1
|
Dietz K, Sagstetter C, Speck M, Roth A, Klamt S, Fabarius JT. A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid. Microb Cell Fact 2024; 23:344. [PMID: 39716233 DOI: 10.1186/s12934-024-02583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
The conversion of CO2 into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-molGlycolic acid C-molMethanol-1 is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L-1 glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.
Collapse
Affiliation(s)
- Katharina Dietz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Carina Sagstetter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Melanie Speck
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Arne Roth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany
| | - Jonathan Thomas Fabarius
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany.
| |
Collapse
|
2
|
Zhang C, Zhou DF, Wang MY, Song YZ, Zhang C, Zhang MM, Sun J, Yao L, Mo XH, Ma ZX, Yuan XJ, Shao Y, Wang HR, Dong SH, Bao K, Lu SH, Sadilek M, Kalyuzhnaya MG, Xing XH, Yang S. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth. Nat Commun 2024; 15:5969. [PMID: 39013920 PMCID: PMC11252147 DOI: 10.1038/s41467-024-50342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Di-Fei Zhou
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Meng-Ying Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Ya-Zhen Song
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Chong Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
| | - Ming-Ming Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Jing Sun
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, PR China
| | - Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Zeng-Xin Ma
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Xiao-Jie Yuan
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Yi Shao
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Hao-Ran Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Si-Han Dong
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, Hubei, PR China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, PR China.
| |
Collapse
|
3
|
Ma ZX, Feng CX, Song YZ, Sun J, Shao Y, Song SZ, Wan B, Zhang C, Fan H, Bao K, Yang S. Engineering photo-methylotrophic Methylobacterium for enhanced 3-hydroxypropionic acid production during non-growth stage fermentation. BIORESOURCE TECHNOLOGY 2024; 393:130104. [PMID: 38008225 DOI: 10.1016/j.biortech.2023.130104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.
Collapse
Affiliation(s)
- Zeng-Xin Ma
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Chen-Xi Feng
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Ya-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Jing Sun
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yi Shao
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Shu-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Bin Wan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Cong Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Huan Fan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, People's Republic of China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
4
|
Yuan XJ, Chen WJ, Ma ZX, Yuan QQ, Zhang M, He L, Mo XH, Zhang C, Zhang CT, Wang MY, Xing XH, Yang S. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens. Metab Eng 2021; 64:95-110. [PMID: 33493644 DOI: 10.1016/j.ymben.2021.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.
Collapse
Affiliation(s)
- Xiao-Jie Yuan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China; Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, Shandong Province, People's Republic of China
| | - Wen-Jing Chen
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Zeng-Xin Ma
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Qian-Qian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Min Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Chong Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
| | - Chang-Tai Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Meng-Ying Wang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, And Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
5
|
Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Sci Rep 2019; 9:4248. [PMID: 30862918 PMCID: PMC6414531 DOI: 10.1038/s41598-019-41043-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Lanthanide (Ln) elements are utilized as cofactors for catalysis by XoxF-type methanol dehydrogenases (MDHs). A primary assumption is that XoxF enzymes produce formate from methanol oxidation, which could impact organisms that require formaldehyde for assimilation. We report genetic and phenotypic evidence showing that XoxF1 (MexAM1_1740) from Methylobacterium extorquens AM1 produces formaldehyde, and not formate, during growth with methanol. Enzyme purified with lanthanum or neodymium oxidizes formaldehyde. However, formaldehyde oxidation via 2,6-dichlorophenol-indophenol (DCPIP) reduction is not detected in cell-free extracts from wild-type strain methanol- and lanthanum-grown cultures. Formaldehyde activating enzyme (Fae) is required for Ln methylotrophic growth, demonstrating that XoxF1-mediated production of formaldehyde is essential. Addition of exogenous lanthanum increases growth rate with methanol by 9–12% but does not correlate with changes to methanol consumption or formaldehyde accumulation. Transcriptomics analysis of lanthanum methanol growth shows upregulation of xox1 and downregulation of mxa genes, consistent with the Ln-switch, no differential expression of formaldehyde conversion genes, downregulation of pyrroloquinoline quinone (PQQ) biosynthesis genes, and upregulation of fdh4 formate dehydrogenase (FDH) genes. Additionally, the Ln-dependent ethanol dehydrogenase ExaF reduces methanol sensitivity in the fae mutant strain when lanthanides are present, providing evidence for the capacity of an auxiliary role for ExaF during Ln-dependent methylotrophy.
