1
|
de Araújo LCA, da Purificação-Júnior AF, da Silva SM, Lopes ACS, Veras DL, Alves LC, Dos Santos FB, Napoleão TH, Dos Santos Correia MT, da Silva MV, Oliva MLV, de Oliveira MBM. In vitro evaluation of mercury (Hg 2+) effects on biofilm formation by clinical and environmental isolates of Klebsiella pneumoniae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:669-677. [PMID: 30500736 DOI: 10.1016/j.ecoenv.2018.11.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The increase in urbanization and industrialization has contributed to the contamination of different environments by means of xenobiotic compounds, such as heavy metals, causing changes in microbial communities. Among these metals, the Mercury (Hg2+) is one the most prevalent toxic metals for the environment The present study aimed to evaluate the effect of mercury on the formation of biofilm by environmental (collected from urban stream water) and clinical isolates of Klebsiella pneumoniae. In addition, antibiotic resistance, virulence factors, and genetic diversity were investigated. Taxonomic identity of eight isolates (one reference, two clinical, and five environmental isolates) was performed by MALDI-TOF-MS, while the antibiotic susceptibility profile was assessed by the disc diffusion method. The ability to form biofilms was evaluated by culture on Congo red agar and by crystal violet staining. Biofilm structure was analyzed by scanning electron microscopy. The hydrophobicity profile and the presence of the virulence genes cps, fimH, and mrkD was investigated. The presence of merA and its relationship with antimicrobial resistance were also assessed. The identity of all isolates was confirmed by MALDI-TOF-MS, and different profiles of resistance to mercury and antibiotics as well as of biofilm formation were identified for the clinical and environmental isolates. All isolates were hydrophilic and positive for the virulence genes cps, fimH, and mrkD; only the clinical isolate K36-A2 was positive for merA. The diversity of the isolates was confirmed by ERIC-PCR, which revealed high heterogeneity among the isolates. In conclusion, the data demonstrate that the investigated isolates present different responses to exposure to Hg2+ and correspond to distinct populations of K. pneumoniae disseminated in the investigated environment. The data obtained in this work will aid in understanding the mechanisms of survival of this pathogen under adverse conditions.
Collapse
Affiliation(s)
| | | | - Sivoneide Maria da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Ana Catarina Souza Lopes
- Departamento de Medicina Tropical, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Dyana Leal Veras
- Departamento de Parasitologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil
| | - Luiz Carlos Alves
- Departamento de Parasitologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil
| | - Fábio Brayner Dos Santos
- Departamento de Parasitologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Fedi S, Cappelletti M, Sandri F, Turner RJ, Zannoni D. Some facts about the respiratory enzymes of Pseudomonas pseudoalcaligenes KF707 recently renamed as Pseudomonas furukawaii sp. nov., type strain KF707. Int J Syst Evol Microbiol 2018; 68:3066-3067. [PMID: 30024361 DOI: 10.1099/ijsem.0.002923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kimura and co-workers (Kimura N et al. Int J Syst Evol Microbiol 2018;68:1429-1435) recently proposed renaming the obligate aerobe Pseudomonas pseudoalcaligenes KF707 as Pseudomonas furukawiisp. nov. type strain KF707. Since the first quasi-complete genome sequence of KF707 was reported in 2012 (accession number: PRJNA83639) numerous reports on chemotaxis and function/composition of the respiratory redox chain of KF707 have been published, demonstrating that KF707 contains three cheA genes for aerobic motility, four cytochrome oxidases of c(c)aa3- and cbb3-type and one bd-type quinol oxidase. With this background in mind, it has been quite a surprise to read within Table 1 of the paper by Kimura et al. that strain KF707 is phenotypically characterized as cytochrome oxidase-negative. Further, Table 1 also reports that KF707 is β-galactosidase-positive, an affirmation that is not consistent with results documented in the current literature. In this present 'Letter to the Editor' we show that Kimura et al. have contradicted themselves and provided inaccurate information in respect to the respiratory phenotypic features of P. furukawii. Based on this, an official corrigendum is requested since the publication, as it is, blurs the credibility of the International Journal of Systematic and Evolutionary Microbiology.
