1
|
Mahdavi Poor B, Rashedi J, Asgharzadeh V, Mirmazhary A, Gheitarani N. Proteases of Acanthamoeba. Parasitol Res 2023; 123:19. [PMID: 38063887 DOI: 10.1007/s00436-023-08059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
The members of genus Acanthamoeba are the etiological agent of uncommon but severe or even fatal opportunistic infections in human beings. The presence of different classes of intracellular and extracellular proteases including serine proteases, cysteine proteases, and metalloproteases has been well documented in environmental and clinical isolates of Acanthamoeba spp. However, the role of the proteolytic enzymes in physiological, biological, and pathological mechanisms of the amoeba remains partially investigated. Some attempts have been conducted using various methods to determine the profile of proteases (number, class, optimal conditions, and activity of the enzymes), and possible pathogenicity mechanism of the proteolytic enzymes (various protein substrate degradation, cytopathic effect on different cell lines). In some cases, it was attempted to correlate intracellular and extracellular protease profile with pathogenicity potential of strains. This review revealed that the protease profile of different strains of Acanthamoeba was extremely complex, therefore, further comprehensive studies with application of a combination of various methods may help to elucidate the role of the enzymes.
Collapse
Affiliation(s)
- Behroz Mahdavi Poor
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran.
| | - Jalil Rashedi
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | - Vahid Asgharzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirali Mirmazhary
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | | |
Collapse
|
2
|
Carvalho-Kelly LF, Freitas-Mesquita AL, Ferreira Pralon C, de Souza-Maciel E, Meyer-Fernandes JR. Identification and characterization of an ectophosphatase activity involved in Acanthamoeba castellanii adhesion to host cells. Eur J Protistol 2023; 91:126026. [PMID: 37871554 DOI: 10.1016/j.ejop.2023.126026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.
Collapse
Affiliation(s)
| | | | - Clara Ferreira Pralon
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
3
|
de Souza Fernandes N, Caliari MV, Oliveira FMS, Neto ABC, Rodrigues IA, Furst C, Costa AO. Experimental keratitis induced in rat by Acanthamoeba from distinct morphological groups/genotypes: a histological and immunohistochemical evaluation. Parasitol Res 2023; 122:1167-1175. [PMID: 36922408 DOI: 10.1007/s00436-023-07817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Species of the genus Acanthamoeba are free-living protozoans that occasionally act as parasites, causing a severe, progressive corneal infection termed Acanthamoeba keratitis (AK). The variable pathogenic potential among Acanthamoeba lineages has been shown by in vitro assays, but little is known about the behavior of different strains in animal models of AK. This work aimed to evaluate the infectivity of Acanthamoeba from distinct morphological groups and genotypes in a rat model of AK and apply an immunohistochemical technique for histological characterization of the lesions. Only a strain classified as group I/genotype T17, isolated from a soil source, caused ulcerated corneal lesions in two Wistar rats (n = 9) subjected to intrastromal inoculation. Two strains derived from AK human cases (group II/genotype T4 and group III/genotype T5) did not induce corneal lesions in the rats. A previous association of group II/genotype T4 trophozoites with lethally irradiated Escherichia coli did not influence the infectivity. A hyperimmune serum produced in Wistar rats was validated by an immunocytochemical technique using the three distinct strains and then applied for immunohistochemistry. The abundance of antigenic residues was observed in both corneas with keratitis, suggesting that the infectious process tended to resolve. Despite the low infection rate of the AK Wistar rat model, we produced an immunochemical tool with a potential diagnostic application. We also showed for the first time the ability of Acanthamoeba from T17 genotype to cause AK in experimental conditions.
