1
|
Tatulli G, Baldassarre F, Schiavi D, Tacconi S, Cognigni F, Costantini F, Balestra GM, Dini L, Pucci N, Rossi M, Scala V, Ciccarella G, Loreti S. Chitosan-Coated Fosetyl-Al Nanocrystals' Efficacy on Nicotiana tabacum Colonized by Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:1466-1479. [PMID: 38700944 DOI: 10.1094/phyto-04-24-0144-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, Lyon, France
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
| | - Francesca Costantini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, p.le A. Moro 5, 00185, Rome, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l. Via S. Camillo Delellis Snc 01100 Viterbo, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| |
Collapse
|
2
|
Román-Écija M, Navas-Cortés JA, Velasco-Amo MP, Arias-Giraldo LF, Gómez LM, Fuente LDL, Landa BB. Two Xylella fastidiosa subsp. multiplex Strains Isolated from Almond in Spain Differ in Plasmid Content and Virulence Traits. PHYTOPATHOLOGY 2023; 113:960-974. [PMID: 36576402 DOI: 10.1094/phyto-06-22-0234-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The plant-pathogenic bacterium Xylella fastidiosa is a major threat to agriculture and the environment worldwide. Recent devastating outbreaks in Europe highlight the potential of this pathogen to cause emergent diseases. X. fastidiosa subsp. multiplex ESVL and IVIA5901 strains that belong to sequence type 6 were isolated from almond orchards within the outbreak area in Alicante province (Spain). Both strains share more than 99% of the chromosomal sequences (average nucleotide identity), but the ESVL strain harbors two plasmids (pXF64-Hb_ESVL and pUCLA-ESVL). Here, virulence phenotypes and genome content were compared between both strains, using three strains from the United States as a reference for the phenotypic analyses. Experiments in microfluidic chambers, used as a simulation of xylem vessels, showed that twitching motility was absent in the IVIA5901 strain, whereas the ESVL strain had reduced twitching motility. In general, both Spanish strains had less biofilm formation, less cell aggregation, and lower virulence in tobacco compared with U.S. reference strains. Genome analysis of the two plasmids from ESVL revealed 51 unique coding sequences that were absent in the chromosome of IVIA5901. Comparison of the chromosomes of both strains showed some unique coding sequences and single-nucleotide polymorphisms in each strain, with potential deleterious mutations. Genomic differences found in genes previously associated with adhesion and motility might explain the differences in the phenotypic traits studied. Although additional studies are necessary to infer the potential role of X. fastidiosa plasmids, our results indicate that the presence of plasmids should be considered in the study of the mechanisms of pathogenicity and adaptation in X. fastidiosa to new environments. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- M Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - J A Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - M P Velasco-Amo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L F Arias-Giraldo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L M Gómez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - L De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - B B Landa
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
3
|
Hussain M, Girelli CR, Verweire D, Oehl MC, Avendaño MS, Scortichini M, Fanizzi FP. 1H-NMR Metabolomics Study after Foliar and Endo-Therapy Treatments of Xylella fastidiosa subsp. pauca Infected Olive Trees: Medium Time Monitoring of Field Experiments. PLANTS (BASEL, SWITZERLAND) 2023; 12:1946. [PMID: 37653863 PMCID: PMC10221468 DOI: 10.3390/plants12101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023]
Abstract
Here we report the medium-term effects of foliar spray and endo-therapy treatments with different doses of a Cu/Zn citric acid biocomplex (Dentamet®) in Xylella fastidiosa infected olive trees of Salento, Apulia region (South-east Italy). Leaf extract samples from field-treated 150 years old olive trees cvs Ogliarola salentina and Cellina di Nardò were studied by 1H NMR-based metabolomics. The result of different applications of Dentamet® endo-therapy after 60, 120 and 180 days in comparison with traditional foliar spray treatment and water injection as a control have been investigated. The metabolic profile analyses, performed by 1H NMR-based metabolomic approach, indicated plant metabolites variations connected to the disease progression such as mannitol, quinic acid, and oleuropein related compounds. The best results, in terms of discrimination of the metabolic profiles with respect to water injection, were found for monthly endo-therapy treatments. Dentamet® foliar application demonstrated more specific time related progressive effectiveness with respect to intravascular treatments. Therefore, besides a possible more effective performance of endo-therapy with respect to foliar treatments, the need of further doses/frequencies trimming to obtain long-term results was also assessed. The present field studies confirmed the indication of Dentamet® effectiveness in metabolic variation induction, potentially linked with reducing the X. fastidiosa subspecies pauca related Olive Quick Decline Syndrome (OQDS) symptoms development.
Collapse
Affiliation(s)
- Mudassar Hussain
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Dimitri Verweire
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Michael C. Oehl
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Maier S. Avendaño
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Marco Scortichini
- Council for Agricultural Research and Agricultural Economic Analyses (CREA), Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Trkulja V, Tomić A, Iličić R, Nožinić M, Milovanović TP. Xylella fastidiosa in Europe: From the Introduction to the Current Status. THE PLANT PATHOLOGY JOURNAL 2022; 38:551-571. [PMID: 36503185 PMCID: PMC9742796 DOI: 10.5423/ppj.rw.09.2022.0127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.
Collapse
Affiliation(s)
- Vojislav Trkulja
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | - Andrija Tomić
- University of East Sarajevo, Faculty of Agriculture, Vuka Karadžića 30, 71123 East Sarajevo,
Bosnia and Herzegovina
| | - Renata Iličić
- University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad,
Serbia
| | - Miloš Nožinić
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | | |
Collapse
|
5
|
Using Genomes and Evolutionary Analyses to Screen for Host-Specificity and Positive Selection in the Plant Pathogen Xylella fastidiosa. Appl Environ Microbiol 2022; 88:e0122022. [PMID: 36094203 PMCID: PMC9499020 DOI: 10.1128/aem.01220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Xylella fastidiosa infects several economically important crops in the Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes reflective of the genus-wide diversity, we performed a pan-genome analysis based on both core and accessory genes for two purposes: (i) to test associations between genetic divergence and plant host species and (ii) to identify positively selected genes that are potentially involved in arms-race dynamics. For the former, tests yielded significant evidence for the specialization of X. fastidiosa to plant host species. This observation contributes to a growing literature suggesting that the phylogenetic history of X. fastidiosa lineages affects the host range. For the latter, our analyses uncovered evidence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and 5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode interacting factors with plant and insect hosts. Most of these genes had unknown functions, but we did identify some tractable candidates, including nagZ_2, which encodes a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya, which modulates gene expression in pathogenic bacteria, and barA, a membrane associated histidine kinase that has roles in cell division, metabolism, and pili formation. IMPORTANCEXylella fastidiosa causes devasting diseases to several critical crops. Because X. fastidiosa colonizes and infects many plant species, it is important to understand whether the genome of X. fastidiosa has genetic determinants that underlie specialization to specific host plants. We analyzed genome sequences of X. fastidiosa to investigate evolutionary relationships and to test for evidence of positive selection on specific genes. We found a significant signal between genome diversity and host plants, consistent with bacterial specialization to specific plant hosts. By screening for positive selection, we identified both core and accessory genes that may affect pathogenicity, including genes involved in biofilm formation.
