1
|
Liu X, Wang X, Shao Z, Dang J, Wang W, Liu C, Wang J, Yuan H, Zhao G. The global nitrogen regulator GlnR is a direct transcriptional repressor of the key gluconeogenic gene pckA in actinomycetes. J Bacteriol 2024; 206:e0000324. [PMID: 38606980 PMCID: PMC11112990 DOI: 10.1128/jb.00003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
UNLABELLED In most actinomycetes, GlnR governs both nitrogen and non-nitrogen metabolisms (e.g., carbon, phosphate, and secondary metabolisms). Although GlnR has been recognized as a global regulator, its regulatory role in central carbon metabolism [e.g., glycolysis, gluconeogenesis, and the tricarboxylic acid (TCA) cycle] is largely unknown. In this study, we characterized GlnR as a direct transcriptional repressor of the pckA gene that encodes phosphoenolpyruvate carboxykinase, catalyzing the conversion of the TCA cycle intermediate oxaloacetate to phosphoenolpyruvate, a key step in gluconeogenesis. Through the transcriptomic and quantitative real-time PCR analyses, we first showed that the pckA transcription was upregulated in the glnR null mutant of Amycolatopsis mediterranei. Next, we proved that the pckA gene was essential for A. mediterranei gluconeogenesis when the TCA cycle intermediate was used as a sole carbon source. Furthermore, with the employment of the electrophoretic mobility shift assay and DNase I footprinting assay, we revealed that GlnR was able to specifically bind to the pckA promoter region from both A. mediterranei and two other representative actinomycetes (Streptomyces coelicolor and Mycobacterium smegmatis). Therefore, our data suggest that GlnR may repress pckA transcription in actinomycetes, which highlights the global regulatory role of GlnR in both nitrogen and central carbon metabolisms in response to environmental nutrient stresses. IMPORTANCE The GlnR regulator of actinomycetes controls nitrogen metabolism genes and many other genes involved in carbon, phosphate, and secondary metabolisms. Currently, the known GlnR-regulated genes in carbon metabolism are involved in the transport of carbon sources, the assimilation of short-chain fatty acid, and the 2-methylcitrate cycle, although little is known about the relationship between GlnR and the TCA cycle and gluconeogenesis. Here, based on the biochemical and genetic results, we identified GlnR as a direct transcriptional repressor of pckA, the gene that encodes phosphoenolpyruvate carboxykinase, a key enzyme for gluconeogenesis, thus highlighting that GlnR plays a central and complex role for dynamic orchestration of cellular carbon, nitrogen, and phosphate fluxes and bioactive secondary metabolites in actinomycetes to adapt to changing surroundings.
Collapse
Affiliation(s)
- Xinqiang Liu
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- CAS Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyun Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhihui Shao
- CAS Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Dang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wei Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Chaoyue Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jin Wang
- Tolo Biotechnology Company Limited, Shanghai, China
| | - Hua Yuan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Gao B, Li G, Gu D, Wang J. Research progress on GlnR-mediated regulation in Actinomycetes. Front Microbiol 2023; 14:1282523. [PMID: 38075861 PMCID: PMC10704036 DOI: 10.3389/fmicb.2023.1282523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/07/2023] [Indexed: 04/03/2025] Open
Abstract
This review constitutes a summary of current knowledge on GlnR, a global regulator, that assumes a critical function in the regulation of nitrogen metabolism of Actinomycetes. In cross-regulation with other regulators, GlnR was also shown to play a role in the regulation of carbon and phosphate metabolisms as well as of secondary metabolism. A description of the structure of the GlnR protein and of its binding sites in various genes promoters regions is also provided. This review thus provides a global understanding of the critical function played by GlnR in the regulation of primary and secondary metabolism in Actinomycetes.
Collapse
Affiliation(s)
- Bo Gao
- Department of Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Guoqiang Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jin Wang
- Department of Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
He J, Kang X, Wu J, Shao Z, Zhang Z, Wu Y, Yuan H, Zhao G, Wang J. Transcriptional Self-Regulation of the Master Nitrogen Regulator GlnR in Mycobacteria. J Bacteriol 2023; 205:e0047922. [PMID: 36943048 PMCID: PMC10127674 DOI: 10.1128/jb.00479-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
As a master nitrogen regulator in most actinomycetes, GlnR both governs central nitrogen metabolism and regulates many carbon, phosphate, and secondary metabolic pathways. To date, most studies have been focused on the GlnR regulon, while little is known about the transcriptional regulator for glnR itself. It has been observed that glnR transcription can be upregulated in Mycobacterium smegmatis under nitrogen-limited growth conditions; however, the detailed regulatory mechanism is still unclear. Here, we demonstrate that the glnR gene in M. smegmatis is transcriptionally activated by its product GlnR in response to nitrogen limitation. The precise GlnR binding site was successfully characterized in its promoter region using the electrophoretic mobility shift assay and the DNase I footprinting assay. Site mutagenesis and genetic analyses confirmed that the binding site was essential for in vivo self-activation of glnR transcription. Moreover, based on bioinformatic analyses, we discovered that most of the mycobacterial glnR promoter regions (144 out of 147) contain potential GlnR binding sites, and we subsequently proved that the purified M. smegmatis GlnR protein could specifically bind 16 promoter regions that represent 119 mycobacterial species, including Mycobacterium tuberculosis. Together, our findings not only elucidate the transcriptional self-regulation mechanism of glnR transcription in M. smegmatis but also indicate the ubiquity of the mechanism in other mycobacterial species. IMPORTANCE In actinomycetes, the nitrogen metabolism not only is essential for the construction of life macromolecules but also affects the biosynthesis of secondary metabolites and even virulence (e.g., Mycobacterium tuberculosis). The transcriptional regulation of genes involved in nitrogen metabolism has been thoroughly studied and involves the master nitrogen regulator GlnR. However, the transcriptional regulation of glnR itself remains elusive. Here, we demonstrated that GlnR functions as a transcriptional self-activator in response to nitrogen starvation in the fast-growing model Mycobacterium species Mycobacterium smegmatis. We further showed that this self-regulation mechanism could be widespread in other mycobacteria, which might be beneficial for those slow-growing mycobacteria to adapt to the nitrogen-starvation environments such as within human macrophages for M. tuberculosis.