Collapse
Affiliation(s)
- Norberto de Souza Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabricio Marcos Silva Oliveira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Isabela Aurora Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Belo Horizonte, Brazil
| | - Cinthia Furst
- Santa Casa de Misericórdia, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Bellini NK, Thiemann OH, Reyes-Batlle M, Lorenzo-Morales J, Costa AO. A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil - a systematic review. Mem Inst Oswaldo Cruz 2022; 117:e210373. [PMID: 35792751 PMCID: PMC9252135 DOI: 10.1590/0074-02760210373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil’s Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| | - Otavio Henrique Thiemann
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.,Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - María Reyes-Batlle
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain.,Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red MP de Enfermedades Infecciosas, Madrid, Spain
| | - Adriana Oliveira Costa
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| |
Collapse
|
5
|
Costa AO, Chagas IAR, de Menezes-Neto A, Rêgo FD, Nogueira PM, Torrecilhas AC, Furst C, Fux B, Soares RP. Distinct immunomodulatory properties of extracellular vesicles released by different strains of Acanthamoeba. Cell Biol Int 2021; 45:1060-1071. [PMID: 33448518 DOI: 10.1002/cbin.11551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 01/07/2023]
Abstract
Free living amoeba of the genus Acanthamoeba are opportunist protozoan involved in corneal, systemic, and encephalic infections in humans. Most of the mechanisms underlying intraspecies variations and pathogenicity are still unknown. Recently, the release of extracellular vesicles (EVs) by Acanthamoeba was reported. However, comparative characterization of EVs from distinct strains is not available. The aim of this study was to evaluate EVs produced by Acanthamoeba from different genotypes, comparing their proteases profile and immunomodulatory properties. EVs from four environmental or clinical strains (genotypes T1, T2, T4, and T11) were obtained by ultracentrifugation, quantitated by nanoparticle tracking analysis and analyzed by scanning and transmission electron microscopy. Proteases profile was determined by zymography and functional properties of EVs (measure of nitrite and cytokine production) were determined after peritoneal macrophage stimulation. Despite their genotype, all strains released EVs and no differences in size and/or concentration were detected. EVs exhibited a predominant activity of serine proteases (pH 7.4 and 3.5), with higher intensity in T4 and T1 strains. EVs from the environmental, nonpathogenic T11 strain exhibited a more proinflammatory profile, inducing higher levels of Nitrite, tumor necrosis factor alpha and interleukin-6 via TLR4/TLR2 than those strains with pathogenic traits (T4, T1, and T2). Preincubation with EVs treated with protease inhibitors or heating drastically decreased nitrite concentration production in macrophages. Those data suggest that immunomodulatory effects of EVs may reflect their pathogenic potential depending on the Acanthamoeba strains and are dependent on protease integrity.
Collapse
Affiliation(s)
- Adriana Oliveira Costa
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Armando de Menezes-Neto
- Instituto René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Felipe Dutra Rêgo
- Instituto René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, São Paulo, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Blima Fux
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | |
Collapse
|
6
|
Weber-Lima MM, Prado-Costa B, Becker-Finco A, Costa AO, Billilad P, Furst C, de Moura JF, Alvarenga LM. Acanthamoeba spp. monoclonal antibody against a CPA2 transporter: a promising molecular tool for acanthamoebiasis diagnosis and encystment study. Parasitology 2020; 147:1678-1688. [PMID: 32951614 PMCID: PMC10317748 DOI: 10.1017/s0031182020001778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Free-living amoeba of the genus Acanthamoeba are ubiquitous protozoa involved in opportunistic and non-opportunistic infection in humans, such as granulomatous amoebic encephalitis and amoebic keratitis. Both infections have challenging characteristics such as the formation of the resistant cysts in infected tissues, hampering the treatment and most usual diagnosis depending on time-consuming and/or low sensitivity techniques. The use of monoclonal antibodies presents itself as an opportunity for the development of more effective alternative diagnostic methods, as well as an important and useful tool in the search for new therapeutic targets. This study investigated the possibility of using a previously produced monoclonal antibody (mAb3), as a diagnostic tool for the detection of Acanthamoeba trophozoites by direct and indirect flow cytometry and immunofluorescence. Immunoprecipitation assay and mass spectrometry allowed the isolation of the antibody's target and suggested it is a transporter part of the CPA (cation: proton antiporter) superfamily. In vitro tests indicate an important role of this target in Acanthamoeba's encystment physiology. Our results support the importance of studying the role of CPA2 transporters in the context of acanthamoebiasis, as this may be a way to identify new therapeutic candidates.