Collapse
|
6
|
Lanthanide-Dependent Regulation of Methylotrophy in Methylobacteriumaquaticum Strain 22A. mSphere 2018; 3:mSphere00462-17. [PMID: 29404411 PMCID: PMC5784242 DOI: 10.1128/msphere.00462-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Methylobacterium species are representative of methylotrophic bacteria. Their genomes usually encode two types of methanol dehydrogenases (MDHs): MxaF and XoxF. The former is a Ca2+-dependent enzyme, and the latter was recently determined to be a lanthanide-dependent enzyme that is necessary for the expression of mxaF. This finding revealed the unexpected and important roles of lanthanides in bacterial methylotrophy. In this study, we performed transcriptome sequencing (RNA-seq) analysis using M. aquaticum strain 22A grown in the presence of different lanthanides. Expression of mxaF and xoxF1 genes showed a clear inverse correlation in response to La3+. We observed downregulation of formaldehyde oxidation pathways, high formaldehyde dehydrogenase activity, and low accumulation of formaldehyde in the reaction with cells grown in the presence of La3+; this might be due to the direct oxidation of methanol to formate by XoxF1. Lanthanides induced the transcription of AT-rich genes, the function of most of which was unknown, and genes possibly related to cellular survival, as well as other MDH homologues. These results revealed not only the metabolic response toward altered primary methanol oxidation, but also the possible targets to be investigated further in order to better understand methylotrophy in the presence of lanthanides. IMPORTANCE Lanthanides have been considered unimportant for biological processes. In methylotrophic bacteria, however, a methanol dehydrogenase (MDH) encoded by xoxF was recently found to be lanthanide dependent, while the classic-type mxaFI is calcium dependent. XoxF-type MDHs are more widespread in diverse bacterial genera, suggesting their importance for methylotrophy. Methylobacterium species, representative methylotrophic and predominating alphaproteobacteria in the phyllosphere, contain both types and regulate their expression depending on the availability of lanthanides. RNA-seq analysis showed that the regulation takes place not only for MDH genes but also the subsequent formaldehyde oxidation pathways and respiratory chain, which might be due to the direct oxidation of methanol to formate by XoxF. In addition, a considerable number of genes of unknown function, including AT-rich genes, were found to be upregulated in the presence of lanthanides. This study provides first insights into the specific reaction of methylotrophic bacteria to the presence of lanthanides, emphasizing the biological relevance of this trace metal.
Collapse
|
7
|
Zhang W, Zhang T, Wu S, Wu M, Xin F, Dong W, Ma J, Zhang M, Jiang M. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv 2017. [DOI: 10.1039/c6ra27038g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Methanol represents an attractive non-food raw material in biotechnological processes from an economic and process point of view. It is vital to elucidate methanol metabolic pathways, which will help to genetically construct non-native methylotrophs.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Sihua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Mingke Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| |
Collapse
|
8
|
Liang WF, Cui LY, Cui JY, Yu KW, Yang S, Wang TM, Guan CG, Zhang C, Xing XH. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metab Eng 2016; 39:159-168. [PMID: 27919791 DOI: 10.1016/j.ymben.2016.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/28/2022]
Abstract
Acetyl-CoA is not only an important intermediate metabolite for cells but also a significant precursor for production of industrially interesting metabolites. Methylobacterium extorquens AM1, a model strain of methylotrophic cell factories using methanol as carbon source, is of interest because it produces abundant coenzyme A compounds capable of directing to synthesis of different useful compounds from methanol. However, acetyl-CoA is not always efficiently accumulated in M. extorquens AM1, as it is located in the center of three cyclic central metabolic pathways. Here we successfully demonstrated a strategy for sensor-assisted transcriptional regulator engineering (SATRE) to control metabolic flux re-distribution to increase acetyl-CoA flux from methanol for mevalonate production in M. extorquens AM1 with introduction of mevalonate synthesis pathway. A mevalonate biosensor was constructed and we succeeded in isolating a mutated strain (Q49) with a 60% increase in mevalonate concentration (an acetyl-CoA-derived product) following sensor-based high-throughput screening of a QscR transcriptional regulator library. The mutated QscR-49 regulator (Q8*,T61S,N72Y,E160V) lost an N-terminal α-helix and underwent a change in the secondary structure of the RD-I domain at the C terminus, two regions that are related to its interaction with DNA. 13C labeling analysis revealed that acetyl-CoA flux was improved by 7% and transcriptional analysis revealed that QscR had global effects and that two key points, NADPH generation and fumC overexpression, might contribute to the carbon flux re-distribution. A fed-batch fermentation in a 5-L bioreactor for QscR-49 mutant yielded a mevalonate concentration of 2.67g/L, which was equivalent to an overall yield of 0.055mol acetyl-CoA/mol methanol, the highest yield among engineered strains of M. extorquens AM1. This work was the first attempt to regulate M. extorquens AM1 on transcriptional level and provided molecular insights into the mechanism of carbon flux regulation.