Collapse
Affiliation(s)
- Juanmei He
- CAS Key Laboratory of Synthetic Biology, Centre of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoman Kang
- CAS Key Laboratory of Synthetic Biology, Centre of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng Wu
- CAS Key Laboratory of Synthetic Biology, Centre of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihui Shao
- CAS Key Laboratory of Synthetic Biology, Centre of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Yuqian Wu
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua Yuan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Centre of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Wang
- Department of Clinical Laboratory, Shenzhen Second People’s Hospital & Institute of Translational Medicine/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| |
Collapse
|
4
|
Crosstalk of TetR-like regulator SACE_4839 and a nitrogen regulator for erythromycin biosynthesis. Appl Microbiol Biotechnol 2022; 106:6551-6566. [PMID: 36075984 DOI: 10.1007/s00253-022-12153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
TetR family transcriptional regulators (TFRs) are widespread in actinomycetes, which exhibit diverse regulatory modes in antibiotic biosynthesis. Nitrogen regulators play vital roles in modulation of primary and secondary metabolism. However, crosstalk between TFR and nitrogen regulator has rarely been reported in actinomycetes. Herein, we demonstrated that a novel TFR, SACE_4839, was negatively correlated with erythromycin yield in Saccharopolyspora erythraea A226. SACE_4839 indirectly suppressed erythromycin synthetic gene eryAI and resistance gene ermE and directly inhibited its adjacent gene SACE_4838 encoding a homologue of nitrogen metabolite repression (NMR) regulator NmrA (herein named NmrR). The SACE_4839-binding sites within SACE_4839-nmrR intergenic region were identified. NmrR positively controlled erythromycin biosynthesis by indirectly stimulating eryAI and ermE and directly repressing SACE_4839. NmrR was found to affect growth viability under the nitrogen source supply. Furthermore, NmrR directly repressed glutamine and glutamate utilization-related genes SACE_1623, SACE_5070 and SACE_5979 but activated nitrate utilization-associated genes SACE_1163, SACE_4070 and SACE_4912 as well as nitrite utilization-associated genes SACE_1476 and SACE_4514. This is the first reported NmrA homolog for modulating antibiotic biosynthesis and nitrogen metabolism in actinomycetes. Moreover, combinatorial engineering of SACE_4839 and nmrR in the high-yield S. erythraea WB resulted in a 68.8% increase in erythromycin A production. This investigation deepens the understanding of complicated regulatory network for erythromycin biosynthesis. KEY POINTS: • SACE_4839 and NmrR had opposite contributions to erythromycin biosynthesis. • NmrR was first identified as a homolog of another nitrogen regulator NmrA. • Cross regulation between SACE_4839 and NmrR was revealed.
Collapse
|
5
|
Liu X, Liu Y, Lei C, Zhao G, Wang J. GlnR Dominates Rifamycin Biosynthesis by Activating the rif Cluster Genes Transcription Both Directly and Indirectly in Amycolatopsis mediterranei. Front Microbiol 2020; 11:319. [PMID: 32194530 PMCID: PMC7062684 DOI: 10.3389/fmicb.2020.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
Because of the remarkable efficacy in treating mycobacterial infections, rifamycin and its derivatives are still first-line antimycobacterial drugs. It has been intensely studied to increase rifamycin yield from Amycolatopsis mediterranei, and nitrate is found to provide a stable and remarkable stimulating effect on the rifamycin production, a phenomenon known as "nitrate-stimulating effect (NSE)". Although the NSE has been widely used for the industrial production of rifamycin, its detailed molecular mechanism remains ill-defined. And our previous study has established that the global nitrogen regulator GlnR may participate in the NSE, but the underlying mechanism is still enigmatic. Here, we demonstrate that GlnR directly controls rifamycin biosynthesis in A. mediterranei and thus plays an essential role in the NSE. Firstly, GlnR specifically binds to the upstream region of rifZ, which leads us to uncover that rifZ has its own promoter. As RifZ is a pathway-specific activator for the whole rif cluster, GlnR indirectly upregulates the whole rif cluster transcription by directly activating the rifZ expression. Secondly, GlnR specifically binds to the upstream region of rifK, which is also characterized to have its own promoter. It is well-known that RifK is a 3-amino-5-hydroxybenzoic acid (AHBA, the starter unit of rifamycin) synthase, thus GlnR can promote the supply of the rifamycin precursor by directly activating the rifK transcription. Notably, GlnR and RifZ independently activate the rifK transcription through binding to different sites in rifK promoter region, which suggests that the cells have a sophisticated regulatory mechanism to control the AHBA biosynthesis. Collectively, this study reveals that GlnR activates the rif cluster transcription in both direct (for rifZ and rifK) and indirect (for the whole rif cluster) manners, which well interprets the phenomenon that the NSE doesn't occur in the glnR null mutant. Furthermore, this study deepens our understanding about the molecular mechanism of the NSE.
Collapse
Affiliation(s)
- Xinqiang Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Liu
- Shanghai Tolo Biotechnology Company Limited, Shanghai, China
| | - Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
6
|
Martín JF, Liras P. The Balance Metabolism Safety Net: Integration of Stress Signals by Interacting Transcriptional Factors in Streptomyces and Related Actinobacteria. Front Microbiol 2020; 10:3120. [PMID: 32038560 PMCID: PMC6988585 DOI: 10.3389/fmicb.2019.03120] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Soil dwelling Streptomyces species are faced with large variations in carbon or nitrogen sources, phosphate, oxygen, iron, sulfur, and other nutrients. These drastic changes in key nutrients result in an unbalanced metabolism that have undesirable consequences for growth, cell differentiation, reproduction, and secondary metabolites biosynthesis. In the last decades evidence has accumulated indicating that mechanisms to correct metabolic unbalances in Streptomyces species take place at the transcriptional level, mediated by different transcriptional factors. For example, the master regulator PhoP and the large SARP-type regulator AfsR bind to overlapping sequences in the afsS promoter and, therefore, compete in the integration of signals of phosphate starvation and S-adenosylmethionine (SAM) concentrations. The cross-talk between phosphate control of metabolism, mediated by the PhoR-PhoP system, and the pleiotropic orphan nitrogen regulator GlnR, is very interesting; PhoP represses GlnR and other nitrogen metabolism genes. The mechanisms of control by GlnR of several promoters of ATP binding cassettes (ABC) sugar transporters and carbon metabolism are highly elaborated. Another important cross-talk that governs nitrogen metabolism involves the competition between GlnR and the transcriptional factor MtrA. GlnR and MtrA exert opposite effects on expression of nitrogen metabolism genes. MtrA, under nitrogen rich conditions, represses expression of nitrogen assimilation and regulatory genes, including GlnR, and competes with GlnR for the GlnR binding sites. Strikingly, these sites also bind to PhoP. Novel examples of interacting transcriptional factors, discovered recently, are discussed to provide a broad view of this interactions. Altogether, these findings indicate that cross-talks between the major transcriptional factors protect the cell metabolic balance. A detailed analysis of the transcriptional factors binding sequences suggests that the transcriptional factors interact with specific regions, either by overlapping the recognition sequence of other factors or by binding to adjacent sites in those regions. Additional interactions on the regulatory backbone are provided by sigma factors, highly phosphorylated nucleotides, cyclic dinucleotides, and small ligands that interact with cognate receptor proteins and with TetR-type transcriptional regulators. We propose to define the signal integration DNA regions (so called integrator sites) that assemble responses to different stress, nutritional or environmental signals. These integrator sites constitute nodes recognized by two, three, or more transcriptional factors to compensate the unbalances produced by metabolic stresses. This interplay mechanism acts as a safety net to prevent major damage to the metabolism under extreme nutritional and environmental conditions.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
7
|
Xu Y, You D, Yao LL, Chu X, Ye BC. Phosphate regulator PhoP directly and indirectly controls transcription of the erythromycin biosynthesis genes in Saccharopolyspora erythraea. Microb Cell Fact 2019; 18:206. [PMID: 31775761 PMCID: PMC6880422 DOI: 10.1186/s12934-019-1258-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background The choice of phosphate/nitrogen source and their concentrations have been shown to have great influences on antibiotic production. However, the underlying mechanisms responsible for this remain poorly understood. Results We show that nutrient-sensing regulator PhoP (phosphate regulator) binds to and upregulates most of genes (ery cluster genes) involved in erythromycin biosynthesis in Saccharopolyspora erythraea, resulting in increase of erythromycin yield. Furthermore, it was found that PhoP also directly interacted with the promoter region of bldD gene encoding an activator of erythromycin biosynthesis, and induced its transcription. Phosphate limitation and overexpression of phoP increased the transcript levels of ery genes to enhance the erythromycin production. The results are further supported by observation that an over-producing strain of S. erythraea expressed more PhoP than a wild-type strain. On the other hand, nitrogen signal exerts the regulatory effect on the erythromycin biosynthesis through GlnR negatively regulating the transcription of phoP gene. Conclusions These findings provide evidence that PhoP mediates the interplay between phosphate/nitrogen metabolism and secondary metabolism by integrating phosphate/nitrogen signals to modulate the erythromycin biosynthesis. Our study reveals a molecular mechanism underlying antibiotic production, and suggests new possibilities for designing metabolic engineering and fermentation optimization strategies for increasing antibiotics yield.
