics and concentration of inorganic suspended solids on nitrification in freshwater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3101-3113. [PMID: 29210696 DOI: 10.2166/wst.2017.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of inorganic suspended solids (ISS) on nitrification in freshwater samples has been described inconsistently and remains unclear. This study therefore investigated the effects of the chemical characteristics and concentration of ISS on the nitrification rate by focusing on Nitrosomonas europaea and Nitrobacter winogradskyi as the two most dominant nitrification species in freshwater. Batch-wise experiments were conducted using three chemically well-characterized ISS (i.e. the clay minerals montmorillonite, sericite, and kaolinite in the concentration range 0-1,000 mg L-1). The results show that the ammonium oxidation rate constant (kNH4) was significantly affected by the ISS type, whereas changes in the ISS concentration had an insignificant effect on kNH4, except for kaolinite. The highest kNH4 was observed in samples containing sericite (kNH4, 0.067 L mg-1 day-1), followed by samples containing montmorillonite (kNH4, 0.044 L mg-1 day-1). The ammonium oxidation rate was low in the control and kaolinite samples. Nitrite oxidation was enhanced in the presence of all types of ISS. The rate constants of ISS-mediated nitrite oxidation (kNO2, 0.13-0.21 L mg-1 day-1) were not significantly different among the three types of ISS, but kNO2 was significantly affected by ISS concentration. Overall, our study indicated various effects of the ISS type and concentration on nitrification and, in particular, a notable positive effect of sericite.
Collapse
Affiliation(s)
- Quynh Nga Le
- Department of Civil Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Tokyo 152-8552, Japan E-mail:
| | - Chihiro Yoshimura
- Department of Civil Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Tokyo 152-8552, Japan E-mail:
| | - Manabu Fujii
- Department of Civil Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Tokyo 152-8552, Japan E-mail:
| |
Collapse
|
12
|
Effect of trace elements and optimization of their composition for the nitrification of a heterotrophic nitrifying bacterium, Acinetobacter harbinensis HITLi7T, at low temperature. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1298-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Jurczyk Ł, Koc-Jurczyk J. Quantitative dynamics of ammonia-oxidizers during biological stabilization of municipal landfill leachate pretreated by Fenton's reagent at neutral pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:310-326. [PMID: 28159310 DOI: 10.1016/j.wasman.2017.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The application of multi-stage systems including biological step, for the treatment of leachate from municipal landfills, is economically and technologically justified. When microbial activity is utilized as 2nd stage of treatment, the task of 1st stage is to increase the bioavailability of organic matter. In this work, the effect of advanced oxidation process by Fenton's reagent for treatment efficiency of landfill leachate in the sequencing batch reactor was assessed. The quantitative dynamics of bacteria taking a part in ammonia removal process was evaluated by determination of number of DNA copies of 16S rRNA and amoA. Products of neutral pH chemical oxidation, had a definite positive impact on the quantity of β-proteobacteria 16S rRNA, whereas the same gene specified for Nitrospira sp. as well as amoA did not show a significant increase during the process of biological treatment, regardless of whether the reactor was fed with raw leachate or chemically pre-treated.
Collapse
Affiliation(s)
- Łukasz Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland.
| | - Justyna Koc-Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland
| |
Collapse
|
14
|
Yilmaz G, Cetin E, Bozkurt U, Aleksanyan Magden K. Effects of ferrous iron on the performance and microbial community in aerobic granular sludge in relation to nutrient removal. Biotechnol Prog 2017; 33:716-725. [DOI: 10.1002/btpr.2456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Gulsum Yilmaz
- Department of Environmental EngineeringIstanbul UniversityAvcilar Istanbul34320 Turkey
| | - Ender Cetin
- Department of Environmental EngineeringIstanbul UniversityAvcilar Istanbul34320 Turkey
| | - Umit Bozkurt
- Department of Environmental EngineeringIstanbul UniversityAvcilar Istanbul34320 Turkey
| | | |
Collapse
|
15
|
Yilmaz G, Bozkurt U, Magden KA. Effect of iron ions (Fe2+, Fe3+) on the formation and structure of aerobic granular sludge. Biodegradation 2016; 28:53-68. [DOI: 10.1007/s10532-016-9777-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/18/2016] [Indexed: 11/25/2022]
|
16
|
Keluskar R, Nerurkar A, Desai A. Mutualism between autotrophic ammonia-oxidizing bacteria (AOB) and heterotrophs present in an ammonia-oxidizing colony. Arch Microbiol 2013; 195:737-47. [DOI: 10.1007/s00203-013-0926-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/01/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
17
|
Zhang J, Zhang Y, Li Y, Zhang L, Qiao S, Yang F, Quan X. Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode. BIORESOURCE TECHNOLOGY 2012; 114:102-108. [PMID: 22459964 DOI: 10.1016/j.biortech.2012.03.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Slow proliferation of anammox bacteria is a major problem limiting the wider application of anammox technology in practical wastewater treatment. A novel anammox reactor packed with a Fe electrode was developed for enhancing anammox consortium activity and accelerating the startup of anammox process. After 125 days' operation, total nitrogen removal rate achieved 1209.6 mg N/L/d in this hybrid reactor (R1), which was significantly higher than that in a control anammox reactor without Fe electrode (R2, 973.3 mg N/L/d). Raising the voltage applied for the electrode in a given extent (≤0.6 V) enhanced the performance of the reactor, while the voltage more than 0.8 V reduced the anammox performance. Scanning electron microscope (SEM) observation along with transmission electron microscope (TEM) analysis of the sludge taken from the reactors revealed that a more compacted microbial community structure was formed in R1. Fluorescence in situ hybridization (FISH) together with DNA analysis indicated that anammox bacteria were highly enriched with the presence of the Fe electrode.