Collapse
Affiliation(s)
- Wei-Fan Liang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education; Department of Chemical Engineering, Center for Synthetic & System Biology, Tsinghua University, Beijing 100084, China
| | - Lan-Yu Cui
- Key Laboratory for Industrial Biocatalysis, Ministry of Education; Department of Chemical Engineering, Center for Synthetic & System Biology, Tsinghua University, Beijing 100084, China
| | - Jin-Yu Cui
- School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai-Wen Yu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 10084, China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tian-Min Wang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education; Department of Chemical Engineering, Center for Synthetic & System Biology, Tsinghua University, Beijing 100084, China
| | - Chang-Ge Guan
- Key Laboratory for Industrial Biocatalysis, Ministry of Education; Department of Chemical Engineering, Center for Synthetic & System Biology, Tsinghua University, Beijing 100084, China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education; Department of Chemical Engineering, Center for Synthetic & System Biology, Tsinghua University, Beijing 100084, China.
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Ministry of Education; Department of Chemical Engineering, Center for Synthetic & System Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Cui J, Good NM, Hu B, Yang J, Wang Q, Sadilek M, Yang S. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol. PLoS One 2016; 11:e0154043. [PMID: 27116459 PMCID: PMC4846091 DOI: 10.1371/journal.pone.0154043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm over-expressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. This research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.
Collapse
Affiliation(s)
- Jinyu Cui
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao, Shandong Province, China
| | - Nathan M. Good
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Bo Hu
- Kemin Industries, KI Research & Development, Des Moines, Iowa, United States of America
| | - Jing Yang
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao, Shandong Province, China
| | - Qianwen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Song Yang
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao, Shandong Province, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- * E-mail:
| |
Collapse
|
10
|
Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1. J Bacteriol 2015; 197:2020-6. [PMID: 25845846 DOI: 10.1128/jb.02595-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During an environmental perturbation, the survival of a cell and its response to the perturbation depend on both the robustness and functionality of the metabolic network. The regulatory mechanisms that allow the facultative methylotrophic bacterium Methylobacterium extorquens AM1 to effect the metabolic transition from succinate to methanol growth are not well understood. Methenyl-dephosphotetrahydromethanopterin (methenyl-dH4MPT), an early intermediate during methanol metabolism, transiently accumulated 7- to 11-fold after addition of methanol to a succinate-limited culture. This accumulation partially inhibited the activity of the methylene-H4MPT dehydrogenase, MtdA, restricting carbon flux to the assimilation cycles. A strain overexpressing the gene (mch) encoding the enzyme that consumes methenyl-dH4MPT did not accumulate methenyl-dH4MPT and had a growth rate that was 2.7-fold lower than that of the wild type. This growth defect demonstrates the physiological relevance of this enzymatic regulatory mechanism during the acclimation period. Changes in metabolites and enzymatic activities were analyzed in the strain overexpressing mch. Under these conditions, the activity of the enzyme coupling formaldehyde with dH4MPT (Fae) remained constant, with concomitant formaldehyde accumulation. Release of methenyl-dH4MPT regulation did not affect the induction of the serine cycle enzyme activities immediately after methanol addition, but after 1 h, the activity of these enzymes decreased, likely due to the toxicity of formaldehyde accumulation. Our results support the hypothesis that in a changing environment, the transient accumulation of methenyl-dH4MPT and inhibition of MtdA activity are strategies that permit flexibility and acclimation of the metabolic network while preventing the accumulation of the toxic compound formaldehyde. IMPORTANCE The identification and characterization of regulatory mechanisms for methylotrophy are in the early stages. We report a nontranscriptional regulatory mechanism that was found to operate as an immediate response for acclimation during changes in substrate availability. Methenyl-dH4MPT, an early intermediate during methanol oxidation, reversibly inhibits the methylene-H4MPT dehydrogenase, MtdA, when Methylobacterium extorquens is challenged to switch from succinate to methanol growth. Bypassing this regulatory mechanism causes formaldehyde to accumulate. Fae, the enzyme catalyzing the conversion of formaldehyde to methylene-dH4MPT, was also identified as another potential regulatory target using this strategy. The results herein further our understanding of the complex regulatory network in methylotrophy and will allow us to improve metabolic engineering strategies of methylotrophs for the production of value-added products.