Collapse
Affiliation(s)
- Ya Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li-Li Yao
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China. .,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Alvarez HM, Herrero OM, Silva RA, Hernández MA, Lanfranconi MP, Villalba MS. Insights into the Metabolism of Oleaginous Rhodococcus spp. Appl Environ Microbiol 2019; 85:e00498-19. [PMID: 31324625 PMCID: PMC6715851 DOI: 10.1128/aem.00498-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Some species belonging to the Rhodococcus genus, such as Rhodococcus opacus, R. jostii, and R. wratislaviensis, are known to be oleaginous microorganisms, since they are able to accumulate triacylglycerols (TAG) at more than 20% of their weight (dry weight). Oleaginous rhodococci are promising microbial cell factories for the production of lipids to be used as fuels and chemicals. Cells could be engineered to create strains capable of producing high quantities of oils from industrial wastes and a variety of high-value lipids. The comprehensive understanding of carbon metabolism and its regulation will contribute to the design of a reliable process for bacterial oil production. Bacterial oleagenicity requires an integral configuration of metabolism and regulatory processes rather than the sole existence of an efficient lipid biosynthesis pathway. In recent years, several studies have been focused on basic aspects of TAG biosynthesis and accumulation using R. opacus PD630 and R. jostii RHA1 strains as models of oleaginous bacteria. The combination of results obtained in these studies allows us to propose a metabolic landscape for oleaginous rhodococci. In this context, this article provides a comprehensive and integrative view of different metabolic and regulatory attributes and innovations that explain the extraordinary ability of these bacteria to synthesize and accumulate TAG. We hope that the accessibility to such information in an integrated way will help researchers to rationally select new targets for further studies in the field.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - O Marisa Herrero
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Roxana A Silva
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Martín A Hernández
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P Lanfranconi
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Maria S Villalba
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| |
Collapse
|
9
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
10
|
Romero-Rodríguez A, Maldonado-Carmona N, Ruiz-Villafán B, Koirala N, Rocha D, Sánchez S. Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie van Leeuwenhoek 2018; 111:761-781. [PMID: 29605896 DOI: 10.1007/s10482-018-1073-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022]
Abstract
Streptomyces species are a wide and diverse source of many therapeutic agents (antimicrobials, antineoplastic and antioxidants, to name a few) and represent an important source of compounds with potential applications in medicine. The effect of nitrogen, phosphate and carbon on the production of secondary metabolites has long been observed, but it was not until recently that the molecular mechanisms on which these effects rely were ascertained. In addition to the specific macronutrient regulatory mechanisms, there is a complex network of interactions between these mechanisms influencing secondary metabolism. In this article, we review the recent advances in our understanding of the molecular mechanisms of regulation exerted by nitrogen, phosphate and carbon sources, as well as the effects of their interconnections, on the synthesis of secondary metabolites by members of the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico.
| | - Nidia Maldonado-Carmona
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Niranjan Koirala
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Diana Rocha
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
11
|
Li C, Liu X, Lei C, Yan H, Shao Z, Wang Y, Zhao G, Wang J, Ding X. RifZ (AMED_0655) Is a Pathway-Specific Regulator for Rifamycin Biosynthesis in Amycolatopsis mediterranei. Appl Environ Microbiol 2017; 83:e03201-16. [PMID: 28159794 PMCID: PMC5377510 DOI: 10.1128/aem.03201-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 11/20/2022] Open
Abstract
Rifamycin and its derivatives are particularly effective against the pathogenic mycobacteria Mycobacterium tuberculosis and Mycobacterium leprae Although the biosynthetic pathway of rifamycin has been extensively studied in Amycolatopsis mediterranei, little is known about the regulation in rifamycin biosynthesis. Here, an in vivo transposon system was employed to identify genes involved in the regulation of rifamycin production in A. mediterranei U32. In total, nine rifamycin-deficient mutants were isolated, among which three mutants had the transposon inserted in AMED_0655 (rifZ, encoding a LuxR family regulator). The rifZ gene was further knocked out via homologous recombination, and the transcription of genes in the rifamycin biosynthetic gene cluster (rif cluster) was remarkably reduced in the rifZ null mutant. Based on the cotranscription assay results, genes within the rif cluster were grouped into 10 operons, sharing six promoter regions. By use of electrophoretic mobility shift assay and DNase I footprinting assay, RifZ was proved to specially bind to all six promoter regions, which was consistent with the fact that RifZ regulated the transcription of the whole rif cluster. The binding consensus sequence was further characterized through alignment using the RifZ-protected DNA sequences. By use of bionformatic analysis, another five promoters containing the RifZ box (CTACC-N8-GGATG) were identified, among which the binding of RifZ to the promoter regions of both rifK and orf18 (AMED_0645) was further verified. As RifZ directly regulates the transcription of all operons within the rif cluster, we propose that RifZ is a pathway-specific regulator for the rif cluster.IMPORTANCE To this day, rifamycin and its derivatives are still the first-line antituberculosis drugs. The biosynthesis of rifamycin has been extensively studied, and most biosynthetic processes have been characterized. However, little is known about the regulation of the transcription of the rifamycin biosynthetic gene cluster (rif cluster), and no regulator has been characterized. Through the employment of transposon screening, we here characterized a LuxR family regulator, RifZ, as a direct transcriptional activator for the rif cluster. As RifZ directly regulates the transcription of the entire rif cluster, it is considered a pathway-specific regulator for rifamycin biosynthesis. Therefore, as the first regulator characterized for direct regulation of rif cluster transcription, RifZ may provide a new clue for further engineering of high-yield industrial strains.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinqiang Liu
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Yan
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihui Shao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Ding
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
He JM, Zhu H, Zheng GS, Liu PP, Wang J, Zhao GP, Zhu GQ, Jiang WH, Lu YH. Direct Involvement of the Master Nitrogen Metabolism Regulator GlnR in Antibiotic Biosynthesis in Streptomyces. J Biol Chem 2016; 291:26443-26454. [PMID: 27875313 PMCID: PMC5159505 DOI: 10.1074/jbc.m116.762476] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/03/2016] [Indexed: 11/06/2022] Open
Abstract
GlnR, an OmpR-like orphan two-component system response regulator, is a master regulator of nitrogen metabolism in the genus Streptomyces In this work, evidence that GlnR is also directly involved in the regulation of antibiotic biosynthesis is provided. In the model strain Streptomyces coelicolor M145, an in-frame deletion of glnR resulted in markedly increased actinorhodin (ACT) production but reduced undecylprodigiosin (RED) biosynthesis when exposed to R2YE culture medium. Transcriptional analysis coupled with DNA binding studies revealed that GlnR represses ACT but activates RED production directly via the pathway-specific activator genes actII-ORF4 and redZ, respectively. The precise GlnR-binding sites upstream of these two target genes were defined. In addition, the direct involvement of GlnR in antibiotic biosynthesis was further identified in Streptomyces avermitilis, which produces the important anthelmintic agent avermectin. We found that S. avermitilis GlnR (GlnRsav) could stimulate avermectin but repress oligomycin production directly through the respective pathway-specific activator genes, aveR and olmRI/RII To the best of our knowledge, this report describes the first experimental evidence demonstrating that GlnR regulates antibiotic biosynthesis directly through pathway-specific regulators in Streptomyces Our results suggest that GlnR-mediated regulation of antibiotic biosynthesis is likely to be universal in streptomycetes. These findings also indicate that GlnR is not only a master nitrogen regulator but also an important controller of secondary metabolism, which may help to balance nitrogen metabolism and antibiotic biosynthesis in streptomycetes.