Collapse
|
6
|
Farigoule P, Chartois M, Mesmin X, Lambert M, Rossi JP, Rasplus JY, Cruaud A. Vectors as Sentinels: Rising Temperatures Increase the Risk of Xylella fastidiosa Outbreaks. BIOLOGY 2022; 11:1299. [PMID: 36138778 PMCID: PMC9495951 DOI: 10.3390/biology11091299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Global change is expected to modify the threat posed by pathogens to plants. However, little is known regarding how a changing climate will influence the epidemiology of generalist vector-borne diseases. We developed a high-throughput screening method to test for the presence of a deadly plant pathogen, Xylella fastidiosa, in its insect vectors. Then, using data from a four-year survey in climatically distinct areas of Corsica (France), we demonstrated a positive correlation between the proportion of vectors positive to X. fastidiosa and temperature. Notably, a higher prevalence corresponded with milder winters. Our projections up to 2100 indicate an increased risk of outbreaks. While the proportion of vectors that carry the pathogen should increase, the climate conditions will remain suitable for the bacterium and its main vector, with possible range shifts towards a higher elevation. Besides calling for research efforts to limit the incidence of plant diseases in the temperate zone, this work reveals that recent molecular technologies could and should be used for massive screening of pathogens in vectors to scale-up surveillance and management efforts.
Collapse
Affiliation(s)
- Pauline Farigoule
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
- AgroParisTech, 91120 Palaiseau, France
| | - Marguerite Chartois
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
- AGAP Institute, INRAE, CIRAD, Institute Agro, University of Montpellier, 20230 San Giuliano, France
| | - Xavier Mesmin
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
- AGAP Institute, INRAE, CIRAD, Institute Agro, University of Montpellier, 20230 San Giuliano, France
| | - Maxime Lambert
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| | - Jean-Pierre Rossi
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| | - Jean-Yves Rasplus
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| | - Astrid Cruaud
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| |
Collapse
|
7
|
Comparative Genomics of Xylella fastidiosa Explores Candidate Host-Specificity Determinants and Expands the Known Repertoire of Mobile Genetic Elements and Immunity Systems. Microorganisms 2022; 10:microorganisms10050914. [PMID: 35630358 PMCID: PMC9148166 DOI: 10.3390/microorganisms10050914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Xylella fastidiosa causes diseases in many plant species. Originally confined to the Americas, infecting mainly grapevine, citrus, and coffee, X. fastidiosa has spread to several plant species in Europe causing devastating diseases. Many pathogenicity and virulence factors have been identified, which enable the various X. fastidiosa strains to successfully colonize the xylem tissue and cause disease in specific plant hosts, but the mechanisms by which this happens have not been fully elucidated. Here we present thorough comparative analyses of 94 whole-genome sequences of X. fastidiosa strains from diverse plant hosts and geographic regions. Core-genome phylogeny revealed clades with members sharing mostly a geographic region rather than a host plant of origin. Phylogenetic trees for 1605 orthologous CDSs were explored for potential candidates related to host specificity using a score of mapping metrics. However, no candidate host-specificity determinants were strongly supported using this approach. We also show that X. fastidiosa accessory genome is represented by an abundant and heterogeneous mobilome, including a diversity of prophage regions. Our findings provide a better understanding of the diversity of phylogenetically close genomes and expand the knowledge of X. fastidiosa mobile genetic elements and immunity systems.
Collapse
|
8
|
Continuous Pest Surveillance and Monitoring Constitute a Tool for Sustainable Agriculture: Case of Xylella fastidiosa in Morocco. SUSTAINABILITY 2022. [DOI: 10.3390/su14031485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Climate and trade changes are reshaping the cartographic distribution of lethal pervasive pathogens. Among serious emerging challenges is Xylella fastidiosa (Xf), a xylem-limited phytopathogenic bacterium that produces losses and damages to numerous crops of high economic and agronomic importance. Lately, this grave quarantine pathogen has expended its distribution by arriving to several European countries and infecting both wild and cultivated plants, and no cure has been identified so far. Countries without current outbreaks like Morocco, need to monitor theirs crops frequently because detecting diseases in the early stages may reduce the huge losses caused by Xf. For that purpose, inspections were managed in different regions in Morocco from March 2020 to July 2021 to assess the presence of Xf in several growing areas of vulnerable economic crops (i.e., almond, citrus and olive). To extend the likelihood of detection, hosts have been inspected and sampled randomly over different environments including symptomatic and asymptomatic plants. Each sample was screened for the existence of Xf by using the DAS-ELISA commercial kit, while, further analyses were carried out for doubtful samples, by PCR. Results of both tests did not show any positive sample in the investigated areas. This finding is an update on the Xf situation in Morocco and confirms that this country is still a free territory from this bacterium, at least in the monitored regions.
Collapse
|
9
|
Román-Reyna V, Dupas E, Cesbron S, Marchi G, Campigli S, Hansen MA, Bush E, Prarat M, Shiplett K, Ivey MLL, Pierzynski J, Miller SA, Peduto Hand F, Jacques MA, Jacobs JM. Metagenomic Sequencing for Identification of Xylella fastidiosa from Leaf Samples. mSystems 2021; 6:e0059121. [PMID: 34698548 PMCID: PMC8547472 DOI: 10.1128/msystems.00591-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
Xylella fastidiosa (Xf) is a globally distributed plant-pathogenic bacterium. The primary control strategy for Xf diseases is eradicating infected plants; therefore, timely and accurate detection is necessary to prevent crop losses and further pathogen dispersal. Conventional Xf diagnostics primarily relies on quantitative PCR (qPCR) assays. However, these methods do not consider new or emerging variants due to pathogen genetic recombination and sensitivity limitations. We developed and tested a metagenomics pipeline using in-house short-read sequencing as a complementary approach for affordable, fast, and highly accurate Xf detection. We used metagenomics to identify Xf to the strain level in single- and mixed-infected plant samples at concentrations as low as 1 pg of bacterial DNA per gram of tissue. We also tested naturally infected samples from various plant species originating from Europe and the United States. We identified Xf subspecies in samples previously considered inconclusive with real-time PCR (quantification cycle [Cq], >35). Overall, we showed the versatility of the pipeline by using different plant hosts and DNA extraction methods. Our pipeline provides taxonomic and functional information for Xf diagnostics without extensive knowledge of the disease. This pipeline demonstrates that metagenomics can be used for early detection of Xf and incorporated as a tool to inform disease management strategies. IMPORTANCE Destructive Xylella fastidiosa (Xf) outbreaks in Europe highlight this pathogen's capacity to expand its host range and geographical distribution. The current disease diagnostic approaches are limited by a multiple-step process, biases to known sequences, and detection limits. We developed a low-cost, user-friendly metagenomic sequencing tool for Xf detection. In less than 3 days, we were able to identify Xf subspecies and strains in field-collected samples. Overall, our pipeline is a diagnostics tool that could be easily extended to other plant-pathogen interactions and implemented for emerging plant threat surveillance.
Collapse
Affiliation(s)
- Verónica Román-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Enora Dupas
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- French Agency for Food, Environmental, and Occupational Health & Safety, Plant Health Laboratory, Angers, France
| | - Sophie Cesbron
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Guido Marchi
- Department of Agriculture, Food, Environment, and Forestry, University of Florence, Florence, Italy
| | - Sara Campigli
- Department of Agriculture, Food, Environment, and Forestry, University of Florence, Florence, Italy
| | - Mary Ann Hansen
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Elizabeth Bush
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Melanie Prarat
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, Ohio, USA
| | - Katherine Shiplett
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, Ohio, USA
| | | | - Joy Pierzynski
- C. Wayne Ellett Plant and Pest Diagnostic Clinic, Department of Plant Pathology, The Ohio State University, Reynoldsburg, Ohio, USA
| | - Sally A. Miller
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | | | - Marie-Agnes Jacques
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Jonathan M. Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021; 9:microorganisms9081771. [PMID: 34442850 PMCID: PMC8397937 DOI: 10.3390/microorganisms9081771] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.