Collapse
Affiliation(s)
- Stefano Fedi
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| | - Federica Sandri
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| | - Raymond J Turner
- 2Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Davide Zannoni
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Sandri F, Fedi S, Cappelletti M, Calabrese FM, Turner RJ, Zannoni D. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707. Front Microbiol 2017; 8:1223. [PMID: 28713350 PMCID: PMC5492768 DOI: 10.3389/fmicb.2017.01223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 is a soil bacterium which is known for its capacity to aerobically degrade harmful organic compounds such as polychlorinated biphenyls (PCBs) using biphenyl as co-metabolite. Here we provide the first genetic and functional analysis of the KF707 respiratory terminal oxidases in cells grown with two different carbon sources: glucose and biphenyl. We identified five terminal oxidases in KF707: two c(c)aa3 type oxidases (Caa3 and Ccaa3), two cbb3 type oxidases (Cbb31 and Cbb32), and one bd type cyanide-insensitive quinol oxidase (CIO). While the activity and expression of both Cbb31 and Cbb32 oxidases was prevalent in glucose grown cells as compared to the other oxidases, the activity and expression of the Caa3 oxidase increased considerably only when biphenyl was used as carbon source in contrast to the Cbb32 oxidase which was repressed. Further, the respiratory activity and expression of CIO was up-regulated in a Cbb31 deletion strain as compared to W.T. whereas the CIO up-regulation was not present in Cbb32 and C(c)aa3 deletion mutants. These results, together, reveal that both function and expression of cbb3 and caa3 type oxidases in KF707 are modulated by biphenyl which is the co-metabolite needed for the activation of the PCBs-degradation pathway.
Collapse
Affiliation(s)
- Federica Sandri
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesco M Calabrese
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari "Aldo Moro"Bari, Italy.,Department of Biology, University of Bari "Aldo Moro"Bari, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
4
|
Booth SC, Weljie AM, Turner RJ. Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 2015; 6:827. [PMID: 26347721 PMCID: PMC4538868 DOI: 10.3389/fmicb.2015.00827] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Co-contamination of metals and organic pollutants is a global problem as metals interfere with the metabolism of complex organics by bacteria. Based on a prior observation that metal tolerance was altered by the sole carbon source being used for growth, we sought to understand how metal toxicity specifically affects bacteria using an organic pollutant as their sole carbon source. To this end metabolomics was used to compare cultures of Pseudomonas pseudoalcaligenes KF707 grown on either biphenyl (Bp) or succinate (Sc) as the sole carbon source in the presence of either aluminum (Al) or copper (Cu). Using multivariate statistical analysis it was found that the metals caused perturbations to more cellular processes in the cultures grown on Bp than those grown on Sc. Al induced many changes that were indicative of increased oxidative stress as metabolites involved in DNA damage and protection, the Krebs cycle and anti-oxidant production were altered. Cu also caused metabolic changes that were indicative of similar stress, as well as appearing to disrupt other key enzymes such as fumarase. Additionally, both metals caused the accumulation of Bp degradation intermediates indicating that they interfered with Bp metabolism. Together these results provide a basic understanding of how metal toxicity specifically affects bacteria at a biochemical level during the degradation of an organic pollutant and implicate the catabolism of this carbon source as a major factor that exacerbates metal toxicity.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Aalim M Weljie
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Department of Systems Pharmacology and Translational Therapeutics, Smilow Centre for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Biofilm Research Group, University of Calgary, Calgary AB, Canada
| |
Collapse
|
5
|
Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Res Microbiol 2015; 166:764-73. [PMID: 25869223 DOI: 10.1016/j.resmic.2015.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
Since biofilms are an important issue in the fields of medicine and health, several recent microbiological studies have focused on their formation and their contribution to toxic compound resistance mechanisms. In this review, we describe how metals impact biofilm formation and resistance, and how biofilms can help cells resist toxic metals. First, the organic matrix acts as a barrier isolating the cells from many environmental stresses. Secondly, the metabolism of the cells changes, and a slowly-growing or non-growing sub-population of cells known as persisters emerges. Thirdly, in the case of multispecies biofilms, metabolic interactions are developed, allowing cells to be more persistent or to have greater capacity to survive than a single species biofilm. Finally, we discuss how the high density of the cells may promote horizontal gene transfer processes, resulting in the acquisition of new features. All these crucial mechanisms enable microorganisms to survive and colonize toxic environments, and probably accelerate ongoing evolutionary processes.