Collapse
Affiliation(s)
- Michele Martha Weber-Lima
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Bianca Prado-Costa
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Alessandra Becker-Finco
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | - Philippe Billilad
- IPSIT, School of Pharmacy, University Paris-Saclay, Châtenay-Malabry, France
| | - Cinthia Furst
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Juliana Ferreira de Moura
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Larissa Magalhães Alvarenga
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| |
Collapse
|
7
|
González-Robles A, González-Lázaro M, Lagunes-Guillén AE, Omaña-Molina M, Lares-Jiménez LF, Lares-Villa F, Martínez-Palomo A. Ultrastructural, Cytochemical, and Comparative Genomic Evidence of Peroxisomes in Three Genera of Pathogenic Free-Living Amoebae, Including the First Morphological Data for the Presence of This Organelle in Heteroloboseans. Genome Biol Evol 2020; 12:1734-1750. [PMID: 32602891 PMCID: PMC7549135 DOI: 10.1093/gbe/evaa129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peroxisomes perform various metabolic processes that are primarily related to the elimination of reactive oxygen species and oxidative lipid metabolism. These organelles are present in all major eukaryotic lineages, nevertheless, information regarding the presence of peroxisomes in opportunistic parasitic protozoa is scarce and in many cases it is still unknown whether these organisms have peroxisomes at all. Here, we performed ultrastructural, cytochemical, and bioinformatic studies to investigate the presence of peroxisomes in three genera of free-living amoebae from two different taxonomic groups that are known to cause fatal infections in humans. By transmission electron microscopy, round structures with a granular content limited by a single membrane were observed in Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba polyphaga, Acanthamoeba royreba, Balamuthia mandrillaris (Amoebozoa), and Naegleria fowleri (Heterolobosea). Further confirmation for the presence of peroxisomes was obtained by treating trophozoites in situ with diaminobenzidine and hydrogen peroxide, which showed positive reaction products for the presence of catalase. We then performed comparative genomic analyses to identify predicted peroxin homologues in these organisms. Our results demonstrate that a complete set of peroxins-which are essential for peroxisome biogenesis, proliferation, and protein import-are present in all of these amoebae. Likewise, our in silico analyses allowed us to identify a complete set of peroxins in Naegleria lovaniensis and three novel peroxin homologues in Naegleria gruberi. Thus, our results indicate that peroxisomes are present in these three genera of free-living amoebae and that they have a similar peroxin complement despite belonging to different evolutionary lineages.
Collapse
Affiliation(s)
- Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Mónica González-Lázaro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Anel Edith Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlanepantla, Estado de México, Mexico
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
8
|
Cirelli C, Mesquita EIS, Chagas IAR, Furst C, Possamai CO, Abrahão JS, dos Santos Silva LK, Grossi MF, Tagliati CA, Costa AO. Extracellular protease profile of Acanthamoeba after prolonged axenic culture and after interaction with MDCK cells. Parasitol Res 2019; 119:659-666. [DOI: 10.1007/s00436-019-06562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|
9
|
Possamai CO, Loss AC, Costa AO, Falqueto A, Furst C. Acanthamoeba of three morphological groups and distinct genotypes exhibit variable and weakly inter-related physiological properties. Parasitol Res 2018. [PMID: 29532218 DOI: 10.1007/s00436-018-5824-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Free-living amoeba of the genus Acanthamoeba can eventually act as parasites, causing infections in humans. Some physiological characteristics of Acanthamoeba have been related to the grade of pathogenicity, allowing inferences about the pathogenic potential. The main goal of this study was to characterize isolates of Acanthamoeba obtained in Brazil and evaluate properties associated with their pathogenicity. A total of 39 isolates obtained from keratitis cases (n = 16) and environmental sources (n = 23) were classified into morphological groups and genotyped by sequencing the 18S rDNA fragments ASA.S1 and GTSA.B1. Samples were also tested regarding their thermo-tolerance, osmo-tolerance, and cytopathogenicity in MDCK cells. Isolates were identified and classified as follows: group I (T17, T18); group II (T1, T3, T4, T11); and group III (T5, T15), with the predominance of genotype T4 (22/39). Clinical isolates were genotyped as T3 (1/16), T4 (14/16) and T5 (1/16). The majority of isolates (38/39) were able to grow at 37 °C, but tolerance to 40 °C was more frequent among environmental samples. The tolerance to 1 M mannitol was infrequent (4/39), with three of these corresponding to clinical samples. The variable ability to cause cytopathic effects was observed among isolates of distinct genotypes and origins. This study identified, for the first time, T1 and T18 in Brazil. It also indicated a weak association between the clinical origin of the isolates and tolerance to high temperatures, high osmolarity, and cytopathogenicity, demonstrating that some in vitro parameters do not necessarily reflect a higher propensity of Acanthamoeba to cause a disease.