Collapse
|
11
|
Scortichini M, Loreti S, Pucci N, Scala V, Tatulli G, Verweire D, Oehl M, Widmer U, Codina JM, Hertl P, Cesari G, De Caroli M, Angilè F, Migoni D, Del Coco L, Girelli CR, Dalessandro G, Fanizzi FP. Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens 2021; 10:668. [PMID: 34072394 PMCID: PMC8228964 DOI: 10.3390/pathogens10060668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Xylella fastidiosa subsp. pauca is the causal agent of "olive quick decline syndrome" in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex-Dentamet®-reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento.
Collapse
Affiliation(s)
- Marco Scortichini
- Research Centre for Olive, Fruit Trees and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Nicoletta Pucci
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Valeria Scala
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Giuseppe Tatulli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Dimitri Verweire
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Michael Oehl
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Urs Widmer
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Josep Massana Codina
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Peter Hertl
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | | | - Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Federica Angilè
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Giuseppe Dalessandro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| |
Collapse
|
12
|
Tatulli G, Modesti V, Pucci N, Scala V, L’Aurora A, Lucchesi S, Salustri M, Scortichini M, Loreti S. Further In Vitro Assessment and Mid-Term Evaluation of Control Strategy of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens 2021; 10:85. [PMID: 33478174 PMCID: PMC7835972 DOI: 10.3390/pathogens10010085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
During recent years; Xylella fastidiosa subsp. pauca (Xfp) has spread in Salento causing relevant damage to the olive groves. Measures to contain the spreading of the pathogen include the monitoring of the areas bordering the so-called "infected" zone and the tree eradication in case of positive detection. In order to provide a control strategy aimed to maintain the tree productivity in the infected areas, we further evaluated the in vitro and in planta mid-term effectiveness of a zinc-copper-citric acid biocomplex. The compound showed an in vitro bactericidal activity and inhibited the biofilm formation in representative strains of X. fastidiosa subspecies, including Xfp isolated in Apulia from olive trees. The field mid-term evaluation of the control strategy assessed by quantitative real-time PCR in 41 trees of two olive groves of the "infected" area revealed a low concentration of Xfp over the seasons upon the regular spraying of the biocomplex over 3 or 4 consecutive years. In particular, the bacterial concentration lowered in July and October with respect to March, after six consecutive treatments. The trend was not affected by the cultivar and it was similar either in the Xfp-sensitive cultivars Ogliarola salentina and Cellina di Nardò or in the Xfp-resistant Leccino. Moreover, the scoring of the number of wilted twigs over the seasons confirmed the trend. The efficacy of the treatment in the management of olive groves subjected to a high pathogen pressure is highlighted by the yielded a good oil production.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Vanessa Modesti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Valeria Scala
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Alessia L’Aurora
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Simone Lucchesi
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Manuel Salustri
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, 00185 Roma, Italy;
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops, 00134 Roma, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| |
Collapse
|
13
|
Firrao G, Scortichini M, Pagliari L. Orthology-Based Estimate of the Contribution of Horizontal Gene Transfer from Distantly Related Bacteria to the Intraspecific Diversity and Differentiation of Xylella fastidiosa. Pathogens 2021; 10:46. [PMID: 33430372 PMCID: PMC7828034 DOI: 10.3390/pathogens10010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited bacterium phylogenetically related to the xanthomonads, with an unusually large and diversified range of plant hosts. To ascertain the origin of its peculiarities, its pan-genome was scanned to identify the genes that are not coherent with its phylogenetic position within the order Xanthomonadales. The results of the analysis revealed that a large fraction of the genes of the Xylella pan-genome have no ortholog or close paralog in the order Xanthomonadales. For a significant part of the genes, the closest homologue was found in bacteria belonging to distantly related taxonomic groups, most frequently in the Betaproteobacteria. Other species, such as Xanthomonas vasicola and Xanthomonas albilineans which were investigated for comparison, did not show a similar genetic contribution from distant branches of the prokaryotic tree of life. This finding indicates that the process of acquisition of DNA from the environment is still a relevant component of Xylella fastidiosa evolution. Although the ability of Xylella fastidiosa strains to recombine among themselves is well known, the results of the pan-genome analyses stressed the additional relevance of environmental DNA in shaping their genomes, with potential consequences on their phytopathological features.
Collapse
Affiliation(s)
- Giuseppe Firrao
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Marco Scortichini
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria-Centro di ricerca per l’Olivicoltura, Frutticoltura e Agrumicoltura, Via di Fioranello, 52, 00134 Rome, Italy;
| | - Laura Pagliari
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
14
|
Moralejo E, Gomila M, Montesinos M, Borràs D, Pascual A, Nieto A, Adrover F, Gost PA, Seguí G, Busquets A, Jurado-Rivera JA, Quetglas B, García JDD, Beidas O, Juan A, Velasco-Amo MP, Landa BB, Olmo D. Phylogenetic inference enables reconstruction of a long-overlooked outbreak of almond leaf scorch disease (Xylella fastidiosa) in Europe. Commun Biol 2020; 3:560. [PMID: 33037293 PMCID: PMC7547738 DOI: 10.1038/s42003-020-01284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
The recent introductions of the bacterium Xylella fastidiosa (Xf) into Europe are linked to the international plant trade. However, both how and when these entries occurred remains poorly understood. Here, we show how almond scorch leaf disease, which affects ~79% of almond trees in Majorca (Spain) and was previously attributed to fungal pathogens, was in fact triggered by the introduction of Xf around 1993 and subsequently spread to grapevines (Pierceʼs disease). We reconstructed the progression of almond leaf scorch disease by using broad phylogenetic evidence supported by epidemiological data. Bayesian phylogenetic inference predicted that both Xf subspecies found in Majorca, fastidiosa ST1 (95% highest posterior density, HPD: 1990–1997) and multiplex ST81 (95% HPD: 1991–1998), shared their most recent common ancestors with Californian Xf populations associated with almonds and grapevines. Consistent with this chronology, Xf-DNA infections were identified in tree rings dating to 1998. Our findings uncover a previously unknown scenario in Europe and reveal how Pierce’s disease reached the continent. Eduardo Moralejo et al. report a phylogenetic reconstruction tracing the origin and progression of a European outbreak of the almond scorch disease pathogen Xylella fastidiosa (Xf). Their data suggest Xf was introduced into Europe via grafting from infected Californian buds and was subsequently spread by the meadow spittlebug to multiple plant hosts.
