1
|
Suntsov VV. Climate Changes in Central Asia as a Prerequisite and Trigger of Plague Microbe ( Yersinia pestis) Speciation. CONTEMP PROBL ECOL+ 2022; 15:373-382. [PMID: 35990805 PMCID: PMC9376127 DOI: 10.1134/s1995425522040102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022]
Abstract
Two physical and climatic factors that were distant and recent prerequisites and a transformation trigger for a clone of the ancestral pseudotuberculous microbe Yersinia pseudotuberculosis O:1b (the causative agent of the Far East scarlet-like fever (FESLF)) into a population of the plague microbe derivative Y. pestis are considered. One remote prerequisite was the aridification of the Central Asian landscapes in the second half of the Cenozoic period and the formation of the Gobi Arid Zone. The arid conditions of Central Asia determined the formation of adaptive species-specific protective behavior in the Tarbagan marmot (Marmota sibirica) when installing the plug of a wintering hole, which later contributed to the massive infection of the animals with FESLF by the aberrant (traumatic, not alimentary) method during hibernation. A recent prerequisite and a real trigger of Y. pestis speciation was the onset of the last maximum (Sartan) ice age in Central Asia at the turn of the Pleistocene and Holocene, 22 000-15 000 years ago. Freezing of the cooling burrows of the Tarbagan marmot caused a behavioral shift in the larval population of the marmot flea Oropsylla silantiewi and the transition to the cold winter-spring months of the year from saprophagy in the nesting litter to hematophagy on the bodies of sleeping animals. Larval scarifications in the oral cavity of sleeping marmots have become the entrance gate for a unique traumatic FESLF infection. The constellation of climatic changes, the heterothermal (and, accordingly, heteroimmune) condition of the family groups of sleeping marmots, and the year-round propagation of marmot fleas in wintering burrows, combined with behavioral shifts in marmots and fleas caused by climatic changes, led to the formation of conditions in the parasitic system M. sibirica-O. silantiewi in which the transformation of the FESLF microbe into the causative agent of the plague occurred according to peripatric speciation. Thus, the climatic changes that happened at different times in the Cenozoic initially led to a shift in behavior of the Tarbagan marmot and, subsequently, to a shift in the behavior of the fleas parasitizing it. Ultimately, the change in the behavior of marmots and fleas caused the transition of the clone(s) of the FESLF causative agent into a new ecological niche and adaptive zone, as well as the transformation into a population(s) of the plague microbe.
Collapse
Affiliation(s)
- V. V. Suntsov
- Severtsov Institute of Ecology and Evolution, 119071 Moscow, Russia
| |
Collapse
|
2
|
Suntsov VV. Host Aspect of Territorial Expansion of the Plague Microbe Yersinia pestis from the Populations of the Tarbagan Marmot (Marmota sibirica). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021080288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Suntsov VV. Genomogenesis of the Plague Bacteria Yersinia pestis as a Process of Mosaic Evolution. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Monnappa AK, Bari W, Seo JK, Mitchell RJ. The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFy) is Carried on Extracellular Membrane Vesicles to Host Cells. Sci Rep 2018; 8:14186. [PMID: 30242257 PMCID: PMC6155089 DOI: 10.1038/s41598-018-32530-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
In this study we show Yersinia pseudotuberculosis secretes membrane vesicles (MVs) that contain different proteins and virulence factors depending on the strain. Although MVs from Y. pseudotuberculosis YPIII and ATCC 29833 had many proteins in common (68.8% of all the proteins identified), those located in the outer membrane fraction differed significantly. For instance, the MVs from Y. pseudotuberculosis YPIII harbored numerous Yersinia outer proteins (Yops) while they were absent in the ATCC 29833 MVs. Another virulence factor found solely in the YPIII MVs was the cytotoxic necrotizing factor (CNFy), a toxin that leads to multinucleation of host cells. The ability of YPIII MVs to transport this toxin and its activity to host cells was verified using HeLa cells, which responded in a dose-dependent manner; nearly 70% of the culture was multinucleated after addition of 5 µg/ml of the purified YPIII MVs. In contrast, less than 10% were multinucleated when the ATCC 29833 MVs were added. Semi-quantification of CNFy within the YPIII MVs found this toxin is present at concentrations of 5 ~ 10 ng per µg of total MV protein, a concentration that accounts for the cellular responses seen.
