1
|
Soumaila Garba A, Thibodeau A, Perron A, Laurent-Lewandowski S, Letellier A, Fravalo P. In vitro efficacy of potentiated egg yolk powder against Campylobacter jejuni does not correlate with in vitro efficacy. PLoS One 2019; 14:e0212946. [PMID: 30845147 PMCID: PMC6405129 DOI: 10.1371/journal.pone.0212946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
Campylobacter jejuni is a zoonotic agent responsible for the foodborne gastroenteritis campylobacteriosis. Control of C. jejuni load in the poultry primary production is recognized as an avenue to reduce human exposure to the pathogen. As for now, no commercially applicable control methods exist at the farm. Several studies tested egg yolk powders, potentiated or not against C. jejuni, as feed additives for chicken and suggested that the quantity and quality of the antibodies presence in the yolk are determinant factors for the full success of this approach. Unfortunately, data from these studies inconsistently showed a reduction of cecal C. jejuni carriage. Our first goal wwas to characterize (quantification by ELISA, agglutination test, bacterial antigen recognition profiles by Western blot, bactericidal effect by serum killing assays and C. jejuni mobility by soft agar migation) the antibodies extracted from egg yolk powders originating from different egg production protocols. Secondly, these powders were microencapsulated and recharacterized. Finally the protected powders were tested as a feed additive to destabilize C. jejuni colonization in an in vivo assay. Despite the in vitro results indicating the ability of the egg yolk powders to recognize Campylobacter and potentially alter its colonization of the chicken caecum, these results were not confirmed in the in vivo trial despite that specific caecal IgY directed toward Campylobacter were detected in the groups receiving the protected powders. More research is needed on Campylobacter in order to effectively control this pathogen at the farm.
Collapse
Affiliation(s)
- Amina Soumaila Garba
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Audrey Perron
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sylvette Laurent-Lewandowski
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Ann Letellier
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- * E-mail:
| |
Collapse
|
2
|
Reducing Foodborne Pathogen Persistence and Transmission in Animal Production Environments: Challenges and Opportunities. Microbiol Spectr 2017; 4. [PMID: 27726803 DOI: 10.1128/microbiolspec.pfs-0006-2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preharvest strategies to reduce zoonotic pathogens in food animals are important components of the farm-to-table food safety continuum. The problem is complex; there are multiple pathogens of concern, multiple animal species under different production and management systems, and a variety of sources of pathogens, including other livestock and domestic animals, wild animals and birds, insects, water, and feed. Preharvest food safety research has identified a number of intervention strategies, including probiotics, direct-fed microbials, competitive exclusion cultures, vaccines, and bacteriophages, in addition to factors that can impact pathogens on-farm, such as seasonality, production systems, diet, and dietary additives. Moreover, this work has revealed both challenges and opportunities for reducing pathogens in food animals. Animals that shed high levels of pathogens and predominant pathogen strains that exhibit long-term persistence appear to play significant roles in maintaining the prevalence of pathogens in animals and their production environment. Continued investigation and advancements in sequencing and other technologies are expected to reveal the mechanisms that result in super-shedding and persistence, in addition to increasing the prospects for selection of pathogen-resistant food animals and understanding of the microbial ecology of the gastrointestinal tract with regard to zoonotic pathogen colonization. It is likely that this continued research will reveal other challenges, which may further indicate potential targets or critical control points for pathogen reduction in livestock. Additional benefits of the preharvest reduction of pathogens in food animals are the reduction of produce, water, and environmental contamination, and thereby lower risk for human illnesses linked to these sources.
Collapse
|
3
|
Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q. Campylobacter in Poultry: Ecology and Potential Interventions. Avian Dis 2015; 59:185-200. [PMID: 26473668 DOI: 10.1637/11072-032315-review] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian hosts constitute a natural reservoir for thermophilic Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, and poultry flocks are frequently colonized in the intestinal tract with high numbers of the organisms. Prevalence rates in poultry, especially in slaughter-age broiler flocks, could reach as high as 100% on some farms. Despite the extensive colonization, Campylobacter is essentially a commensal in birds, although limited evidence has implicated the organism as a poultry pathogen. Although Campylobacter is insignificant for poultry health, it is a leading cause of food-borne gastroenteritis in humans worldwide, and contaminated poultry meat is recognized as the main source for human exposure. Therefore, considerable research efforts have been devoted to the development of interventions to diminish Campylobacter contamination in poultry, with the intention to reduce the burden of food-borne illnesses. During the past decade, significant advance has been made in understanding Campylobacter in poultry. This review summarizes the current knowledge with an emphasis on ecology, antibiotic resistance, and potential pre- and postharvest interventions.
Collapse
Affiliation(s)
- Orhan Sahin
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - Issmat I Kassem
- B Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| | - Zhangqi Shen
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - Jun Lin
- C Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - Gireesh Rajashekara
- B Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| | - Qijing Zhang
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|