Collapse
Affiliation(s)
- Eduardo Moralejo
- Tragsa, Empresa de Transformación Agraria, Delegación de Baleares, 07005, Palma de Majorca, Spain.
| | - Margarita Gomila
- Microbiology (Biology Department), University of the Balearic Islands, 07122, Palma de Majorca, Spain
| | - Marina Montesinos
- Tragsa, Empresa de Transformación Agraria, Delegación de Baleares, 07005, Palma de Majorca, Spain
| | - David Borràs
- Serveis de Millora Agrària i Pesquera, Govern de les illes Balears, 07009, Palma de Majorca, Spain
| | - Aura Pascual
- Tragsa, Empresa de Transformación Agraria, Delegación de Baleares, 07005, Palma de Majorca, Spain
| | - Alicia Nieto
- Serveis de Millora Agrària i Pesquera, Govern de les illes Balears, 07009, Palma de Majorca, Spain
| | - Francesc Adrover
- Serveis de Millora Agrària i Pesquera, Govern de les illes Balears, 07009, Palma de Majorca, Spain
| | - Pere A Gost
- Servei d'Agricultura, Conselleria d'Agricultura, Pesca i Alimentació; Govern de les illes Balears, 07006, Palma de Majorca, Spain
| | - Guillem Seguí
- Microbiology (Biology Department), University of the Balearic Islands, 07122, Palma de Majorca, Spain
| | - Antonio Busquets
- Microbiology (Biology Department), University of the Balearic Islands, 07122, Palma de Majorca, Spain
| | - José A Jurado-Rivera
- Laboratory of Genetics (Biology Department), University of the Balearic Islands, 07122, Palma de Majorca, Spain
| | - Bàrbara Quetglas
- Servei d'Agricultura, Conselleria d'Agricultura, Pesca i Alimentació; Govern de les illes Balears, 07006, Palma de Majorca, Spain
| | - Juan de Dios García
- Servei d'Agricultura, Conselleria d'Agricultura, Pesca i Alimentació; Govern de les illes Balears, 07006, Palma de Majorca, Spain
| | - Omar Beidas
- Servei d'Agricultura, Conselleria d'Agricultura, Pesca i Alimentació; Govern de les illes Balears, 07006, Palma de Majorca, Spain
| | - Andreu Juan
- Servei d'Agricultura, Conselleria d'Agricultura, Pesca i Alimentació; Govern de les illes Balears, 07006, Palma de Majorca, Spain
| | - María P Velasco-Amo
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (IAS-CSIC), 14004, Córdoba, Spain
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (IAS-CSIC), 14004, Córdoba, Spain
| | - Diego Olmo
- Serveis de Millora Agrària i Pesquera, Govern de les illes Balears, 07009, Palma de Majorca, Spain
| |
Collapse
|
15
|
Mazzaglia A, Rahi YJ, Taratufolo MC, Tatì M, Turco S, Ciarroni S, Tagliavento V, Valentini F, D'Onghia AM, Balestra GM. A new inclusive MLVA assay to investigate genetic variability of Xylella fastidiosa with a specific focus on the Apulian outbreak in Italy. Sci Rep 2020; 10:10856. [PMID: 32616824 PMCID: PMC7331650 DOI: 10.1038/s41598-020-68072-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/16/2020] [Indexed: 12/04/2022] Open
Abstract
The Olive Quick Decline Syndrome by Xylella fastidiosa subspecies pauca is among the most severe phytopathological emergencies nowadays. In few years, the outbreak devastated olive groves in Apulia (Italy), potentially endangering the entire Mediterranean basin. This research aimed to develop a multiple locus VNTR analysis assay, a molecular tool to differentiate between populations of the pathogen. It has already been successfully applied to different X. fastidiosa subspecies from various plant hosts. The previously published TR loci, together with a set of new design, have been tested in silico on the genome of the Apulian De Donno strain. The resulting selection of 37 TR loci was amplified on the genomic DNAs of the Apulian strains AND from representatives of X. fastidiosa subspecies, and directly on DNA extracted from infected plants. The assay clearly discerned among subspecies or even sequence types (ST), but also pointed out variants within the same ST so as to provide more detailed information on the dynamics and pathogen diffusion pathways. Its effective application even on total DNAs extracted from infected tissues of different host plants makes it particularly useful for large-scale screening of infection and for the strengthening of containment measures.
Collapse
Affiliation(s)
- Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy.
| | - Yaseen Jundi Rahi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
- CIHEAM-Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Maria Claudia Taratufolo
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
| | - Marta Tatì
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
| | - Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
| | | | | | - Franco Valentini
- CIHEAM-Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Anna Maria D'Onghia
- CIHEAM-Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Giorgio Mariano Balestra
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
- Phytoparasite Diagnostics s.r.l., 01100, Viterbo, Italy
| |
Collapse
|
16
|
From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe. SUSTAINABILITY 2020. [DOI: 10.3390/su12114508] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions represent some of the most severe threats to local communities and ecosystems. Among invasive species, the vector-borne pathogen Xylella fastidiosa is responsible for a wide variety of plant diseases and has profound environmental, social and economic impacts. Once restricted to the Americas, it has recently invaded Europe, where multiple dramatic outbreaks have highlighted critical challenges for its management. Here, we review the most recent advances on the identification, distribution and management of X. fastidiosa and its insect vectors in Europe through genetic and spatial ecology methodologies. We underline the most important theoretical and technological gaps that remain to be bridged. Challenges and future research directions are discussed in the light of improving our understanding of this invasive species, its vectors and host–pathogen interactions. We highlight the need of including different, complimentary outlooks in integrated frameworks to substantially improve our knowledge on invasive processes and optimize resources allocation. We provide an overview of genetic, spatial ecology and integrated approaches that will aid successful and sustainable management of one of the most dangerous threats to European agriculture and ecosystems.
Collapse
|
17
|
Scala V, Pucci N, Salustri M, Modesti V, L’Aurora A, Scortichini M, Zaccaria M, Momeni B, Reverberi M, Loreti S. Xylella fastidiosa subsp. pauca and olive produced lipids moderate the switch adhesive versus non-adhesive state and viceversa. PLoS One 2020; 15:e0233013. [PMID: 32413086 PMCID: PMC7228078 DOI: 10.1371/journal.pone.0233013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
Global trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. In last decades, X. fastidiosa was detected in several European countries. X. fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of hosts. X. fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on mixture of cis 2-enoic fatty acids-diffusible signalling factors (DSF) that promote stickiness and biofilm. The lipidome profile of Olea europaea L. (cv. Ogliarola salentina) samples, collected in groves located in infected zones and uninfected zones was performed. The untargeted analysis of the lipid profiles of Olive Quick Decline Syndrome (OQDS) positive (+) and negative (-) plants showed a clustering of OQDS+ plants apart from OQDS-. The targeted lipids profile of plants OQDS+ and OQDS- identified a shortlist of 10 lipids that increase their amount in OQDS+ and X. fastidiosa positive olive trees. These lipid entities, provided to X. fastidiosa subsp. pauca pure culture, impact on the dual phase, e.g. planktonic ↔ biofilm. This study provides novel insights on OQDS lipid hallmarks and on molecules that might modulate biofilm phase in X. fastidiosa subsp. pauca.
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Nicoletta Pucci
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Manuel Salustri
- Dept. of Environmental Biology, Sapienza University, Roma, Italy
| | - Vanessa Modesti
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Alessia L’Aurora
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Marco Scortichini
- Council for Agricultural research and Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Roma, Italy
| | - Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | | | - Stefania Loreti
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| |
Collapse
|
18
|
Pereira W, Takita M, Melotto M, de Souza A. Citrus reticulata CrRAP2.2 Transcriptional Factor Shares Similar Functions to the Arabidopsis Homolog and Increases Resistance to Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:519-527. [PMID: 31973654 DOI: 10.1094/mpmi-10-19-0298-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xylella fastidiosa is a worldwide multihost pathogen that causes diseases in different crops. It is considered a new global threat and substantial efforts have been made in order to identify sources of resistance. Indeed, many genes have been associated with resistance to X. fastidiosa, but without functional validation. Here, we describe a C. reticulata gene homologous to the transcriptional factor RAP2.2 from Arabidopsis thaliana that increases resistance to citrus variegated chlorosis (CVC). This gene was previously detected in C. reticulata challenged with X. fastidiosa. Bioinformatics analysis together with subcellular localization and auto-activation assays indicated that RAP2.2 from C. reticulata (CrRAP2.2) is a transcriptional factor orthologous to AtRAP2.2. Thus, we used A. thaliana as a model host to evaluate the functional role of CrRAP2.2 in X. fastidiosa resistance. The inoculation of X. fastidiosa in the A. thaliana rap2.2 mutant resulted in a larger bacterial population, which was complemented by CrRAP2.2. In addition, symptoms of anthocyanin accumulation were higher in the mutant, whose phenotype was restored by CrRAP2.2, indicating that they have conserved functions in plant defense response. We therefore transformed C. sinensis with CrRAP2.2 and verified a positive correlation between CVC resistance and gene expression in transgenic lines. This is the first study using A. thaliana as model host that characterizes the function of a gene related to X. fastidiosa defense response and its application in genetic engineering to obtain citrus resistance to CVC.