Collapse
Affiliation(s)
- Jingxin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Glass JB, Orphan VJ. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 2012; 3:61. [PMID: 22363333 PMCID: PMC3282944 DOI: 10.3389/fmicb.2012.00061] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/05/2012] [Indexed: 01/15/2023] Open
Abstract
Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO(2) cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH(4)), and nitrous oxide (N(2)O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH(4) and N(2)O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH(4) oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N(2)O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N(2)O reductase, the only known enzyme capable of microbial N(2)O conversion to N(2), have only been found in classical denitrifiers. Accumulation of N(2)O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N(2)O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging.
Collapse
Affiliation(s)
- Jennifer B. Glass
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
19
|
Global analysis of the Nitrosomonas europaea iron starvation stimulon. Arch Microbiol 2011; 194:305-13. [DOI: 10.1007/s00203-011-0778-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 09/28/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
20
|
Vajrala N, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. Role of a Fur homolog in iron metabolism in Nitrosomonas europaea. BMC Microbiol 2011; 11:37. [PMID: 21338516 PMCID: PMC3050691 DOI: 10.1186/1471-2180-11-37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur) system. The genome of Nitrosomonas europaea, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722) encoding proteins belonging to Fur family. Results Of the three N. europaea fur homologs, only the Fur homolog encoded by gene NE0616 complemented the Escherichia coli H1780 fur mutant. A N. europaea fur:kanP mutant strain was created by insertion of kanamycin-resistance cassette in the promoter region of NE0616 fur homolog. The total cellular iron contents of the fur:kanP mutant strain increased by 1.5-fold compared to wild type when grown in Fe-replete media. Relative to the wild type, the fur:kanP mutant exhibited increased sensitivity to iron at or above 500 μM concentrations. Unlike the wild type, the fur:kanP mutant was capable of utilizing iron-bound ferrioxamine without any lag phase and showed over expression of several outer membrane TonB-dependent receptor proteins irrespective of Fe availability. Conclusions Our studies have clearly indicated a role in Fe regulation by the Fur protein encoded by N. europaea NE0616 gene. Additional studies are required to fully delineate role of this fur homolog.
Collapse
Affiliation(s)
- Neeraja Vajrala
- Department of Botany and Plant Pathology, 2082 Cordley, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
21
|
The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors. Methods Enzymol 2011; 486:483-506. [PMID: 21185450 DOI: 10.1016/b978-0-12-381294-0.00022-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nitrogen (N) cycle is the only global biogeochemical cycle that is driven by biological functions involving the interaction of many microorganisms. The N cycle has evolved over geological time and its interaction with the oxygen cycle has had profound effects on the evolution and timing of Earth's atmosphere oxygenation (Falkowski and Godfrey, 2008). Almost every enzyme that microorganisms use to manipulate N contains redox-sensitive metals. Bioavailability of these metals has changed through time as a function of varying redox conditions, and likely influenced the biological underpinnings of the N cycle. It is possible to construct a record through geological time using N isotopes and metal concentrations in sediments to determine when the different stages of the N cycle evolved and the role metal availability played in the development of key enzymes. The same techniques are applicable to understanding the operation and changes in the N cycle through geological time. However, N and many of the redox-sensitive metals in some of their oxidation states are mobile and the isotopic composition or distribution can be altered by subsequent processes leading to erroneous conclusions. This chapter reviews the enzymology and metal cofactors of the N cycle and describes proper utilization of methods used to reconstruct evolution of the N cycle through time.
Collapse
|
22
|
Dissecting iron uptake and homeostasis in Nitrosomonas europaea. Methods Enzymol 2010. [PMID: 21185446 DOI: 10.1016/b978-0-12-381294-0.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The chemolithoautotroph Nitrosomonas europaea oxidizes about 25 mol of NH(3) for each mole of CO(2) that is converted to biomass using an array of heme and nonheme Fe-containing proteins. Hence mechanisms of efficient iron (Fe) uptake and homeostasis are particularly important for this Betaproteobacterium. Among nitrifiers, N.europaea has been the most studied to date. Characteristics that make N.europaea a suitable model to study Fe uptake and homeostasis are as follows: (a) its sequenced genome, (b) its capability to grow relatively well in 0.2 μM Fe in the absence of heterologous siderophores, and (c) its amenability to mutagenesis. In this chapter, we describe the methodology we use in our laboratory to dissect Fe uptake and homeostasis in the ammonia oxidizer N. europaea.