Collapse
Affiliation(s)
- Juan-Mei He
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
- the University of Chinese Academy of Sciences, Beijing 100049
| | - Hong Zhu
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Guo-Song Zheng
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Pan-Pan Liu
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Jin Wang
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Guo-Ping Zhao
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Guo-Qiang Zhu
- the College of Veterinary Medicine, Yangzhou University, Yangzhou 225009,
| | - Wei-Hong Jiang
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032,
- the Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, Nanjing 210009, and
| | - Yin-Hua Lu
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032,
- the Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Cen XF, Wang JZ, Zhao GP, Wang Y, Wang J. Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor. Biochem Biophys Res Commun 2016; 471:510-514. [PMID: 26882977 DOI: 10.1016/j.bbrc.2016.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 11/25/2022]
Abstract
In the agl3EFGXYZ operon (SCO7167-SCO7162, abbreviated as agl3 operon) of Streptomyces coelicolor M145, agl3EFG genes encode a putative ABC-type carbohydrate transporter. The transcription of this operon has been proved to be repressed by Agl3R (SCO7168), a neighboring GntR-family regulator, and this repression can be released by growth on poor carbon sources. Here in this study, we prove that the transcription of agl3 operon is also directly repressed by GlnR, a central regulator governing the nitrogen metabolism in S. coelicolor. The electrophoretic mobility shift assay (EMSA) employing the agl3 promoter and mixtures of purified recombinant GlnR and Agl3R indicates that GlnR and Agl3R bind to different DNA sequences within the promoter region of agl3 operon, which is further confirmed by the DNase I footprinting assay. As Agl3R and GlnR have been demonstrated to sense the extracellular carbon and nitrogen supplies, respectively, it is hypothesized that the transcription of agl3 operon is stringently governed by the availabilities of extracellular carbon and nitrogen sources. Consistent with the hypothesis, the agl3 operon is further found to be derepressed only under the condition of poor carbon and rich nitrogen supplies, when both regulators are inactivated. It is believed that activation of the expression of agl3 operon may facilitate the absorption of extracellular carbohydrates to balance the ratio of intracellular carbon to nitrogen.
Collapse
Affiliation(s)
- Xu-Feng Cen
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing-Zhi Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Shanghai-MOST Key Laboratory for Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China; Department of Microbiology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Ying Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
14
|
Shao ZH, Ren SX, Liu XQ, Xu J, Yan H, Zhao GP, Wang J. A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq. Microb Cell Fact 2015; 14:75. [PMID: 26041361 PMCID: PMC4453227 DOI: 10.1186/s12934-015-0264-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/11/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Rifamycin is an important antibiotic for the treatment of infectious disease caused by Mycobacteria tuberculosis. It was found that in Amycolatopsis mediterranei U32, an industrial producer for rifamycin SV, supplementation of nitrate into the medium remarkably stimulated the yield of rifamycin SV. However, the molecular mechanism of this nitrate-mediated stimulation remains unknown. RESULTS In this study, RNA-sequencing (RNA-seq) technology was employed for investigation of the genome-wide differential gene expression in U32 cultured with or without nitrate supplementation. In the presence of nitrate, U32 maintained a high transcriptional level of genes both located in the rifamycin biosynthetic cluster and involved in the biosynthesis of rifamycin precursors, including 3-amino-5-dihydroxybenzoic acid, malonyl-CoA and (S)-methylmalonyl-CoA. However, when nitrate was omitted from the medium, the transcription of these genes declined sharply during the transition from the mid-logarithmic phase to the early stationary phase. With these understandings, one may easily propose that nitrate stimulates the rifamycin SV production through increasing both the precursors supply and the enzymes for rifamycin biosynthesis. CONCLUSION It is the first time to thoroughly illustrate the mechanism of the nitrate-mediated stimulation of rifamycin production at the transcriptional level, which may facilitate improvement of the industrial production of rifamycin SV, e.g. through optimizing the global rifamycin biosynthetic pathways on the basis of RNA-seq data.
Collapse
Affiliation(s)
- Zhi Hui Shao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Shuang Xi Ren
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Xin Qiang Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Jian Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Han Yan
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Guo Ping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China.
- State Key Lab of Genetic Engineering and Center for Synthetic Biology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.
- Department of Microbiology and Li KaShing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Sar, China.
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China.
| |
Collapse
|
15
|
Wang J, Wang Y, Zhao GP. Precise characterization of GlnR Box in actinomycetes. Biochem Biophys Res Commun 2015; 458:605-607. [PMID: 25684190 DOI: 10.1016/j.bbrc.2015.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
Abstract
GlnR has been characterized as a central regulator governing most nitrogen metabolisms in many important actinomycetes. So far, the GlnR binding consensus sequences have been extensively studied, but with different motifs proposed, which has therefore brought confusion and impeded the understanding of the in-depth molecular mechanisms of GlnR-mediated transcriptional regulation. Here, a 30-nt GlnR-protected DNA sequence in the promoter of glnA in Amycolatopsis mediterranei was employed for precise characterization of GlnR binding consensus sequences. Site-by-site mutagenesis strategy combining with the Electrophoretic Mobility Shift Assay were employed, and a 5-nt GlnR Box was precisely defined as the basic unit for GlnR binding.