Collapse
|
11
|
Ethylmalonyl coenzyme A mutase operates as a metabolic control point in Methylobacterium extorquens AM1. J Bacteriol 2014; 197:727-35. [PMID: 25448820 DOI: 10.1128/jb.02478-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolism of one- and two-carbon compounds by the methylotrophic bacterium Methylobacterium extorquens AM1 involves high carbon flux through the ethylmalonyl coenzyme A (ethylmalonyl-CoA) pathway (EMC pathway). During growth on ethylamine, the EMC pathway operates as a linear pathway carrying the full assimilatory flux to produce glyoxylate, malate, and succinate. Assimilatory carbon enters the ethylmalonyl-CoA pathway directly as acetyl-CoA, bypassing pathways for formaldehyde oxidation/assimilation and the regulatory mechanisms controlling them, making ethylamine growth a useful condition to study the regulation of the EMC pathway. Wild-type M. extorquens cells were grown at steady state on a limiting concentration of succinate, and the growth substrate was then switched to ethylamine, a condition where the cell must make a sudden switch from utilizing the tricarboxylic acid (TCA) cycle to using the ethylmalonyl-CoA pathway for assimilation, which has been an effective strategy for identifying metabolic control points. A 9-h lag in growth was observed, during which butyryl-CoA, a degradation product of ethylmalonyl-CoA, accumulated, suggesting a metabolic imbalance. Ethylmalonyl-CoA mutase activity increased to a level sufficient for the observed growth rate at 9 h, which correlated with an upregulation of RNA transcripts for ecm and a decrease in the levels of ethylmalonyl-CoA. When the wild-type strain overexpressing ecm was tested with the same substrate switchover experiment, ethylmalonyl-CoA did not accumulate, growth resumed earlier, and, after a transient period of slow growth, the culture grew at a higher rate than that of the control. These findings demonstrate that ethylmalonyl-CoA mutase is a metabolic control point in the EMC pathway, expanding our understanding of its regulation.
Collapse
|
12
|
Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol 2014; 99:517-34. [PMID: 25432674 DOI: 10.1007/s00253-014-6240-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 01/06/2023]
Abstract
Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.
Collapse
Affiliation(s)
- Andrea M Ochsner
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1. J Bacteriol 2013; 195:2359-67. [PMID: 23504017 DOI: 10.1128/jb.00029-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methylotroph Methylobacterium extorquens AM1 oxidizes methanol and methylamine to formaldehyde and subsequently to formate, an intermediate that serves as the branch point between assimilation (formation of biomass) and dissimilation (oxidation to CO₂). The oxidation of formaldehyde to formate is dephosphotetrahydromethanopterin (dH₄MPT) dependent, while the assimilation of carbon into biomass is tetrahydrofolate (H₄F) dependent. This bacterium contains two different enzymes, MtdA and MtdB, both of which are dehydrogenases able to use methylene-dH₄MPT, an intermediate in the oxidation of formaldehyde to formate. Unique to MtdA is a second enzymatic activity with methylene-H₄F. Since methylene-H₄F is the entry point into the biomass pathways, MtdA plays a key role in assimilatory metabolism. However, its role in oxidative metabolism via the dH₄MPT-dependent pathway and its apparent inability to replace MtdB in vivo on methanol growth are not understood. Here, we have shown that an mtdB mutant is able to grow on methylamine, providing a system to study the role of MtdA. We demonstrate that the absence of MtdB results in the accumulation of methenyl-dH₄MPT. Methenyl-dH₄MPT is shown to be a competitive inhibitor of the reduction of methenyl-H₄F to methylene-H₄F catalyzed by MtdA, with an estimated Ki of 10 μM. Thus, methenyl-dH₄MPT accumulation inhibits H₄F-dependent assimilation. Overexpression of mch in the mtdB mutant strain, predicted to reduce methenyl-dH₄MPT accumulation, enhances growth on methylamine. Our model proposes that MtdA regulates carbon flux due to differences in its kinetic properties for methylene-dH₄MPT and for methenyl-H₄F during growth on single-carbon compounds.