Collapse
Affiliation(s)
- Willian Pereira
- Centro de Citricultura Sylvio Moreira (CCSM/IAC), Cordeirópolis, São Paulo 13490-970, Brazil
- Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Marco Takita
- Centro de Citricultura Sylvio Moreira (CCSM/IAC), Cordeirópolis, São Paulo 13490-970, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Alessandra de Souza
- Centro de Citricultura Sylvio Moreira (CCSM/IAC), Cordeirópolis, São Paulo 13490-970, Brazil
| |
Collapse
|
19
|
Dupas E, Briand M, Jacques MA, Cesbron S. Novel Tetraplex Quantitative PCR Assays for Simultaneous Detection and Identification of Xylella fastidiosa Subspecies in Plant Tissues. FRONTIERS IN PLANT SCIENCE 2019; 10:1732. [PMID: 31956326 PMCID: PMC6951419 DOI: 10.3389/fpls.2019.01732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Xylella fastidiosa (Xf) is an insect-borne bacterium confined to the xylem vessels of plants. This plant pathogen has a broad host range estimated to 560 plant species. Five subspecies of the pathogen with different but overlapping host ranges have been described, but only three subspecies are widely accepted, namely subspecies fastidiosa, multiplex, and pauca. Initially limited to the Americas, Xf has been detected in Europe since 2013. As management of X. fastidiosa outbreaks in Europe depends on the identification of the subspecies, accurate determination of the subspecies in infected plants as early as possible is of major interest. Thus, we developed various tetraplex and triplex quantitative PCR (qPCR) assays for X. fastidiosa detection and subspecies identification in planta in a single reaction. We designed primers and probes using SkIf, a bioinformatics tool based on k-mers, to detect specific signatures of the species and subspecies from a data set of 58 genome sequences representative of X. fastidiosa diversity. We tested the qPCR assays on 39 target and 30 non-target strains, as well as on 13 different plant species spiked with strains of the different subspecies of X. fastidiosa, and on samples from various environmental and inoculated host plants. Sensitivity of simplex assays was equal or slightly better than the reference protocol on purified DNA. Tetraplex qPCR assays had the same sensitivity than the reference protocol and allowed X. fastidiosa detection in all spiked matrices up to 103 cells.ml-1. Moreover, mix infections of two to three subspecies could be detected in the same sample with tetraplex assays. In environmental plant samples, the tetraplex qPCR assays allowed subspecies identification when the current method based on multilocus sequence typing failed. The qPCR assays described here are robust and modular tools that are efficient for differentiating X. fastidiosa subspecies directly in plant samples.
Collapse
Affiliation(s)
- Enora Dupas
- IRHS, Agrocampus-Ouest, INRA, University of Angers, SFR 4207 QuaSaV, Beaucouzé, France
- French Agency for Food, Environmental and Occupational Health & Safety, Plant Health Laboratory, Angers, France
| | - Martial Briand
- IRHS, Agrocampus-Ouest, INRA, University of Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, University of Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Sophie Cesbron
- IRHS, Agrocampus-Ouest, INRA, University of Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
20
|
|
21
|
Potnis N, Kandel PP, Merfa MV, Retchless AC, Parker JK, Stenger DC, Almeida RPP, Bergsma-Vlami M, Westenberg M, Cobine PA, De La Fuente L. Patterns of inter- and intrasubspecific homologous recombination inform eco-evolutionary dynamics of Xylella fastidiosa. THE ISME JOURNAL 2019; 13:2319-2333. [PMID: 31110262 PMCID: PMC6776109 DOI: 10.1038/s41396-019-0423-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/09/2022]
Abstract
High rates of homologous recombination (HR) in the bacterial plant pathogen Xylella fastidiosa have been previously detected. This study aimed to determine the extent and explore the ecological significance of HR in the genomes of recombinants experimentally generated by natural transformation and wild-type isolates. Both sets of strains displayed widespread HR and similar average size of recombined fragments consisting of random events (2-10 kb) of inter- and intrasubspecific recombination. A significantly higher proportion and greater lengths (>10 kb, maximum 31.5 kb) of recombined fragments were observed in subsp. morus and in strains isolated in Europe from intercepted coffee plants shipped from the Americas. Such highly recombinant strains pose a serious risk of emergence of novel variants, as genetically distinct and formerly geographically isolated genotypes are brought in close proximity by global trade. Recently recombined regions in wild-type strains included genes involved in regulation and signaling, host colonization, nutrient acquisition, and host evasion, all fundamental traits for X. fastidiosa ecology. Identification of four recombinant loci shared between wild-type and experimentally generated recombinants suggests potential hotspots of recombination in this naturally competent pathogen. These findings provide insights into evolutionary forces possibly affecting the adaptive potential to colonize the host environments of X. fastidiosa.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Adam C Retchless
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Maria Bergsma-Vlami
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA.
| |
Collapse
|
22
|
Xylella fastidiosa: climate suitability of European continent. Sci Rep 2019; 9:8844. [PMID: 31222007 PMCID: PMC6586794 DOI: 10.1038/s41598-019-45365-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
The bacterium Xylella fastidiosa (Xf) is a plant endophyte native to the Americas that causes diseases in many crops of economic importance (grapevine, Citrus, Olive trees etc). Xf has been recently detected in several regions outside of its native range including Europe where little is known about its potential geographical expansion. We collected data documenting the native and invaded ranges of the Xf subspecies fastidiosa, pauca and multiplex and fitted bioclimatic species distribution models (SDMs) to assess the potential climate suitability of European continent for those pathogens. According to model predictions, the currently reported distribution of Xf in Europe is small compared to the large extent of climatically suitable areas. The regions at high risk encompass the Mediterranean coastal areas of Spain, Greece, Italy and France, the Atlantic coastal areas of France, Portugal and Spain as well as the southwestern regions of Spain and lowlands in southern Italy. The extent of predicted climatically suitable conditions for the different subspecies are contrasted. The subspecies multiplex, and to a certain extent the subspecies fastidiosa, represent a threat to most of Europe while the climatically suitable areas for the subspecies pauca are mostly limited to the Mediterranean basin. These results provide crucial information for the design of a spatially informed European-scale integrated management strategy, including early detection surveys in plants and insect vectors and quarantine measures.