Collapse
Affiliation(s)
- Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China; Shanghai-MOST Key Laboratory for Health and Disease Genomics, Chinese National Human Genome Center, Shanghai, China; Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region
| |
Collapse
|
16
|
Qu S, Kang Q, Wu H, Wang L, Bai L. Positive and negative regulation of GlnR in validamycin A biosynthesis by binding to different loci in promoter region. Appl Microbiol Biotechnol 2015; 99:4771-83. [PMID: 25672849 DOI: 10.1007/s00253-015-6437-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 12/27/2022]
Abstract
Validamycin A (VAL-A) is a C7N aminocyclitol antibiotic produced by Streptomyces hygroscopicus var. jinggangensis 5008, which has been widely used as antifungal agent against rice sheath blight disease. VAL-A biosynthesis has been proven to be affected by γ-butyrolactone and temperature. Herein, we showed that GlnR, a global regulator in nitrogen metabolism, is specifically associated with valK-valA intergenic promoter region by DNA-affinity chromatography and MS-based protein identification. Subsequent EMSA and DNase I footprinting assays revealed two GlnR binding sites in this promoter region. Targeted disruption of glnR in S. hygroscopicus 5008 led to a significant increase in the transcription of VAL-A structural genes, albeit the VAL-A production was reduced by 80 % and the sporulation of the mutant was impaired. Compared with the wild-type 5008, site-specific mutagenesis of GlnR binding site I enhanced VAL-A production by 2.5-fold, whereas the mutation of GlnR binding site II resulted in a 50 % reduction of VAL-A yield. Moreover, tandem mutation of site I in the site II mutant led to a 66 % increase of VAL-A production. The result suggested that GlnR not only serves as an inhibitor by binding site I but also as an activator by binding site II for VAL-A biosynthesis. Furthermore, overexpression of glnR in the site I mutant JG45 improved VAL-A production for 41 % compared with the control strain containing the vector. Therefore, the obtained data illustrate a novel regulatory feature of the global regulator GlnR. GlnR is firstly proved to act simultaneously as an activator and a repressor in validamycin biosynthesis by binding to different loci within a promoter region of the gene cluster.
Collapse
Affiliation(s)
- Shuang Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
17
|
Xu L, Li Y, Zhu L, Zhao W, Chen D, Huang W, Yang S. Characterization of plasmid pXL100 fromAmycolatopsis orientalisHCCB10007 and construction of a shuttle vector. J Basic Microbiol 2014; 55:247-54. [DOI: 10.1002/jobm.201400210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/12/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Li Xu
- College of Life Science; Nanjing Agriculture University; Nanjing China
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Yanmei Li
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Li Zhu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Wei Zhao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Daijie Chen
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Weiyi Huang
- College of Life Science; Nanjing Agriculture University; Nanjing China
| | - Sheng Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
18
|
Wang Y, Li C, Duan N, Li B, Ding XM, Yao YF, Hu J, Zhao GP, Wang J. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site. PLoS One 2014; 9:e104811. [PMID: 25144373 PMCID: PMC4140684 DOI: 10.1371/journal.pone.0104811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT) and alanine dehydrogenase (AlaDH) in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs) of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II) were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Chen Li
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Na Duan
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ming Ding
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Yu-Feng Yao
- Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Hu
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Jin Wang
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea. Appl Microbiol Biotechnol 2014; 98:7935-48. [PMID: 24931311 DOI: 10.1007/s00253-014-5878-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/22/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Nitrogen source sensing, uptake, and assimilation are central for growth and development of microorganisms which requires the participation of a global control of nitrogen metabolism-associated genes at the transcriptional level. In soil-dwelling antibiotic-producing actinomycetes, this role is played by GlnR, an OmpR family regulator. In this work, we demonstrate that SACE_7101 is the ortholog of actinomycetes' GlnR global regulators in the erythromycin producer Saccharopolyspora erythraea. Indeed, the chromosomal deletion of SACE_7101 severely affects the viability of S. erythraea when inoculated in minimal media supplemented with NaNO3, NaNO2, NH4Cl, glutamine, or glutamate as sole nitrogen source. Combination of in silico prediction of cis-acting elements, subsequent in vitro (through gel shift assays) and in vivo (real-time reverse transcription polymerase chain reaction) validations of the predicted target genes revealed a very large GlnR regulon aimed at adapting the nitrogen metabolism of S. erythraea. Indeed, enzymes/proteins involved in (i) uptake and assimilation of ammonium, (ii) transport and utilization of urea, (iii) nitrite/nitrate, (iv) glutamate/glutamine, (v) arginine metabolism, (vi) nitric oxide biosynthesis, and (vii) signal transduction associated with the nitrogen source supplied have at least one paralog gene which expression is controlled by GlnR. Our work highlights a GlnR-binding site consensus sequence (t/gna/cAC-n6-GaAAc) which is similar although not identical to the consensus sequences proposed for other actinomycetes. Finally, we discuss the distinct and common features of the GlnR-mediated transcriptional control of nitrogen metabolism between S. erythraea and the model organism Streptomyces coelicolor.
Collapse
|
20
|
Lin W, Wang Y, Han X, Zhang Z, Wang C, Wang J, Yang H, Lu Y, Jiang W, Zhao GP, Zhang P. Atypical OmpR/PhoB subfamily response regulator GlnR of actinomycetes functions as a homodimer, stabilized by the unphosphorylated conserved Asp-focused charge interactions. J Biol Chem 2014; 289:15413-15425. [PMID: 24733389 PMCID: PMC4140898 DOI: 10.1074/jbc.m113.543504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
The OmpR/PhoB subfamily protein GlnR of actinomycetes is an orphan response regulator that globally coordinates the expression of genes related to nitrogen metabolism. Biochemical and genetic analyses reveal that the functional GlnR from Amycolatopsis mediterranei is unphosphorylated at the potential phosphorylation Asp(50) residue in the N-terminal receiver domain. The crystal structure of this receiver domain demonstrates that it forms a homodimer through the α4-β5-α5 dimer interface highly similar to the phosphorylated typical response regulator, whereas the so-called "phosphorylation pocket" is not conserved, with its space being occupied by an Arg(52) from the β3-α3 loop. Both in vitro and in vivo experiments confirm that GlnR forms a functional homodimer via its receiver domain and suggest that the charge interactions of Asp(50) with the highly conserved Arg(52) and Thr(9) in the receiver domain may be crucial in maintaining the proper conformation for homodimerization, as also supported by molecular dynamics simulations of the wild type GlnR versus the deficient mutant GlnR(D50A). This model is backed by the distinct phenotypes of the total deficient GlnR(R52A/T9A) double mutant versus the single mutants of GlnR (i.e. D50N, D50E, R52A and T9A), which have only minor effects upon both dimerization and physiological function of GlnR in vivo, albeit their DNA binding ability is weakened compared with that of the wild type. By integrating the supportive data of GlnRs from the model Streptomyces coelicolor and the pathogenic Mycobacterium tuberculosis, we conclude that the actinomycete GlnR is atypical with respect to its unphosphorylated conserved Asp residue being involved in the critical Arg/Asp/Thr charge interactions, which is essential for maintaining the biologically active homodimer conformation.