Collapse
|
14
|
Peyraud R, Kiefer P, Christen P, Portais JC, Vorholt JA. Co-consumption of methanol and succinate by Methylobacterium extorquens AM1. PLoS One 2012; 7:e48271. [PMID: 23133625 PMCID: PMC3486813 DOI: 10.1371/journal.pone.0048271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022] Open
Abstract
Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions.
Collapse
Affiliation(s)
- Rémi Peyraud
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC SYSTEMS BIOLOGY 2011; 5:189. [PMID: 22074569 PMCID: PMC3227643 DOI: 10.1186/1752-0509-5-189] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/10/2011] [Indexed: 01/21/2023]
Abstract
Background Methylotrophic microorganisms are playing a key role in biogeochemical processes - especially the global carbon cycle - and have gained interest for biotechnological purposes. Significant progress was made in the recent years in the biochemistry, genetics, genomics, and physiology of methylotrophic bacteria, showing that methylotrophy is much more widespread and versatile than initially assumed. Despite such progress, system-level description of the methylotrophic metabolism is currently lacking, and much remains to understand regarding the network-scale organization and properties of methylotrophy, and how the methylotrophic capacity emerges from this organization, especially in facultative organisms. Results In this work, we report on the integrated, system-level investigation of the metabolic network of the facultative methylotroph Methylobacterium extorquens AM1, a valuable model of methylotrophic bacteria. The genome-scale metabolic network of the bacterium was reconstructed and contains 1139 reactions and 977 metabolites. The sub-network operating upon methylotrophic growth was identified from both in silico and experimental investigations, and 13C-fluxomics was applied to measure the distribution of metabolic fluxes under such conditions. The core metabolism has a highly unusual topology, in which the unique enzymes that catalyse the key steps of C1 assimilation are tightly connected by several, large metabolic cycles (serine cycle, ethylmalonyl-CoA pathway, TCA cycle, anaplerotic processes). The entire set of reactions must operate as a unique process to achieve C1 assimilation, but was shown to be structurally fragile based on network analysis. This observation suggests that in nature a strong pressure of selection must exist to maintain the methylotrophic capability. Nevertheless, substantial substrate cycling could be measured within C2/C3/C4 inter-conversions, indicating that the metabolic network is highly versatile around a flexible backbone of central reactions that allows rapid switching to multi-carbon sources. Conclusions This work emphasizes that the metabolism of M. extorquens AM1 is adapted to its lifestyle not only in terms of enzymatic equipment, but also in terms of network-level structure and regulation. It suggests that the metabolism of the bacterium has evolved both structurally and functionally to an efficient but transitory utilization of methanol. Besides, this work provides a basis for metabolic engineering to convert methanol into value-added products.
Collapse
Affiliation(s)
- Rémi Peyraud
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME. XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 2011; 193:6032-8. [PMID: 21873495 PMCID: PMC3194914 DOI: 10.1128/jb.05367-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/16/2011] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ∼50% identical to MxaF and ∼90% identical to each other. It was previously reported that xoxF is not required for methanol growth in M. extorquens AM1, but here we show that when both xoxF homologs are absent, strains are unable to grow in methanol medium and lack methanol dehydrogenase activity. We demonstrate that these defects result from the loss of gene expression from the mxa promoter and suggest that XoxF is part of a complex regulatory cascade involving the 2-component systems MxcQE and MxbDM, which are required for the expression of the methanol dehydrogenase genes.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-2180, USA.