Collapse
|
6
|
Coutinho FH, Silveira CB, Pinto LH, Salloto GRB, Cardoso AM, Martins OB, Vieira RP, Clementino MM. Antibiotic resistance is widespread in urban aquatic environments of Rio de Janeiro, Brazil. MICROBIAL ECOLOGY 2014; 68:441-452. [PMID: 24821495 DOI: 10.1007/s00248-014-0422-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Bacterial resistance to antibiotics has become a public health issue. Over the years, pathogenic organisms with resistance traits have been studied due to the threat they pose to human well-being. However, several studies raised awareness to the often disregarded importance of environmental bacteria as sources of resistance mechanisms. In this work, we analyze the diversity of antibiotic-resistant bacteria occurring in aquatic environments of the state of Rio de Janeiro, Brazil, that are subjected to distinct degrees of anthropogenic impacts. We access the diversity of aquatic bacteria capable of growing in increasing ampicillin concentrations through 16S rRNA gene libraries. This analysis is complemented by the characterization of antibiotic resistance profiles of isolates obtained from urban aquatic environments. We detect communities capable of tolerating antibiotic concentrations up to 600 times higher than the clinical levels. Among the resistant organisms are included potentially pathogenic species, some of them classified as multiresistant. Our results extend the knowledge of the diversity of antibiotic resistance among environmental microorganisms and provide evidence that the diversity of drug-resistant bacteria in aquatic habitats can be influenced by pollution.
Collapse
Affiliation(s)
- Felipe H Coutinho
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pesciaroli L, Petruccioli M, Federici F, D'Annibale A. Pleurotus ostreatus biofilms exhibit higher tolerance to toxicants than free-floating counterparts. BIOFOULING 2013; 29:1043-1055. [PMID: 23998200 DOI: 10.1080/08927014.2013.825901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The MBEC(TM)-High Throughput Assay based on the Calgary Biofilm Device was used to produce and to characterize Pleurotus ostreatus biofilms. Hydroxyapatite coating of pegs was required to enable biofilm attachment; biofilm amounts and homogeneity of distribution were markedly improved upon removal of non-sessile biomass after 48 h from inoculation. Scanning electron microscopy showed surface-associated and multi-layered growth stabilized by the presence of an extracellular matrix (ECM). Biofilms had higher contents of total sugars and ECM than their free-floating counterparts. Tolerance to Cr(VI) in the former was about twice that of the latter as inferred by the respective inhibitory concentrations (48.4 vs 24.1 mM and 114.5 vs 61.0 mM in 4- and 7-d-old cultures, respectively). Biofilms also displayed superior olive-mill wastewater (OMW) treatment efficiency along 5 consecutive batches leading to chemical oxygen demand and total phenol removals higher than 50 and 90%, respectively. Laccase activity peaks in biofilm cultures grown on OMW were significantly higher than those in free-floating cultures.
Collapse
Affiliation(s)
- Lorena Pesciaroli
- a Department for Innovation in Biological, Agro-Food and Forest Systems , University of Tuscia , Viterbo , Italy
| | | | | | | |
Collapse
|
8
|
Characterization of Pleurotus ostreatus biofilms by using the calgary biofilm device. Appl Environ Microbiol 2013; 79:6083-92. [PMID: 23892744 DOI: 10.1128/aem.02099-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adequacy of the Calgary biofilm device, often referred to as the MBEC system, as a high-throughput approach to the production and subsequent characterization of Pleurotus ostreatus biofilms was assessed. The hydroxyapatite-coating of pegs was necessary to enable biofilm attachment, and the standardization of vegetative inocula ensured a uniform distribution of P. ostreatus biofilms, which is necessary for high-throughput evaluations of several antimicrobials and exposure conditions. Scanning electron microscopy showed surface-associated growth, the occurrence of a complex aggregated growth organized in multilayers or hyphal bundles, and the encasement of hyphae within an extracellular matrix (ECM), the extent of which increased with time. Chemical analyses showed that biofilms differed from free-floating cultures for their higher contents of total sugars (TS) and ECM, with the latter being mainly composed of TS and, to a lesser extent, protein. Confocal laser scanning microscopy analysis of 4-day-old biofilms showed the presence of interspersed interstitial voids and water channels in the mycelial network, the density and compactness of which increased after a 7-day incubation, with the novel occurrence of ECM aggregates with an α-glucan moiety. In 4- and 7-day-old biofilms, tolerance to cadmium was increased by factors of 3.2 and 11.1, respectively, compared to coeval free-floating counterparts.