Collapse
Affiliation(s)
- Wei Lin
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Ying Wang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology, the State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaobiao Han
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Zilong Zhang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Chengyuan Wang
- State Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Wang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Huaiyu Yang
- the Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinhua Lu
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Weihong Jiang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Guo-Ping Zhao
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology, the State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China, the Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China, the Department of Microbiology and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China, and
| | - Peng Zhang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,
| |
Collapse
|
21
|
Sudhakar P, Reck M, Wang W, He FQ, Wagner-Döbler I, Dobler IW, Zeng AP. Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton. BMC Genomics 2014; 15:362. [PMID: 24884510 PMCID: PMC4048456 DOI: 10.1186/1471-2164-15-362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/17/2014] [Indexed: 11/26/2022] Open
Abstract
Background Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out. Results The co-expression response network constructed from transcriptomic data using the reverse engineering algorithm called the Trend Correlation method consisted of 8284 gene pairs. The regulatory response network inferred by superimposing transcription factor binding site information into the co-expression network comprised 329 putative transcriptional regulatory interactions and could be classified into 27 sub-networks each co-regulated by a transcription factor. These sub-networks were significantly enriched with genes sharing common functions. The regulatory response network displayed global hierarchy and network motifs as observed in model organisms. The sub-networks modulated by the pyrimidine biosynthesis regulator PyrR, the glutamine synthetase repressor GlnR, the cysteine metabolism regulator CysR, global regulators CcpA and CodY and the two component system response regulators VicR and MbrC among others could putatively be related to the physiological effect of carolacton. The predicted interactions from the regulatory network between MbrC, known to be involved in cell envelope stress response, and the murMN-SMU_718c genes encoding peptidoglycan biosynthetic enzymes were experimentally confirmed using Electro Mobility Shift Assays. Furthermore, gene deletion mutants of five predicted key regulators from the response networks were constructed and their sensitivities towards carolacton were investigated. Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network. Conclusion The network approach used in this study revealed important regulators and interactions as part of the response mechanisms of S. mutans biofilm cells to carolacton. It also opens a door for further studies into novel drug targets against streptococci. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-362) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene W Dobler
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073 Hamburg, Germany.
| | | |
Collapse
|
22
|
Chen Y, Zhu H, Zheng G, Jiang W, Lu Y. Functional analysis of TetR-family regulator AmtRsav in Streptomyces avermitilis. MICROBIOLOGY-SGM 2013; 159:2571-2583. [PMID: 24068239 DOI: 10.1099/mic.0.071449-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In actinomycetes, two main regulators, the OmpR-like GlnR and the TetR-type AmtR, have been identified as the central regulators for nitrogen metabolism. GlnR-mediated regulation was previously identified in different actinomycetes except for members of the genus Corynebacterium, in which AmtR plays a predominant role in nitrogen metabolism. Interestingly, some actinomycetes (e.g. Streptomyces avermitilis) harbour both glnR- and amtR-homologous genes in the chromosome. Thus, it will be interesting to determine how these two different types of regulators function together in nitrogen regulation of these strains. In this study, AmtRsav (sav_6701) in S. avermitilis, the homologue of AmtR from Corynebacterium glutamicum, was functionally characterized. We showed, by real-time reverse transcription (RT)-PCR (qPCR) in combination with electrophoretic mobility shift assays (EMSAs), that gene cluster sav_6697-6700 encoding a putative amidase, a urea carboxylase and two hypothetical proteins, respectively, and sav_6709 encoding a probable amino acid permease are under the direct control of AmtRsav. Using approaches of comparative analysis combined with site-directed DNA mutagenesis, the AmtRsav binding sites in the respective intergenic regions of sav_6700/6701 and sav_6709/6710 were defined. By genome screening coupled with EMSAs, two novel AmtRsav binding sites were identified. Taken together, AmtRsav seems to play a marginal role in regulation of nitrogen metabolism of S. avermitilis.
Collapse
Affiliation(s)
- Yunliang Chen
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China.,Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Hong Zhu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Guosong Zheng
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yinhua Lu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
23
|
Three of four GlnR binding sites are essential for GlnR-mediated activation of transcription of the Amycolatopsis mediterranei nas operon. J Bacteriol 2013; 195:2595-602. [PMID: 23543714 DOI: 10.1128/jb.00182-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Amycolatopsis mediterranei U32, genes responsible for nitrate assimilation formed one operon, nasACKBDEF, whose transcription is induced by the addition of nitrate. Here, we characterized GlnR as a direct transcriptional activator for the nas operon. The GlnR-protected DNA sequences in the promoter region of the nas operon were characterized by DNase I footprinting assay, the previously deduced Streptomyces coelicolor double 22-bp GlnR binding consensus sequences comprising a1, b1, a2, and b2 sites were identified, and the sites were then mutated individually to test their roles in both the binding of GlnR in vitro and the GlnR-mediated transcriptional activation in vivo. The results clearly showed that only three GlnR binding sites (a1, b1, and b2 sites) were required by GlnR for its specific binding to the nas promoter region and efficient activation of the transcription of the nas operon in U32, while the a2 site seemed unnecessary.
Collapse
|
24
|
Song E, Rajesh T, Lee BR, Kim EJ, Jeon JM, Park SH, Park HY, Choi KY, Kim YG, Yang YH, Kim BG. Deletion of an architectural unit, leucyl aminopeptidase (SCO2179), in Streptomyces coelicolor increases actinorhodin production and sporulation. Appl Microbiol Biotechnol 2013; 97:6823-33. [PMID: 23525887 DOI: 10.1007/s00253-013-4847-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 12/01/2022]
Abstract
Several reports state that three architectural units, including integration host factor, leucyl aminopeptidase (PepA), and purine regulator, are involved in transcriptional process with RNA polymerase in Escherichia coli. Similarly, Streptomyces species possess the same structural units. We previously identified a protein, Streptomyces integration host factor (sIHF), involved in antibiotic production and sporulation. Subsequently, the function of PepA (SCO2179) was examined in detail. PepA is highly conserved among various Streptomyces spp., but it has not yet been characterized in Streptomyces coelicolor. While it is annotated as a putative leucyl aminopeptidase because it contains a peptidase M17 superfamily domain, this protein did not exhibit leucyl aminopeptidase activity. SCO2179 deletion mutant showed increased actinorhodin production and sporulation, as well as more distinct physiological differences, particularly when cultured on N-acetylglucosamine (GlcNAc) minimal media. The results of two-dimensional gel analysis and reverse transcription PCR showed that the SCO2179 deletion increased protein and mRNA levels of ftsZ, ssgA, and actinorhodin (ACT)-related genes such as actII-ORF4, resulting in increased actinorhodin production and spore formation in minimal media containing GlcNAc.
Collapse
Affiliation(s)
- Eunjung Song
- School of Chemical and Biological Engineering, Institute of Bioengineering, and Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-gu, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou WW, Ma B, Tang YJ, Zhong JJ, Zheng X. Enhancement of validamycin A production by addition of ethanol in fermentation of Streptomyces hygroscopicus 5008. BIORESOURCE TECHNOLOGY 2012; 114:616-621. [PMID: 22521597 DOI: 10.1016/j.biortech.2012.03.124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/31/2012] [Accepted: 03/31/2012] [Indexed: 05/31/2023]
Abstract
The effect of ethanol on the production of the important agro-antibiotic validamycin A (Val-A) in medium containing agricultural by-products was investigated. Under the optimal condition of ethanol addition, the maximal Val-A production titer reached 18 g/L, which increased by 60% compared to the control. To provide an insight into cell response to ethanol, the intracellular reactive oxygen species (ROS), gene transcription and enzyme activity were determined. Intracellular ROS as the molecular signal was increased in the ethanol condition. Global regulators afsR and glnR were involved in regulation of Val-A biosynthesis, and the transcription of eight Val-A structural genes was enhanced. The activity of glucose-6-phosphate dehydrogenase (G6PD) was enhanced while glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was inhibited. A signal transduction cascade from cell signal response to activated transcription of Val-A biosynthetic genes and enhanced antibiotic production is proposed. The information can be helpful for the improvement of large-scale fermentation.