Collapse
|
23
|
Girelli CR, Angilè F, Del Coco L, Migoni D, Zampella L, Marcelletti S, Cristella N, Marangi P, Scortichini M, Fanizzi FP. 1H-NMR Metabolite Fingerprinting Analysis Reveals a Disease Biomarker and a Field Treatment Response in Xylella fastidiosa subsp. pauca-Infected Olive Trees. PLANTS (BASEL, SWITZERLAND) 2019; 8:E115. [PMID: 31035723 PMCID: PMC6571561 DOI: 10.3390/plants8050115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022]
Abstract
Xylella fastidiosa subsp. pauca is a xylem-limited bacterial phytopathogen currently found associated on many hectares with the "olive quick decline syndrome" in the Apulia region (Southern Italy), and the cultivars Ogliarola salentina and Cellina di Nardò result in being particularly sensitive to the disease. In order to find compounds showing the capability of reducing the population cell density of the pathogen within the leaves, we tested, in some olive orchards naturally-infected by the bacterium, a zinc-copper-citric acid biocomplex, namely Dentamet®, by spraying it to the crown, once per month, during spring and summer. The occurrence of the pathogen in the four olive orchards chosen for the trial was molecularly assessed. A 1H NMR metabolomic approach, in conjunction with a multivariate statistical analysis, was applied to investigate the metabolic pattern of both infected and treated adult olive cultivars, Ogliarola salentina and Cellina di Nardò trees, in two sampling periods, performed during the first year of the trial. For both cultivars and sampling periods, the orthogonal partial least squares discriminant analysis (OPLS-DA) gave good models of separation according to the treatment application. In both cultivars, some metabolites such as quinic acid, the aldehydic form of oleoeuropein, ligstroside and phenolic compounds, were consistently found as discriminative for the untreated olive trees in comparison with the Dentamet®-treated trees. Quinic acid, a precursor of lignin, was confirmed as a disease biomarker for the olive trees infected by X. fastidiosa subsp. pauca. When treated with Dentamet®, the two cultivars showed a distinct response. A consistent increase in malic acid was observed for the Ogliarola salentina trees, whereas in the Cellina di Nardò trees the treatments attenuate the metabolic response to the infection. To note that in Cellina di Nardò trees at the first sampling, an increase in γ-aminobutyric acid (GABA) was observed. This study highlights how the infection incited by X. fastidiosa subsp. pauca strongly modifies the overall metabolism of olive trees, and how a zinc-copper-citric acid biocomplex can induce an early re-programming of the metabolic pathways in the infected trees.
Collapse
Affiliation(s)
- Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Federica Angilè
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Luigi Zampella
- Council for Agricultural research and Economics-Research Centre for Olive, Fruit Trees and Citrus, Via Torrino, 3, I-81100, Caserta, Italy.
| | - Simone Marcelletti
- Council for Agricultural research and Economics-Research Centre for Olive, Fruit Trees and Citrus, Via Torrino, 3, I-81100, Caserta, Italy.
| | - Nicola Cristella
- Studio Agro-Ambientale ed Ingegneria Terranostra srls, Via XXIV Maggio, 10, I-74020 Lizzano (TA), Italy.
| | - Paolo Marangi
- Studio Agro-Ambientale ed Ingegneria Terranostra srls, Via XXIV Maggio, 10, I-74020 Lizzano (TA), Italy.
| | - Marco Scortichini
- Council for Agricultural research and Economics-Research Centre for Olive, Fruit Trees and Citrus, Via Torrino, 3, I-81100, Caserta, Italy.
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
24
|
Denancé N, Briand M, Gaborieau R, Gaillard S, Jacques MA. Identification of genetic relationships and subspecies signatures in Xylella fastidiosa. BMC Genomics 2019; 20:239. [PMID: 30909861 PMCID: PMC6434890 DOI: 10.1186/s12864-019-5565-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The phytopathogenic bacterium Xylella fastidiosa was thought to be restricted to the Americas where it infects and kills numerous hosts. Its detection worldwide has been blooming since 2013 in Europe and Asia. Genetically diverse, this species is divided into six subspecies but genetic traits governing this classification are poorly understood. RESULTS SkIf (Specific k-mers Identification) was designed and exploited for comparative genomics on a dataset of 46 X. fastidiosa genomes, including seven newly sequenced individuals. It was helpful to quickly check the synonymy between strains from different collections. SkIf identified specific SNPs within 16S rRNA sequences that can be employed for predicting the distribution of Xylella through data mining. Applied to inter- and intra-subspecies analyses, it identified specific k-mers in genes affiliated to differential gene ontologies. Chemotaxis-related genes more prevalently possess specific k-mers in genomes from subspecies fastidiosa, morus and sandyi taken as a whole group. In the subspecies pauca increased abundance of specific k-mers was found in genes associated with the bacterial cell wall/envelope/plasma membrane. Most often, the k-mer specificity occurred in core genes with non-synonymous SNPs in their sequences in genomes of the other subspecies, suggesting putative impact in the protein functions. The presence of two integrative and conjugative elements (ICEs) was identified, one chromosomic and an entire plasmid in a single strain of X. fastidiosa subsp. pauca. Finally, a revised taxonomy of X. fastidiosa into three major clades defined by the subspecies pauca (clade I), multiplex (clade II) and the combination of fastidiosa, morus and sandyi (clade III) was strongly supported by k-mers specifically associated with these subspecies. CONCLUSIONS SkIf is a robust and rapid software, freely available, that can be dedicated to the comparison of sequence datasets and is applicable to any field of research. Applied to X. fastidiosa, an emerging pathogen in Europe, it provided an important resource to mine for identifying genetic markers of subspecies to optimize the strategies attempted to limit the pathogen dissemination in novel areas.
Collapse
Affiliation(s)
- Nicolas Denancé
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Romain Gaborieau
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Sylvain Gaillard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France.
| |
Collapse
|
25
|
Chen C, Bock CH, Brannen PM. Novel Primers and Sampling for PCR Detection of Xylella fastidiosa in Peach. PHYTOPATHOLOGY 2019; 109:307-317. [PMID: 30644805 DOI: 10.1094/phyto-11-18-0439-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Epidemics of phony peach disease (PPD), caused by Xylella fastidiosa, are of increasing concern to peach (Prunus persica) producers in the southeastern United States. Primers suitable for both conventional PCR (cPCR) and quantitative PCR (qPCR), along with optimal tissue and sampling time, are needed for comparative and reliable detection of X. fastidiosa. In this study, we developed and assessed novel primers for X. fastidiosa and for peach and compared detection of X. fastidiosa in four peach tissue types sampled at three time points using both cPCR and qPCR. Primer C06Xf-bamA was extensively tested for reliable detection of X. fastidiosa due to the more consistent intensity of the cPCR products and the marginally lower average quantification cycle (Cq) values of the qPCR products, compared with the other primers screened. Among the four peach tissue types tested, only root samples demonstrated reliable and consistent detection of X. fastidiosa; stem, petiole, and leaf samples, regardless of source trees, primers used, sampling times, or PCR methods (cPCR or qPCR), were unreliable for detection, due to insufficient quantity of DNA of X. fastidiosa in these samples based on the relative quantification assay. The Cq means and ratios were compared and statistically analyzed, to ascertain effects of source tree, tissue type, sampling time, and primer. Differences in detection sensitivity and the Cq means among sampled trees, sampling times, tested primers, and tissues (except root) were not significant or were inconsistent precluding further exploitation. In summary, these novel primers are a useful resource for detecting X. fastidiosa, and based on our results, root is the only tissue type reliable for year-round detection of X. fastidiosa in peach. Further research on potential utilization of above-ground tissues for PCR detection of X. fastidiosa are discussed.