Collapse
Affiliation(s)
- Ajay K Monnappa
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Wasimul Bari
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
5
|
Suntsov VV. Quantum Speciation of Yersinia pestis Plague Microbe in a Heteroimmune Environment: In the Populations of Hibernating Tarbagan Marmots (Marmota sibirica). CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s199542551804008x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Genesis of Flea-Born Transmission of Plague Microbe, Yersinia pestis: Two Approachs – Molecular-Genetic and Ecological Ones. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2018. [DOI: 10.21055/0370-1069-2018-2-37-44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two approaches to studying the origin and transmission mechanism of the flea-borne plague pathogen, Yersinia pestis: molecular-genetic and ecological ones – are considered in this review. The molecular genetic approach is based on saltation evolutionary ideology and relies upon the phenomenon of horizontal gene transfer of pla and ymt as critical evolutionary events. Further deletion of some structural and regulatory genes optimized “blockage” mechanism of transmission. The Ecological approach is based on the modern synthetic theory of evolution. It posits a gradual population-genetic transformation in the Marmot – Flea (Marmota sibirica – Oropsylla silantiewi) transitional (heterothermal, heteroimmune) host-parasite system in Late Pleistocene – Holocene epochs. The best prospects for disclosing the mechanisms of evolutionary formation of flea-borne Y. pestis transmission consist in the synthesis of molecular-genetic and ecological approaches.
Collapse
|
7
|
Suntsov VV. Ecological aspects of the origin of Yersinia pestis, causative agent of the plague: Concept of intermediate environment. CONTEMP PROBL ECOL+ 2014. [DOI: 10.1134/s1995425514010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. J Clin Microbiol 2013; 52:20-9. [PMID: 24131695 DOI: 10.1128/jcm.02185-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We developed a multilocus sequence typing (MLST) scheme and used it to study the population structure and evolutionary relationships of three pathogenic Yersinia species. MLST of these three Yersinia species showed a complex of two clusters, one composed of Yersinia pseudotuberculosis and Yersinia pestis and the other composed of Yersinia enterocolitica. Within the first cluster, the predominant Y. pestis sequence type 90 (ST90) was linked to Y. pseudotuberculosis ST43 by one locus difference, and 81.25% of the ST43 strains were from serotype O:1b, supporting the hypothesis that Y. pestis descended from the O:1b serotype of Y. pseudotuberculosis. We also found that the worldwide-prevalent serotypes O:1a, O:1b, and O:3 were predominated by specific STs. The second cluster consisted of pathogenic and nonpathogenic Y. enterocolitica strains, two of which may not have identical STs. The pathogenic Y. enterocolitica strains formed a relatively conserved group; most strains clustered within ST186 and ST187. Serotypes O:3, O:8, and O:9 were separated into three distinct blocks. Nonpathogenic Y. enterocolitica STs were more heterogeneous, reflecting genetic diversity through evolution. By providing a better and effective MLST procedure for use with the Yersinia community, valuable information and insights into the genetic evolutionary differences of these pathogens were obtained.
Collapse
|
9
|
Suntsov VV. Origin of the plague microbe Yersinia pestis: Structure of the process of speciation. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012010104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wittwer M, Heim J, Schär M, Dewarrat G, Schürch N. Tapping the potential of intact cell mass spectrometry with a combined data analytical approach applied to Yersinia spp.: detection, differentiation and identification of Y. pestis. Syst Appl Microbiol 2011; 34:12-9. [PMID: 21239132 DOI: 10.1016/j.syapm.2010.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/28/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022]
Abstract
In the everyday routine of an analytic lab, one is often confronted with the challenge to identify an unknown microbial sample lacking prior information to set the search limits. In the present work, we propose a workflow, which uses the spectral diversity of a commercial database (SARAMIS) to narrow down the search field at a certain taxonomic level, followed by a refined classification by supervised modelling. As supervised learning algorithm, we have chosen a shrinkage discriminant analysis approach, which takes collinearity of the data into account and provides a scoring system for biomarker ranking. This ranking can be used to tailor specific biomarker subsets, which optimize discrimination between subgroups, allowing a weighting of misclassification. The suitability of the approach was verified based on a dataset containing the mass spectra of three Yersinia species Yersinia enterocolitica, Y. pseudotuberculosis and Yersinia pestis. Thereby, we laid the emphasis on the discrimination between the highly related species Yersinia pseudotuberculosis and Y. pestis. All three species were correctly identified at the genus level by the commercial database. Whereas Y. enterocolitica was correctly identified at the species level, discrimination between the highly related Y. pseudotuberculosis and Y. pestis strains was ambiguous. With the use of the supervised modelling approach, we were able to accurately discriminate all the species even when grown under different culture conditions.