Collapse
|
23
|
Gvakharia BO, Tjaden B, Vajrala N, Sayavedra-Soto LA, Arp DJ. Computational prediction and transcriptional analysis of sRNAs in Nitrosomonas europaea. FEMS Microbiol Lett 2010; 312:46-54. [PMID: 20840601 DOI: 10.1111/j.1574-6968.2010.02095.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial small noncoding RNAs (sRNAs) have been discovered in many genetically well-studied microorganisms and have been shown to regulate critical cellular processes at the post-transcriptional level. In this study, we used comparative genomics and microarray data to analyze the genome of the ammonia-oxidizing bacterium Nitrosomonas europaea for the presence and expression of sRNAs. Fifteen genes encoding putative sRNAs (psRNAs) were identified. Most of these genes showed altered expression in a variety of experimental conditions. The transcripts of two psRNAs were further characterized by mapping their 5'- and 3'-ends and by real-time PCR. The results of these analyses suggested that one of them, psRNA11, is involved in iron homeostasis in N. europaea.
Collapse
Affiliation(s)
- Barbara O Gvakharia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
24
|
Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes. Arch Microbiol 2010; 192:899-908. [DOI: 10.1007/s00203-010-0620-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/12/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
25
|
Abstract
Methanotrophs, cells that consume methane (CH(4)) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH(4), the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH(4) to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH(4) fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH(4) oxidation by the particulate CH(4) monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
26
|
Park S, Ely RL. Whole-genome transcriptional and physiological responses ofNitrosomonas europaeato cyanide: Identification of cyanide stress response genes. Biotechnol Bioeng 2009; 102:1645-53. [DOI: 10.1002/bit.22194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Stein LY, Arp DJ, Berube PM, Chain PSG, Hauser L, Jetten MSM, Klotz MG, Larimer FW, Norton JM, Op den Camp HJM, Shin M, Wei X. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 2008; 9:2993-3007. [PMID: 17991028 DOI: 10.1111/j.1462-2920.2007.01409.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O(2) concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.
Collapse
Affiliation(s)
- Lisa Y Stein
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Park S, Ely RL. Genome-wide transcriptional responses of Nitrosomonas europaea to zinc. Arch Microbiol 2007; 189:541-8. [PMID: 18097650 DOI: 10.1007/s00203-007-0341-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/24/2007] [Accepted: 12/04/2007] [Indexed: 11/28/2022]
Abstract
Nitrosomonas europaea, a Gram-negative obligate chemolithoautotroph, participates in global nitrogen cycling by carrying out nitrification and derives energy for growth through oxidation of ammonia. In this work, the physiological, proteomic, and transcriptional responses of N. europaea to zinc stress were studied. The nitrite production rate and ammonia-dependent oxygen uptake rate of the cells exposed to 3.4 microM ZnCl2 decreased about 61 and 69% within 30 min, respectively. Two proteins were notably up regulated in zinc treatment and the mRNA levels of their encoding genes started to increase by 1 h after the addition of zinc. A total of 27 genes were up regulated and 30 genes were down regulated. Up-regulated genes included mercury resistance genes (merTPCAD), inorganic ion transport genes, oxidative stress genes, toxin-antitoxin genes, and two-component signal transduction systems genes. merTPCAD was the highest up-regulated operon (46-fold). Down-regulated genes included the RubisCO operon (cbbO), biosynthesis (mrsA), and amino acid transporter.
Collapse
Affiliation(s)
- Sunhwa Park
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
29
|
Wei X, Sayavedra-Soto LA, Arp DJ. Characterization of the ferrioxamine uptake system of Nitrosomonas europaea. MICROBIOLOGY-SGM 2007; 153:3963-3972. [PMID: 18048911 DOI: 10.1099/mic.0.2007/010603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chemolithoautotroph Nitrosomonas europaea has two genes predicted to encode outer-membrane (OM) ferrioxamine transporters. Expression of the ferrioxamine uptake system required induction, as shown by the shorter lag phase in ferrioxamine-containing cultures when ferrioxamine-exposed cells were used as an inoculum. The two OM ferrioxamine siderophore transporters encoded by foxA(1) (NE1097) and foxA(2) (NE1088) were produced only in cells grown in Fe-limited ferrioxamine-containing medium. The inactivation of foxA(1), singly or in combination with foxA(2), prevented growth in Fe-limited medium containing excess desferrioxamine (DFX). The foxA(2)-disrupted single mutant grew poorly in the regular Fe-limited (0.2 microM) medium with 10 microM DFX, but grew well when the Fe level was raised to 1.0 microM with 10 microM DFX. For efficient acquisition of Fe-loaded ferrioxamine, N. europaea needs both ferrioxamine transporters FoxA(1) and FoxA(2). FoxA(1) probably regulates its own production, and it controls the production of FoxA(2) as well.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|