Collapse
Affiliation(s)
- Chunxian Chen
- 1 U.S. Department of Agriculture, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008; and
| | - Clive H Bock
- 1 U.S. Department of Agriculture, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008; and
| | - Phillip M Brannen
- 2 University of Georgia, Department of Plant Pathology, 3307 Miller Plant Sciences Building, Athens 30602
| |
Collapse
|
26
|
Marcelletti S, Scortichini M. Some strains that have converged to infect Prunus spp. trees are members of distinct Pseudomonas syringae genomospecies and ecotypes as revealed by in silico genomic comparison. Arch Microbiol 2018; 201:67-80. [PMID: 30229267 DOI: 10.1007/s00203-018-1573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
Abstract
A complementary taxonomic and population genetic study was performed to delineate genetically and ecologically distinct species within the Pseudomonas syringae complex by assessing 16 strains including pathovar strains that have converged to infect Prunus spp. trees, and two outgroups. Both average nucleotide identity and genome-to-genome distance comparison methods revealed the occurrence of distinct genomospecies, namely 1, 2, 3 and 8 (sensu Gardan et al.), with the latter two being closely related. Strains classified as P. s. pv. morsprunorum clustered into two distinct genomospecies, namely 2 and 8. Both the AdaptML and hierarchical Bayesian analysis of population structure methods highlighted the presence of three ecotypes, and the taxonomically related genomospecies 3 and 8 strains were members of the same ecotype. The distribution of pathogenic and virulence-associated genetic traits among Pseudomonas strains did not reveal any distinct type III secretion system effector or phytotoxin distribution pattern that characterized single genomospecies and strains that infect Prunus spp. The complete WHOP (Woody HOst and Pseudomonas spp.) genomic region and the entire β-ketoadipate gene cluster, including the catBCA operon, were found only in the members of genomospecies 2 and in the two P. s. pv. morsprunorum strains of genomospecies 8. A reduced gene flow between the three ecotypes suggested that point mutations played a larger role during the evolution of the strains than recombination. Our data support the idea that Prunus trees can be infected by different strains of distinct Pseudomonas genomospecies/ecotypes through diverse mechanisms of host colonization and infection. Such strains may represent particular lineages that emerged from environments other than that of the infected plant upon acquiring genetic traits that gave them the ability to cause plant diseases. The complementary assessment of bacterial strains using both taxonomic approaches and methods that reveal ecologically homogeneous populations has proven useful in confirming the cohesion of bacterial clusters.
Collapse
Affiliation(s)
- Simone Marcelletti
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, 00134, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, 00134, Rome, Italy.
| |
Collapse
|
27
|
Kyrkou I, Pusa T, Ellegaard-Jensen L, Sagot MF, Hansen LH. Pierce's Disease of Grapevines: A Review of Control Strategies and an Outline of an Epidemiological Model. Front Microbiol 2018; 9:2141. [PMID: 30258423 PMCID: PMC6143690 DOI: 10.3389/fmicb.2018.02141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
Xylella fastidiosa is a notorious plant pathogenic bacterium that represents a threat to crops worldwide. Its subspecies, Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce's disease of grapevines. Pierce's disease has presented a serious challenge for the grapevine industry in the United States and turned into an epidemic in Southern California due to the invasion of the insect vector Homalodisca vitripennis. In an attempt to minimize the effects of Xylella fastidiosa subsp. fastidiosa in vineyards, various studies have been developing and testing strategies to prevent the occurrence of Pierce's disease, i.e., prophylactic strategies. Research has also been undertaken to investigate therapeutic strategies to cure vines infected by Xylella fastidiosa subsp. fastidiosa. This report explicitly reviews all the strategies published to date and specifies their current status. Furthermore, an epidemiological model of Xylella fastidiosa subsp. fastidiosa is proposed and key parameters for the spread of Pierce's disease deciphered in a sensitivity analysis of all model parameters. Based on these results, it is concluded that future studies should prioritize therapeutic strategies, while investments should only be made in prophylactic strategies that have demonstrated promising results in vineyards.
Collapse
Affiliation(s)
- Ifigeneia Kyrkou
- Laboratory of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Taneli Pusa
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
- Department of Computer, Automatic and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Lea Ellegaard-Jensen
- Laboratory of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Marie-France Sagot
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Lars Hestbjerg Hansen
- Laboratory of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
28
|
Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ, Daugherty MP, Almeida RPP. Xylella fastidiosa: Insights into an Emerging Plant Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:181-202. [PMID: 29889627 DOI: 10.1146/annurev-phyto-080417-045849] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple X. fastidiosa genotypes have now been detected in Italy, France, and Spain. Although X. fastidiosa has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because X. fastidiosa is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on X. fastidiosa and how it may be applicable to emerging diseases.
Collapse
Affiliation(s)
- Anne Sicard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
- Biologie et Génétique des Interactions Plant-Parasite, UMR 0385, Centre de Coopération Internationale en Recherche Agronomique pour le Développement-Institut National de la Recherche Agronomique-Montpellier SupAgro, Campus International de Baillarguet, 34398 Montpellier CEDEX 05, France
| | - Adam R Zeilinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Mathieu Vanhove
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Tyler E Schartel
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Dylan J Beal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Matthew P Daugherty
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
29
|
|
30
|
Jeger M, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, MacLeod A, Navajas Navarro M, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Almeida R, Bosco D, Jacques MA, Landa B, Purcell A, Saponari M, Czwienczek E, Delbianco A, Stancanelli G, Bragard C. Updated pest categorisation of Xylella fastidiosa. EFSA J 2018; 16:e05357. [PMID: 32625990 PMCID: PMC7009507 DOI: 10.2903/j.efsa.2018.5357] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Plant Health Panel updated its pest categorisation of Xylella fastidiosa, previously delivered as part of the pest risk assessment published in 2015. X. fastidiosa is a Gram‐negative bacterium, responsible for various plant diseases, including Pierce's disease, phony peach disease, citrus variegated chlorosis, olive quick decline syndrome, almond leaf scorch and various other leaf scorch diseases. The pathogen is endemic in the Americas and is present in Iran. In the EU, it is reported in southern Apulia in Italy, on the island of Corsica and in the Provence‐Alpes‐Côte d'Azur region in France, as well as in the Autonomous region of Madrid, the province of Alicante and the Balearic Islands in Spain. The reported status is ‘transient, under eradication’, except for the Balearic Islands, Corsica and southern of Apulia, where the status is ‘present with a restricted distribution, under containment’. The pathogen is regulated under Council Directive 2000/29/EC and through emergency measures under http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015D0789 (as amended http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017D2352). The pest could enter the EU via host plants for planting and via infectious insect vectors. The host range includes hundreds of host species listed in the EFSA host plant database. In the EU, host plants are widely distributed and climatic conditions are favourable for its establishment. X. fastidiosa can spread by movement of host plants for planting and infectious insect vectors. X. fastidiosa is known to cause severe direct damage to major crops including almonds, citrus, grapevines, olives, stone fruits and also forest trees, landscape and ornamental trees, with high impacts. The criteria assessed by the Panel for consideration as a potential Union quarantine pest are met (the pathogen is present in the EU, but it has a restricted distribution and is under official control). X. fastidiosa is not considered as a regulated non‐quarantine pest (RNQP) as the pathogen may spread also via insect vector transmission.
Collapse
|
31
|
Ito T, Suzaki K. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides. PLoS One 2017; 12:e0185427. [PMID: 28957362 PMCID: PMC5619750 DOI: 10.1371/journal.pone.0185427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 01/23/2023] Open
Abstract
Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.