Collapse
Affiliation(s)
- Wen-Wen Zhou
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | | | | | | |
Collapse
|
26
|
Yu H, Kim KS. mRNA context dependent regulation of cytotoxic necrotizing factor 1 translation by GidA, a tRNA modification enzyme in Escherichia coli. Gene 2012; 491:116-22. [PMID: 22020226 PMCID: PMC3223105 DOI: 10.1016/j.gene.2011.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/29/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022]
Abstract
Cytotoxic necrotizing factor 1 (CNF1), the paradigm of Rho GTPase activating bacterial toxins has been shown to promote E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, but its synthesis and secretion is unclear. In this study, we performed mini Tn5 mutagenesis screen to identify genetic requirements for CNF1 production and secretion. Transposon mutagenesis screen of meningitis-causing E. coli K1 strain RS218 revealed that CNF1 production was markedly decreased in a transposon mutant (NBC-28G9) where transposon insertion occurred in the 5' end of gidA gene. In contrast, total deletion of gidA gene has less drastic effect on the production of CNF1. The N-terminus truncated GidA exhibited dominant negative effect on the production of CNF1. The inhibition of CNF1 production by N-terminus truncated GidA was shown to occur at the translational level. This was supported by our demonstrations that cnf1 mRNA transcription levels did not differ between strains RS218 and NBC-28G9; and the production of recombinant CNF1 under the control of artificial promoter was also repressed by truncated GidA. Progressive deletion of DNA regions in cnf1 gene identified two putative regions that were responsible for translational inhibition mediated by truncated GidA.
Collapse
Affiliation(s)
- Hao Yu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, MD 21287
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, MD 21287
| |
Collapse
|
27
|
Pei L, Schmidt M, Wei W. Synthetic biology: an emerging research field in China. Biotechnol Adv 2011; 29:804-14. [PMID: 21729747 PMCID: PMC3197886 DOI: 10.1016/j.biotechadv.2011.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/20/2011] [Accepted: 06/11/2011] [Indexed: 12/27/2022]
Abstract
Synthetic biology is considered as an emerging research field that will bring new opportunities to biotechnology. There is an expectation that synthetic biology will not only enhance knowledge in basic science, but will also have great potential for practical applications. Synthetic biology is still in an early developmental stage in China. We provide here a review of current Chinese research activities in synthetic biology and its different subfields, such as research on genetic circuits, minimal genomes, chemical synthetic biology, protocells and DNA synthesis, using literature reviews and personal communications with Chinese researchers. To meet the increasing demand for a sustainable development, research on genetic circuits to harness biomass is the most pursed research within Chinese researchers. The environmental concerns are driven force of research on the genetic circuits for bioremediation. The research on minimal genomes is carried on identifying the smallest number of genomes needed for engineering minimal cell factories and research on chemical synthetic biology is focused on artificial proteins and expanded genetic code. The research on protocells is more in combination with the research on molecular-scale motors. The research on DNA synthesis and its commercialisation are also reviewed. As for the perspective on potential future Chinese R&D activities, it will be discussed based on the research capacity and governmental policy.
Collapse
Affiliation(s)
- Lei Pei
- Organisation for International Dialogue and Conflict Management, Vienna, Austria.
| | | | | |
Collapse
|
28
|
Yu H. Bacteria-mediated disease therapy. Appl Microbiol Biotechnol 2011; 92:1107-13. [DOI: 10.1007/s00253-011-3648-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/29/2011] [Accepted: 10/16/2011] [Indexed: 12/19/2022]
|
29
|
Yu H, Kim KS. The involvement of SelB in the expression of cytotoxic necrotizing factor 1 in Escherichia coli. FEBS Lett 2011; 585:1934-40. [DOI: 10.1016/j.febslet.2011.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 11/27/2022]
|
30
|
Pullan ST, Chandra G, Bibb MJ, Merrick M. Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 2011; 12:175. [PMID: 21463507 PMCID: PMC3087709 DOI: 10.1186/1471-2164-12-175] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global in vivo approach to identify the GlnR regulon of Streptomyces venezuelae, which, unlike many actinomycetes, grows in a diffuse manner that is suitable for physiological studies. Conditions were defined that facilitated analysis of GlnR-dependent induction of gene expression in response to rapid nitrogen starvation. Microarray analysis identified global transcriptional differences between glnR+ and glnR mutant strains under varying nitrogen conditions. To differentiate between direct and indirect regulatory effects of GlnR, chromatin immuno-precipitation (ChIP) using antibodies specific to a FLAG-tagged GlnR protein, coupled with microarray analysis (ChIP-chip), was used to identify GlnR binding sites throughout the S. venezuelae genome. Results GlnR bound to its target sites in both transcriptionally active and apparently inactive forms. Thirty-six GlnR binding sites were identified by ChIP-chip analysis allowing derivation of a consensus GlnR-binding site for S. venezuelae. GlnR-binding regions were associated with genes involved in primary nitrogen metabolism, secondary metabolism, the synthesis of catabolic enzymes and a number of transport-related functions. Conclusions The GlnR regulon of S. venezuelae is extensive and impacts on many facets of the organism's biology. GlnR can apparently bind to its target sites in both transcriptionally active and inactive forms.
Collapse
Affiliation(s)
- Steven T Pullan
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | | | | | | |
Collapse
|
31
|
Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. Appl Microbiol Biotechnol 2011; 89:1149-59. [PMID: 21229241 DOI: 10.1007/s00253-011-3086-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
GlnR is the global regulator of nitrogen assimilation in Streptomyces coelicolor M145 and other actinobacteria. Two-dimensional polyacrylamide gel electrophoresis analyses were performed to identify new GlnR target genes by proteomic comparison of wild-type S. coelicolor M145 and a ΔglnR mutant. Fifty proteins were found to be differentially regulated between S. coelicolor M145 and the ΔglnR mutant. These spots were identified by nanoHPLC-ESI-MS/MS and classified according to their cellular role. Most of the identified proteins are involved in amino acid biosynthesis and in carbon metabolism, demonstrating that the role of GlnR is not restricted to nitrogen metabolism. Thus, GlnR is supposed to play an important role in the global metabolic control of S. coelicolor M145.
Collapse
|
32
|
Kockar F, Sinan S, Yildirim H, Arslan O. Differential effects of some antibiotics on paraoxonase enzyme activity on human hepatoma cells (HepG2) in vitro. J Enzyme Inhib Med Chem 2010; 25:715-9. [DOI: 10.3109/14756360903555266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Feray Kockar
- Department of Biology, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Selma Sinan
- Department of Biology, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Hatice Yildirim
- Department of Biology, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| | - Oktay Arslan
- Department of Chemistry, Faculty of Science and Literature, Balikesir University, Balikesir, Turkey
| |
Collapse
|
33
|
Amon J, Titgemeyer F, Burkovski A. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 2010; 34:588-605. [PMID: 20337720 DOI: 10.1111/j.1574-6976.2010.00216.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.