Collapse
Affiliation(s)
- Cynara Oliveira Possamai
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| | - Ana Carolina Loss
- Departamento de Ciências Biológicas, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Vitória, ES, CEP 29075-900, Brazil
| | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Aloisio Falqueto
- Departamento de Medicina Social, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil.
| |
Collapse
|
10
|
Protein profiling of Acanthamoeba species using MALDI-TOF MS for specific identification of Acanthamoeba genotype. Parasitol Res 2018; 117:729-736. [PMID: 29344802 DOI: 10.1007/s00436-017-5743-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
Acanthamoeba spp. are ubiquitous in the environment and have the potential to cause severe infections. The different genotypes of Acanthamoeba have been shown to influence the severity of the disease and response to therapy. Characterizing Acanthamoeba spp. upto genotype can aid in infection control practices. Twenty-five Acanthamoeba isolates, characterized by 18S rDNA sequencing, were subjected to MALDI-TOF MS analysis by creating a database for the individual genotypes. The differentiating features of the various spectra were observed; the coded samples were then tested against the created database. The results of identification were compared with sequencing. Five different genotypes were obtained-T3, T4, T5, T10, and T11. Spectral analysis revealed genus-specific and genotype-specific peaks. The peak patterns for individual genotype were discrete and reproducible. Clinical isolates produced different peaks from the environmental isolate of the same genotype. A concordance of 92% was obtained with MALDI-TOF MS in comparison with 18sDNA sequencing. MALDI-TOF MS, once optimized, has the potential to reliably identify the genotype of Acanthamoeba spp. and to differentiate clinical isolate from mere contaminant.
Collapse
|
11
|
Characterization of extracellular proteases of Acanthamoeba genotype T4 isolated from different sources in Iran. Parasitol Res 2017; 116:3373-3380. [DOI: 10.1007/s00436-017-5656-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
12
|
Nunes TET, Brazil NT, Fuentefria AM, Rott MB. Acanthamoeba and Fusarium interactions: A possible problem in keratitis. Acta Trop 2016; 157:102-7. [PMID: 26851515 DOI: 10.1016/j.actatropica.2016.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 01/30/2023]
Abstract
The incidence of Acanthamoeba and Fusarium species has increased in contact lens-related infectious keratitis. They share several environments and cases of co-infection have been reported. The interaction between the amoebae and other microorganisms may result in significant changes for both, like increased virulence in mammalian hosts. In this study, we evaluated the interaction of three Acanthamoeba castellanii strains with Fusarium conidia and the possible implications on keratitis. F. conidia were internalized by A. castellanii strains and were able to germinate inside the amoebae. The co-culture with the live amoebae, as well as the amoebal culture supernatant and lysate, increased the fungal growth significantly. Moreover, live F. solani and its culture supernatant enhanced the survival of amoebae, but in a different way in each amoebal strain. The encystment of the A. castellanii strain re-isolated from rat lung was increased by the fungus. These results show that A. castellanii and F. solani interaction may have an important influence on survival of both, and specially indicate a possible effect on virulence characteristics of these microorganisms. These data suggest that the A. castellanii-F. solani interaction may cause severe impacts on keratitis.
Collapse
|
13
|
Physiological, morphological, and immunochemical parameters used for the characterization of clinical and environmental isolates of Acanthamoeba. Parasitology 2012; 140:396-405. [PMID: 23137846 DOI: 10.1017/s0031182012001746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The factors that characterize Acanthamoeba strains as harmless or potentially pathogenic have not been elucidated. Analysing the in vitro and in vivo parameters of Acanthamoeba samples, including heat tolerance at temperatures close to that of the human body, cytopathic effects, and their ability to cause infections in animals, has been proposed to identify their pathogenic potential. Another promising criterion for differentiating strains is the analysis of their biochemical and immunochemical properties. In this study, a comparative evaluation between clinical and environmental Acanthamoeba isolates was performed on the basis of physiological, morphological, and immunochemical criteria. Crude antigens were used to characterize the protein profiles by electrophoresis and immunize mice to produce polyclonal and monoclonal antibodies. The antibodies were characterized using ELISA, Western blotting, and immunofluorescence techniques. The results obtained with polyclonal antibodies suggest the presence of specific proteins for each studied isolate and co-reactive immunochemical profiles among conserved components. Ten monoclonal antibody clones were obtained; mAb3 recognized 3 out of 4 samples studied. The results of this study may help standardize criteria for identifying and characterizing Acanthamoeba strains. Taken together, our results support the view that a set of features may help differentiate Acanthamoeba species and isolates.