Collapse
|
9
|
Pesciaroli L, Petruccioli M, Federici F, D'Annibale A. Pleurotus ostreatus
biofilm-forming ability and ultrastructure are significantly influenced by growth medium and support type. J Appl Microbiol 2013; 114:1750-62. [DOI: 10.1111/jam.12170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/21/2013] [Accepted: 02/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- L Pesciaroli
- Department for Innovation in Biological, Agro-Food, and Forestry systems, University of Tuscia, Viterbo, Italy
| | | | | | | |
Collapse
|
10
|
Booth SC, George IFS, Zannoni D, Cappelletti M, Duggan GE, Ceri H, Turner RJ. Effect of aluminium and copper on biofilm development of Pseudomonas pseudoalcaligenes KF707 and P. fluorescens as a function of different media compositions. Metallomics 2013; 5:723-35. [DOI: 10.1039/c3mt20240b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Turner RJ, Borghese R, Zannoni D. Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 2011; 30:954-63. [PMID: 21907273 DOI: 10.1016/j.biotechadv.2011.08.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023]
Abstract
Here, we overview the most recent advances in understanding the bacterial mechanisms that stay behind the reduction of tellurium oxyanions in both planktonic cells and biofilms. This is a topic of interest for basic and applied research because microorganisms are deeply involved in the transformation of metals and metalloids in the environment. In particular, the recent observation that toxic tellurite can be precipitated either inside or outside the cells being used as electron sink to support bacterial growth, opens new perspectives for both microbial physiologists and biotechnologists. As promising nanomaterials, tellurium based nanoparticles show unique electronic and optical properties due to quantum confinement effects to be used in the area of chemistry, electronics, medicine and environmental biotechnologies.
Collapse
Affiliation(s)
- Raymond J Turner
- Dept of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
12
|
Tremaroli V, Fedi S, Tamburini S, Viti C, Tatti E, Ceri H, Turner RJ, Zannoni D. A histidine-kinase cheA gene of Pseudomonas pseudoalcaligens KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism. BIOFOULING 2011; 27:33-46. [PMID: 21108067 DOI: 10.1080/08927014.2010.537099] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A histidine-kinase cheA gene in Pseudomonas pseudoalcaligenes KF707 plays a central role in the regulation of metabolic responses as well as in chemotaxis. Non-chemotactic mutants harboring insertions into the cheA gene were screened for their ability to form biofilms in the Calgary biofilm device. Notably, ≥95% decrease in the number of cells attached to the polystyrene surface was observed in cheA mutants compared to the KF707 wild-type biofilm phenotype. The ability to form mature biofilms was restored to wild-type levels, providing functional copies of the KF707 cheA gene to the mutants. In addition, phenotype micro-arrays and proteomic analyses revealed that several basic metabolic activities and a few periplasmic binding proteins of cheA mutant cells differed compared to those of wild-type cells. These results are interpreted as evidence of a strong integration between chemotactic and metabolic pathways in the process of biofilm development by P. pseudoalcaligenes KF707.
Collapse
Affiliation(s)
- V Tremaroli
- Department of Biological Sciences & Biofilm Research Group, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tremaroli V, Vacchi Suzzi C, Fedi S, Ceri H, Zannoni D, Turner RJ. Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiol Ecol 2010; 74:291-301. [PMID: 20846140 DOI: 10.1111/j.1574-6941.2010.00965.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 is a polychlorinated biphenyls (PCBs) degrader, also tolerant to several toxic metals and metalloids. The work presented here examines for the first time the chemotactic response of P. pseudoalcaligenes KF707 to biphenyl and intermediates of the PCB biodegradation pathway in the presence and absence of metals. Chemotaxis analyses showed that biphenyl, benzoic acid and chlorobenzoic acids acted as chemoattractants for KF707 cells and that metal cations such as Ni(2+) and Cu(2+) strongly affected the chemotactic response. Toxicity profiles of various metals on KF707 cells grown on succinate or biphenyl as planktonic and biofilm were determined both in the presence and in the absence of PCBs. Notably, KF707 cells from both biofilms and planktonic cultures were tolerant to high amounts (up to 0.5 g L(-1)) of Aroclor 1242, a commercial mixture of PCBs. Together, the data show that KF707 cells are chemotactic and can form a biofilm in the presence of Aroclor 1242 and specific metals. These findings provide new perspectives on the effectiveness of using PCB-degrading bacterial strains in bioremediation strategies of metal-co-contaminated sites.
Collapse
Affiliation(s)
- Valentina Tremaroli
- Department of Biology, General Microbiology Unit, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|