Collapse
Affiliation(s)
- Johannes Amon
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
34
|
Carata E, Peano C, Tredici SM, Ferrari F, Talà A, Corti G, Bicciato S, De Bellis G, Alifano P. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Fact 2009; 8:18. [PMID: 19331655 PMCID: PMC2667423 DOI: 10.1186/1475-2859-8-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is evidence from previous works that bacterial secondary metabolism may be stimulated by genetic manipulation of RNA polymerase (RNAP). In this study we have used rifampicin selection as a strategy to genetically improve the erythromycin producer Saccharopolyspora erythraea. RESULTS Spontaneous rifampicin-resistant (rif) mutants were isolated from the parental strain NRRL2338 and two rif mutations mapping within rpoB, S444F and Q426R, were characterized. With respect to the parental strain, S444F mutants exhibited higher respiratory performance and up to four-fold higher final erythromycin yields; in contrast, Q426R mutants were slow-growing, developmental-defective and severely impaired in erythromycin production. DNA microarray analysis demonstrated that these rif mutations deeply changed the transcriptional profile of S. erythraea. The expression of genes coding for key enzymes of carbon (and energy) and nitrogen central metabolism was dramatically altered in turn affecting the flux of metabolites through erythromycin feeder pathways. In particular, the valine catabolic pathway that supplies propionyl-CoA for biosynthesis of the erythromycin precursor 6-deoxyerythronolide B was strongly up-regulated in the S444F mutants, while the expression of the biosynthetic gene cluster of erythromycin (ery) was not significantly affected. In contrast, the ery cluster was down-regulated (<2-fold) in the Q426R mutants. These strains also exhibited an impressive stimulation of the nitrogen regulon, which may contribute to lower erythromycin yields as erythromycin production was strongly inhibited by ammonium. CONCLUSION Rifampicin selection is a simple and reliable tool to investigate novel links between primary and secondary metabolism and morphological differentiation in S. erythraea and to improve erythromycin production. At the same time genome-wide analysis of expression profiles using DNA microarrays allowed information to be gained about the mechanisms underlying the stimulatory/inhibitory effects of the rif mutations on erythromycin production.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, Hahn JS, Kim BG. NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 2008; 82:501-11. [PMID: 19083232 DOI: 10.1007/s00253-008-1802-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 12/01/2022]
Abstract
NdgR (regulator for nitrogen source-dependent growth and antibiotic production), an IclR-like regulator, has been initially identified as a binding protein to the promoters of doxorubicin biosynthetic genes in Streptomyces peucetius by DNA affinity capture assay method. NdgR is well conserved throughout the Streptomyces species and many other bacteria such as Mycobacteria and Corynebacteria. In Streptomyces coelicolor, ndgR deletion mutant showed slow cell growth and defects in differentiation and enhances the production of actinorhodin (ACT) in minimal media containing certain amino acids where wild-type strain could not produce ACT. Although deletion mutant of ndgR showed different antibiotic production in minimal media containing Leu or Gln, it only showed reduced mRNA expression levels of the genes involved in leucine metabolism. Neither NdgR-dependent expression of glnA nor direct binding of NdgR protein to glnA, glnII, and glnR promoters was observed. However, ScbR, which is governed by NdgR shown by gel mobility shift assay, binds to promoter of glnR, suggesting indirect regulation of glutamine metabolism by NdgR. NdgR protein binds to intergenic region of ndgR-leuC, and scbR-scbA involved in gamma-butyrolactone. Two-dimensional gel analysis has shown a global effect of ndgR deletion in protein expression, including up-regulated proteins involved in ACT synthesis and down-regulation of chaperones such as GroEL, GroES, and DnaK. These results suggest a global regulatory role for NdgR in amino acid metabolisms, quorum sensing, morphological changes, antibiotic production, and expression of chaperonines in S. coelicolor.
Collapse
Affiliation(s)
- Yung-Hun Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR. J Bacteriol 2008; 190:7108-16. [PMID: 18689485 DOI: 10.1128/jb.00855-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of nitrogen regulation on the level of transcriptional control has been investigated in a variety of bacteria, such as Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli, and Streptomyces coelicolor; however, until now there have been no data for mycobacteria. In this study, we found that the OmpR-type regulator protein GlnR controls nitrogen-dependent transcription regulation in Mycobacterium smegmatis. Based on RNA hybridization experiments with a wild-type strain and a corresponding mutant strain, real-time reverse transcription-PCR analyses, and DNA binding studies using cell extract and purified protein, the glnA (msmeg_4290) gene, which codes for glutamine synthetase, and the amtB (msmeg_2425) and amt1 (msmeg_6259) genes, which encode ammonium permeases, are controlled by GlnR. Furthermore, since glnK (msmeg_2426), encoding a PII-type signal transduction protein, and glnD (msmeg_2427), coding for a putative uridylyltransferase, are in an operon together with amtB, these genes are part of the GlnR regulon as well. The GlnR protein binds specifically to the corresponding promoter sequences and functions as an activator of transcription when cells are subjected to nitrogen starvation.
Collapse
|
37
|
Lian W, Jayapal KP, Charaniya S, Mehra S, Glod F, Kyung YS, Sherman DH, Hu WS. Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomics 2008; 9:56. [PMID: 18230178 PMCID: PMC2267785 DOI: 10.1186/1471-2164-9-56] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 01/29/2008] [Indexed: 11/25/2022] Open
Abstract
Background A small "sigma-like" protein, AfsS, pleiotropically regulates antibiotic biosynthesis in Streptomyces coelicolor. Overexpression of afsS in S. coelicolor and certain related species causes antibiotic stimulatory effects in the host organism. Although recent studies have uncovered some of the upstream events activating this gene, the mechanisms through which this signal is relayed downstream leading to the eventual induction of antibiotic pathways remain unclear. Results In this study, we employed whole-genome DNA microarrays and quantitative PCRs to examine the transcriptome of an afsS disruption mutant that is completely deficient in the production of actinorhodin, a major S. coelicolor antibiotic. The production of undecylprodigiosin, another prominent antibiotic, was, however, perturbed only marginally in the mutant. Principal component analysis of temporal gene expression profiles identified two major gene classes each exhibiting a distinct coordinate differential expression pattern. Surprisingly, nearly 70% of the >117 differentially expressed genes were conspicuously associated with nutrient starvation response, particularly those of phosphate, nitrogen and sulfate. Furthermore, expression profiles of some transcriptional regulators including at least two sigma factors were perturbed in the mutant. In almost every case, the effect of afsS disruption was not observed until the onset of stationary phase. Conclusion Our data suggests a comprehensive role for S. coelicolor AfsS as a master regulator of both antibiotic synthesis and nutritional stress response, reminiscent of alternative sigma factors found in several bacteria.
Collapse
Affiliation(s)
- Wei Lian
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|