| | | | | | | | | |
Collapse
|
17
|
Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. PLoS One 2010; 5:e14091. [PMID: 21124828 PMCID: PMC2991311 DOI: 10.1371/journal.pone.0014091] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/18/2010] [Indexed: 11/25/2022] Open
Abstract
Background When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. Methodology/Principal Findings This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Conclusions/Significance This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
18
|
Yang S, Sadilek M, Lidstrom ME. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global (13)C-labeled internal standards improve performance for quantitative metabolomics in bacteria. J Chromatogr A 2010; 1217:7401-10. [PMID: 20950815 PMCID: PMC3007600 DOI: 10.1016/j.chroma.2010.09.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 01/21/2023]
Abstract
Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global (13)C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers/isobars (e.g. isoleucine/leucine, methylsuccinic acid/ethylmalonic acid and malonyl-CoA/3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate/fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one (13)C-labeled I.S., the addition of global (13)C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global (13)C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in Methylobacterium extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of M. extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies.
Collapse
Affiliation(s)
- Song Yang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA 98195-2180, USA
| | - Mary E. Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-2180, USA
| |
Collapse
|
19
|
Chou HH, Berthet J, Marx CJ. Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation. PLoS Genet 2009; 5:e1000652. [PMID: 19763169 PMCID: PMC2732905 DOI: 10.1371/journal.pgen.1000652] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022] Open
Abstract
Understanding the evolution of biological systems requires untangling the molecular mechanisms that connect genetic and environmental variations to their physiological consequences. Metal limitation across many environments, ranging from pathogens in the human body to phytoplankton in the oceans, imposes strong selection for improved metal acquisition systems. In this study, we uncovered the genetic and physiological basis of adaptation to metal limitation using experimental populations of Methylobacterium extorquens AM1 evolved in metal-deficient growth media. We identified a transposition mutation arising recurrently in 30 of 32 independent populations that utilized methanol as a carbon source, but not in any of the 8 that utilized only succinate. These parallel insertion events increased expression of a novel transporter system that enhanced cobalt uptake. Such ability ensured the production of vitamin B12, a cobalt-containing cofactor, to sustain two vitamin B12–dependent enzymatic reactions essential to methanol, but not succinate, metabolism. Interestingly, this mutation provided higher selective advantages under genetic backgrounds or incubation temperatures that permit faster growth, indicating growth-rate–dependent epistatic and genotype-by-environment interactions. Our results link beneficial mutations emerging in a metal-limiting environment to their physiological basis in carbon metabolism, suggest that certain molecular features may promote the emergence of parallel mutations, and indicate that the selective advantages of some mutations depend generically upon changes in growth rate that can stem from either genetic or environmental influences. Effects of mutations can change under different genetic backgrounds or environmental factors, also known as epistasis and genotype-by-environment interactions (G×E), respectively. Though epistasis and G×E are traditionally treated as distinct phenomena, our study of a beneficial mutation highlights their commonality. This mutation resulted from insertion of the same transposable element upstream of a novel cobalt transport system in 30 of 32 independent populations during evolution in metal-limited media. The resulting increased cobalt uptake provided a selective benefit that depended upon two environmental factors: cobalt limitation and growth substrates whose metabolism requires a particular vitamin B12 (which contains cobalt) -dependent biochemical pathway. Furthermore, this mutation exhibited epistatic and G×E interactions with other cellular processes in a generic way, such that its selective advantage increased as cells were able to grow faster. This growth-rate dependence accords with a simple model: the slowest of multiple physiological processes needed for growth exerts the greatest control over an organism's growth rate. It suggests that as growth results from the performance of the entire physiological system, genes or environmental factors that affect distinct physiological processes may thus interact through their convergent effects on growth phenotypes.