Collapse
|
14
|
Alves DDSMM, Moraes AS, Nitz N, de Oliveira MGC, Hecht MM, Gurgel-Gonçalves R, Cuba CAC. Occurrence and characterization of Acanthamoeba similar to genotypes T4, T5, and T2/T6 isolated from environmental sources in Brasília, Federal District, Brazil. Exp Parasitol 2012; 131:239-44. [PMID: 22546341 DOI: 10.1016/j.exppara.2012.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 04/08/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Species of Acanthamoeba can cause keratitis and brain infections. The characterization of environmental isolates is necessary to analyze the risk of human infection. We aimed at identifying and genotyping Acanthamoeba isolates from soil, swimming pools, and water features in Brasília, Federal District, Brazil, as well as determining their physiological characteristics and pathogenic potential. Among the 18 isolates studied, eight were similar to genotype T5, five to T4, and one to T2/T6, classified by the sequence analysis of 18S rDNA. Genotypes of four isolates were not determined. Ten isolates (55%) grew at 37 °C and seven (39%) grew in media with 1.5M mannitol, which are the physiological parameters associated with pathogenic Acanthamoeba; also, four isolates from swimming pools presented high pathogenic potential. Our results indicate a widespread distribution of potentially pathogenic Acanthamoeba T4, T5, and T2/T6 in different environmental sources in Brasília, revealing the potential risk of human infection and the need of preventive measures.
Collapse
Affiliation(s)
- Daniella de Sousa Mendes Moreira Alves
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rocha-Azevedo BD, Jamerson M, Cabral GA, Marciano-Cabral F. Acanthamoeba culbertsoni: Analysis of amoebic adhesion and invasion on extracellular matrix components collagen I and laminin-1. Exp Parasitol 2010; 126:79-84. [DOI: 10.1016/j.exppara.2009.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 11/28/2022]
|
16
|
Lemgruber L, Lupetti P, De Souza W, Vommaro RC, da Rocha-Azevedo B. The fine structure of the Acanthamoeba polyphaga cyst wall. FEMS Microbiol Lett 2010; 305:170-6. [PMID: 20199572 DOI: 10.1111/j.1574-6968.2010.01925.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Members of the genus Acanthamoeba are present in diverse environments, from freshwater to soil, and also in humans, causing serious brain and corneal infections. Their life cycle presents two stages: the dividing trophozoite and the quiescent cyst. The structures of these life stages have been studied for many years, and structural data have been used for taxonomy. The ultrastructural work on Acanthamoeba cysts was carried out previously by routine transmission electron microscopy (TEM), a process that requires the use of chemical fixation, a procedure that can cause serious artifacts in the ultrastructure of the studied material. In order to prevent fixation artifacts, we processed Acanthamoeba polyphaga cysts by ultrarapid freezing, followed by freeze-fracturing and deep-etching, in order to obtain a 3D visualization of the arrangements of the cyst wall. The exocyst presented an irregular surface, with vesicles located within or near this layer. The endocyst, instead, showed a biphasic arrangement with a more compact district in its innermost part, and a more loosened outer layer. For this reason, it was difficult to distinguish the filaments present in the intercyst space from those forming the endocyst. Surprisingly, the intercyst space was thinner when compared with samples processed by conventional TEM, evidencing the possible damage consequent to the use of chemical fixation.
Collapse
Affiliation(s)
- Leandro Lemgruber
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
17
|
Pumidonming W, Koehsler M, Walochnik J. Acanthamoeba strains show reduced temperature tolerance after long-term axenic culture. Parasitol Res 2009; 106:553-9. [PMID: 20012991 DOI: 10.1007/s00436-009-1694-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/20/2009] [Indexed: 11/24/2022]
Abstract
Acanthamoeba is a genus of free-living organisms that can be found in various habitats. We investigated the physiological characteristics of 15 Acanthamoeba isolates, representing five genotypes (T4, T5, T6, T7, and T11) of both clinical and nonclinical origins. Moreover, in order to evaluate possible alterations from long-term culture, old and fresh isolates were included, and results were compared to a previous study. We found that there is no significant difference in physiological characteristics between genotypes. However, Acanthamoeba strains that had been grown in axenic culture over long periods of time adapted to axenic growth. Overall growth rates under-agarose migration and particularly, temperature tolerance decrease after long-term axenic culture at room temperature. The only trait that remained rather constant was the cytopathic effect.
Collapse
Affiliation(s)
- Wilawan Pumidonming
- Department of Medical Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | | | | |
Collapse
|