Collapse
Affiliation(s)
- Matthias Wittwer
- SPIEZ LABORATORY, Federal Office for Civil Protection FOCP, Austrasse, CH-3700 Spiez, Switzerland.
| | | | | | | | | |
Collapse
|
11
|
Draft genome sequences of Yersinia pestis isolates from natural foci of endemic plague in China. J Bacteriol 2009; 191:7628-9. [PMID: 19820101 DOI: 10.1128/jb.01227-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insights into the evolutionary origin, emergence, and pathogenicity of the etiologic agent of plague, we have sequenced the genomes of four Yersinia pestis strains isolated from the zoonotic rodent reservoir in foci of endemic plague in China. These resources enable in-depth studies of Y. pestis sequence variations and detailed whole-genome comparisons of very closely related genomes from the supposed site of the origin and the emergence of global pandemics of plague.
Collapse
|
12
|
Construction of SSH library from haemocyte of variously colored abalone challenged with bacteria and differential expression analysis of macrophage expressed protein. YI CHUAN = HEREDITAS 2008; 30:1043-50. [DOI: 10.3724/sp.j.1005.2008.01043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wang KJ, Ren HL, Xu DD, Cai L, Yang M. Identification of the up-regulated expression genes in hemocytes of variously colored abalone (Haliotis diversicolor Reeve, 1846) challenged with bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1326-1347. [PMID: 18538840 DOI: 10.1016/j.dci.2008.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/16/2008] [Accepted: 04/23/2008] [Indexed: 05/26/2023]
Abstract
Variously colored abalone (Haliotis diversicolor Reeve, 1846), which is an important commercial aquatic species and has been widely cultured, frequently suffers from bacterial infection. Knowledge of the defense mechanism in this animal is still lacking and, so far few genes related to immune responses in abalones have been reported. In order to isolate differentially expressed genes in H. diversicolor challenged with bacteria, a forward suppression subtractive hybridization (SSH) cDNA library was constructed from their hemocytes and the up-regulated genes were identified. A total of 435 clones in the SSH library were sequenced and 111 genes were recognized based on BLAST searches in NCBI and were categorized in association with different biological processes using AmiGO against the Gene Ontology database. Of the 111 cDNAs, 86 genes were identified for the first time in H. diversicolor. The up-regulated cDNAs screened in the SSH library were validated using quantitative real-time PCR and 78 genes showed differential expression patterns. A total of 34 genes were confirmed to be distinctly up-regulated in abalones after bacterial challenge, encoding proteins involved in cellular metabolic processes; cellular component organization and biogenesis; signal transduction and biological regulation; immune defense and response to stimuli; other functions and unknown functions. This is the first report to unveil multiple up-regulated genes with differential expression patterns involving various cellular processes in bacterially challenged H. diversicolor. The data obtained from this study will provide new insights into the immune mechanism of H. diversicolor and facilitate future study of target genes involved in the response to invading microorganisms.
Collapse
Affiliation(s)
- Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, 361005 Fujian, PR China.
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- John N Weinstein
- Department of Bioinformatics and Computational Biology, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Is the Sequenced Bordetella pertussis strain Tohama I representative of the species? J Clin Microbiol 2008; 46:2125-8. [PMID: 18385436 DOI: 10.1128/jcm.02484-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtractive hybridization was carried out to identify differences between the sequenced genome of Bordetella pertussis Tohama I and those of two recently collected isolates. We identified genetic regions specific to recent isolates, old isolates, and isolates of B. parapertussis and B. bronchiseptica species. We conclude that Tohama I strain is not representative of the B. pertussis species.
Collapse
|
16
|
Eppinger M, Rosovitz MJ, Fricke WF, Rasko DA, Kokorina G, Fayolle C, Lindler LE, Carniel E, Ravel J. The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet 2007; 3:e142. [PMID: 17784789 PMCID: PMC1959361 DOI: 10.1371/journal.pgen.0030142] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 07/10/2007] [Indexed: 12/25/2022] Open
Abstract
The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late 1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y. pseudotuberculosis strain, IP32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y. pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y. pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic information into the chromosome, which all together or independently seems to potentially impact the phenotypic adaptation of these two strains.
Collapse
Affiliation(s)
- Mark Eppinger
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | - M. J Rosovitz
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | - Wolfgang Florian Fricke
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | - David A Rasko
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | | | | | - Luther E Lindler
- Department of Defense, Global Emerging Infections Surveillance and Response System, Silver Spring, Maryland, United States of America
| | | | - Jacques Ravel
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|