Collapse
Affiliation(s)
- Hsin-Hung Chou
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Julia Berthet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Yang S, Sadilek M, Synovec RE, Lidstrom ME. Liquid chromatography-tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J Chromatogr A 2009; 1216:3280-9. [PMID: 19268957 PMCID: PMC2746075 DOI: 10.1016/j.chroma.2009.02.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
Complementary methods using liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOF-MS) were developed and applied to determine targeted metabolites involved in central carbon metabolism [including tricarboxylic acid cycle, serine cycle, ethylmalonyl-coenzyme A (ethylmalonyl-CoA) pathway and poly-beta-hydroxybutyrate cycle] of the bacterium Methylobacterium extorquens AM1 grown on two carbon sources, ethylamine (C2) and succinate (C4). Nucleotides, acyl-CoAs and a few volatile metabolites in cell extracts of M. extorquens AM1 were readily separated using either hydrophilic interaction liquid chromatography or reversed-phase liquid chromatography, and detected with good sensitivity by MS/MS. However, volatile intermediates within a low mass range (<300 m/z), especially at low abundance (such as glyoxylic acid and others <500nM), were more effectively analyzed by GCxGC-TOF-MS which often provided better sensitivity, resolution and reproducibility. The complementary nature of the LC-based and GC-based methods allowed the comparison of 39 metabolite concentrations (the lowest level was at 139.3nM). The overlap between the LC-based and GC-based methods of seven metabolites provided a basis to check for consistency between the two methods, and thus provided some validation of the quantification accuracy. The abundance change of 20 intermediates further suggested differences in pathways linked to C2 and C4 metabolism.
Collapse
Affiliation(s)
- Song Yang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA 98195-2180, USA
| | - Robert E. Synovec
- Department of Chemistry, University of Washington, Seattle, WA 98195-2180, USA
| | - Mary E. Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-2180, USA
| |
Collapse
|
21
|
Bosch G, Skovran E, Xia Q, Wang T, Taub F, Miller JA, Lidstrom ME, Hackett M. Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 2008; 8:3494-505. [PMID: 18686303 DOI: 10.1002/pmic.200800152] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to validate a gel free quantitative proteomics assay for the model methylotrophic bacterium Methylobacterium extorquens AM1, we examined the M. extorquens AM1 proteome under single carbon (methanol) and multicarbon (succinate) growth, conditions that have been studied for decades and for which extensive corroborative data have been compiled. In total, 4447 proteins from a database containing 7556 putative ORFs from M. extorquens AM1 could be identified with two or more peptide sequences, corresponding to a qualitative proteome coverage of 58%. Statistically significant nonzero (log(2) scale) differential abundance ratios of methanol/succinate could be detected for 317 proteins using summed ion intensity measurements and 585 proteins using spectral counting, at a q-value cut-off of 0.01, a measure of false discovery rate. The results were compared to recent microarray studies performed under equivalent chemostat conditions. The M. extorquens AM1 studies demonstrated the feasibility of scaling up the multidimensional capillary HPLC MS/MS approach to a prokaryotic organism with a proteome more than three times the size of microbes we have investigated previously, while maintaining a high degree of proteome coverage and reliable quantitative abundance ratios.
Collapse
Affiliation(s)
- Gundula Bosch
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 2008; 190:5057-62. [PMID: 18502865 DOI: 10.1128/jb.00228-08] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In serine cycle methylotrophs, methylene tetrahydrofolate (H4F) is the entry point of reduced one-carbon compounds into the serine cycle for carbon assimilation during methylotrophic metabolism. In these bacteria, two routes are possible for generating methylene H4F from formaldehyde during methylotrophic growth: one involving the reaction of formaldehyde with H4F to generate methylene H4F and the other involving conversion of formaldehyde to formate via methylene tetrahydromethanopterin-dependent enzymes and conversion of formate to methylene H4F via H4F-dependent enzymes. Evidence has suggested that the direct condensation reaction is the main source of methylene H4F during methylotrophic metabolism. However, mutants lacking enzymes that interconvert methylene H4F and formate are unable to grow on methanol, suggesting that this route for methylene H4F synthesis should have a significant role in biomass production during methylotrophic metabolism. This problem was investigated in Methylobacterium extorquens AM1. Evidence was obtained suggesting that the existing deuterium assay might overestimate the flux through the direct condensation reaction. To test this possibility, it was shown that only minor assimilation into biomass occurred in mutants lacking the methylene H4F synthesis pathway through formate. These results suggested that the methylene H4F synthesis pathway through formate dominates assimilatory flux. A revised kinetic model was used to validate this possibility, showing that physiologically plausible parameters in this model can account for the metabolic fluxes observed in vivo. These results all support the suggestion that formate, not formaldehyde, is the main branch point for methylotrophic metabolism in M. extorquens AM1.