Collapse
Affiliation(s)
- Takao Ito
- Division of Grape and Persimmon Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Higashihiroshima, Hiroshima, Japan
| | - Koichi Suzaki
- Division of Grape and Persimmon Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
32
|
Kandel PP, Almeida RPP, Cobine PA, De La Fuente L. Natural Competence Rates Are Variable Among Xylella fastidiosa Strains and Homologous Recombination Occurs In Vitro Between Subspecies fastidiosa and multiplex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:589-600. [PMID: 28459171 DOI: 10.1094/mpmi-02-17-0053-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xylella fastidiosa, an etiological agent of emerging crop diseases around the world, is naturally competent for the uptake of DNA from the environment that is incorporated into its genome by homologous recombination. Homologous recombination between subspecies of X. fastidiosa was inferred by in silico studies and was hypothesized to cause disease emergence. However, no experimental data are available on the degree to which X. fastidiosa strains are capable of competence and whether recombination can be experimentally demonstrated between subspecies. Here, using X. fastidiosa strains from different subspecies, natural competence in 11 of 13 strains was confirmed with plasmids containing antibiotic markers flanked by homologous regions and, in three of five strains, with dead bacterial cells used as source of donor DNA. Recombination frequency differed among strains and was correlated to growth rate and twitching motility. Moreover, intersubspecific recombination occurred readily between strains of subsp. fastidiosa and multiplex, as demonstrated by movement of antibiotic resistance and green fluorescent protein from donor to recipient cells and confirmed by DNA sequencing of the flanking arms of recombinant strains. Results demonstrate that natural competence is widespread among X. fastidiosa strains and could have an impact in pathogen adaptation and disease development.
Collapse
Affiliation(s)
- Prem P Kandel
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Rodrigo P P Almeida
- 2 Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A.; and
| | - Paul A Cobine
- 3 Department of Biological Sciences, Auburn University
| | - Leonardo De La Fuente
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| |
Collapse
|
33
|
Baldi P, La Porta N. Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques. FRONTIERS IN PLANT SCIENCE 2017; 8:944. [PMID: 28642764 PMCID: PMC5462928 DOI: 10.3389/fpls.2017.00944] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/22/2017] [Indexed: 05/05/2023]
Abstract
In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific targets is also mentioned. The fast progresses achieved during the last years in the DNA-based classification of this pathogen are described and discussed and specific primers designed for the different methods are listed, in order to provide a concise and useful tool to all the researchers working in the field.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
- MOUNTFOR Project Centre, European Forest InstituteTrento, Italy
| |
Collapse
|
34
|
Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. SUSTAINABILITY 2017. [DOI: 10.3390/su9040659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The disease outbreak of Xylella fastidiosa subsp. pauca strain CoDiRO (Complesso del Disseccamento Rapido dell’Olivo) in Salento (Apulia, South Italy) associated with severe cases of olive quick decline syndrome may represent not just a new disease paradigm, but a challenge for policy formulation and science communication in plant pathology. Plant health management can be achieved by applying a technocratic model, in which objective science is thought to directly inform policy-making, or via decisionistic or inclusive models, in which scientific considerations drive risk assessment. Each could be applied to X. fastidiosa and CoDiRO strain management, thanks to consistent literature related to pathogen/host interactions, hosts, vectors, and diagnostic tools, reviewed here. However, consensus among stakeholders seems to be necessary in order to avoid plant health management failures or gridlocks, due to environmental, economic, and social implications in the X. fastidiosa threat. Here we discuss the role of consensus in building scientific opinion, reporting different approaches of governance after severe disease outbreaks in Europe. These case studies, and the available risk analysis for Xylella strains, should drive policy formulations towards more cooperative networks.
Collapse
|
35
|
Alencar VC, Jabes DL, Menegidio FB, Sassaki GL, de Souza LR, Puzer L, Meneghetti MCZ, Lima MA, Tersariol ILDS, de Oliveira RC, Nunes LR. Functional and Evolutionary Characterization of a UDP-Xylose Synthase Gene from the Plant Pathogen Xylella fastidiosa, Involved in the Synthesis of Bacterial Lipopolysaccharide. Biochemistry 2017; 56:779-792. [PMID: 28125217 DOI: 10.1021/acs.biochem.6b00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.
Collapse
Affiliation(s)
- Valquíria Campos Alencar
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Daniela Leite Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Fabiano Bezerra Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Guilherme Lanzi Sassaki
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular Laboratório de Química de Carboidratos, Universidade Federal do Paraná (UFPR) , Rua Cel. Francisco H. dos Santos, 100, Curitiba, Paraná CEP 81531-980, Brazil
| | - Lucas Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Regina Costa de Oliveira
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Luiz R Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| |
Collapse
|
36
|
Marcelletti S, Scortichini M. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America. Microbiology (Reading) 2016; 162:2087-2098. [DOI: 10.1099/mic.0.000388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Simone Marcelletti
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Fruit Trees, Via di Fioranello 52, I-00134 Roma, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Fruit Trees, Via Torrino 3, I-81100 Caserta, Italy
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Fruit Trees, Via di Fioranello 52, I-00134 Roma, Italy
| |
Collapse
|
37
|
|
38
|
Su CC, Deng WL, Jan FJ, Chang CJ, Huang H, Shih HT, Chen J. Xylella taiwanensis sp. nov., causing pear leaf scorch disease. Int J Syst Evol Microbiol 2016; 66:4766-4771. [PMID: 27530392 DOI: 10.1099/ijsem.0.001426] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, nutritionally fastidious bacterium (PLS229T) causing pear leaf scorch was identified in Taiwan and previously grouped into Xylella fastidiosa. Yet, significant variations between PLS229T and Xylellafastidiosa were noted. In this study, PLS229T was evaluated phenotypically and genotypically against representative strains of Xylellafastidiosa, including strains of the currently known subspecies of Xylellafastidiosa, Xylella fastidiosa subsp. multiplex and 'Xylella fastidiosasubsp.pauca'. Because of the difficulty of in vitro culture characterization, emphases were made to utilize the available whole-genome sequence information. The average nucleotide identity (ANI) values, an alternative for DNA-DNA hybridization relatedness, between PLS229T and Xylellafastidiosa were 83.4-83.9 %, significantly lower than the bacterial species threshold of 95 %. In contrast, sequence similarity of 16S rRNA genes was greater than 98 %, higher than the 97 % threshold to justify if two bacterial strains belong to different species. The uniqueness of PLS229T was also evident by observing only about 87 % similarity in the sequence of the 16S-23S internal transcribed spacer (ITS) between PLS229T and strains of Xylellafastidiosa, discovering significant single nucleotide polymorphisms at 18 randomly selected housekeeping gene loci, observing a distinct fatty acid profile for PLS229T compared with Xylellafastidiosa, and PLS229T having different observable phenotypes, such as different susceptibility to antibiotics. A phylogenetic tree derived from 16S rRNA gene sequences showed a distinct PLS229T phyletic lineage positioning it between Xylellafastidiosa and members of the genus Xanthomonas. On the basis of these data, a novel species, Xylella taiwanensis sp. nov. is proposed. The type strain is PLS229T (=BCRC 80915T=JCM 31187T).
Collapse
Affiliation(s)
- C-C Su
- Division of Pesticide Application, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Wufeng, Taichung 41358, Taiwan, ROC
| | - W-L Deng
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - F-J Jan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - C-J Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, ROC.,Department of Plant Pathology, University of Georgia, Griffin, Georgia 30223, USA
| | - H Huang
- School of Information, University of South Florida, Tampa, FL 33620, USA
| | - H-T Shih
- Applied Zoology Division, Taiwan Agricultural Research Institute, Council of Agriculture, 189 Chung-Cheng Road, Wufeng, 413 Taichung, Taiwan, ROC
| | - J Chen
- USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California 93648, USA
| |
Collapse
|