Collapse
|
23
|
Okubo Y, Skovran E, Guo X, Sivam D, Lidstrom ME. Implementation of microarrays for Methylobacterium extorquens AM1. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2008; 11:325-40. [PMID: 18092906 DOI: 10.1089/omi.2007.0027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microarrays are an important tool for understanding global gene expression changes, and the resulting data sets can be used to direct physiologic and metabolic studies. To take advantage of this technology, 60-mer oligonucleotide microarrays were designed for Methylobacterium extorquens AM1 to study gene expression changes that occur under differing physiological conditions. The carbon utilization pathways for methanol and succinate have been well characterized, and growth with these substrates was chosen as the condition used to validate the microarray data. The data were analyzed using two different methods and compared to previously obtained experimental data. The array data processed using the Significance Analysis of Microarrays followed by p-value assessment, correlated best to the experimental data. In addition to validating the microarrays, these studies uncovered possible connections between methylotrophy, iron, and sulfur homeostasis, bacteriochlorophyll production and polyketide synthesis, and will likely aid in uncovering further metabolic networks and genes required for methylotrophy.
Collapse
Affiliation(s)
- Yoko Okubo
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
24
|
Guo X, Lidstrom ME. Metabolite profiling analysis ofMethylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Biotechnol Bioeng 2008; 99:929-40. [PMID: 17879968 DOI: 10.1002/bit.21652] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methylobacterium extorquens AM1 is a facultative methylotroph, which is a potential candidate to be used in commercial processes to convert simple one-carbon compounds to a variety of multicarbon chemicals and products. To better understand C(1) metabolism in M. extorquens AM1 at the systems level, metabolite profiling tools were developed and applied in this bacterium. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC x GC-TOFMS) was used to obtain metabolite profiles of M. extorquens AM1 (primarily organic acids) and to identify the metabolite differences between cells grown on methanol (C(1) substrate) and succinate (multicarbon substrate). In this study, a list of compounds that included amino acids and major intermediates of central C(1) and multicarbon metabolism were studied as target metabolites. For these, calibration curves were obtained for absolute quantification by spiking different amounts of standard mixtures to cell cultures. Parallel factor analysis (PARAFAC) was used for accurate peak quantification. Unknown chemical differences between cells grown on methanol and succinate were identified by applying Fisher ratio analysis at a selective mass channel (m/z 147). Thirty-six compounds were discovered to be statistically differentially expressed between C(1) and multicarbon metabolism. Among these, 13 were identified by matching to library mass spectra, and the rest were novel compounds that were not included in libraries. These differentially expressed compounds have provided clues to new pathways that are specifically linked to C(1) metabolism.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Chemical Engineering, University of Washington, Box 3521, Seattle, Washington 98195-2180, USA
| | | |
Collapse
|
25
|
Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 2007; 189:9076-81. [PMID: 17921299 DOI: 10.1128/jb.01229-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant of Methylobacterium extorquens AM1 with lesions in genes for three formate dehydrogenase (FDH) enzymes was previously described by us (L. Chistoserdova, M. Laukel, J.-C. Portais, J. A. Vorholt, and M. E. Lidstrom, J. Bacteriol. 186:22-28, 2004). This mutant had lost its ability to grow on formate but still maintained the ability to grow on methanol. In this work, we further investigated the phenotype of this mutant. Nuclear magnetic resonance experiments with [13C]formate, as well as 14C-labeling experiments, demonstrated production of labeled CO2 in the mutant, pointing to the presence of an additional enzyme or a pathway for formate oxidation. The tungsten-sensitive phenotype of the mutant suggested the involvement of a molybdenum-dependent enzyme. Whole-genome array experiments were conducted to test for genes overexpressed in the triple-FDH mutant compared to the wild type, and a gene (fdh4A) was identified whose translated product carried similarity to an uncharacterized putative molybdopterin-binding oxidoreductase-like protein sharing relatively low similarity with known formate dehydrogenase alpha subunits. Mutation of this gene in the triple-FDH mutant background resulted in a methanol-negative phenotype. When the gene was deleted in the wild-type background, the mutant revealed diminished growth on methanol with accumulation of high levels of formate in the medium, pointing to an important role of FDH4 in methanol metabolism. The identity of FDH4 as a novel FDH was also confirmed by labeling experiments that revealed strongly reduced CO2 formation in growing cultures. Mutation of a small open reading frame (fdh4B) downstream of fdh4A resulted in mutant phenotypes similar to the phenotypes of fdh4A mutants, suggesting that fdh4B is also involved in formate oxidation.
Collapse
|