1
|
Cheng M, Song J, Li W, Zhao Y, Zhang G, Chen Y, Gao H. Potentilla parvifolia strongly influenced soil microbial community and environmental effect along an altitudinal gradient in central Qilian Mountains in western China. Ecol Evol 2023; 13:e10685. [PMID: 38020704 PMCID: PMC10645544 DOI: 10.1002/ece3.10685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The Qilian Mountains (QLMs) form an important ecological security barrier in western China and a priority area for biodiversity conservation. Potentilla parvifolia is a widespread species in the mid-high altitudes of the QLMs and has continuously migrated to higher altitudes in recent years. Understanding the effects of P. parvifolia on microbial community characteristics is important for exploring future changes in soil biogeochemical processes in the QLMs. This study found that P. parvifolia has profound effects on the community structure and ecological functions of soil microorganisms. The stability and complexity of the root zone microbial co-occurrence network were significantly higher than those of bare soils. There was a distinct altitudinal gradient in the effect of P. parvifolia on soil microbial community characteristics. At an elevation of 3204 m, P. parvifolia promoted the accumulation of carbon, nitrogen, and phosphorus and increased sucrase activity and soil C/N while significantly improving the community richness index of fungi (p < .05) compared with that of bacteria and the relative abundance of Ascomycota. The alpha diversity of fungi in the root zone soil of P. parvifolia was also significantly increased at 3550 m altitude. Furthermore, the community similarity distance matrix of fungi showed an evident separation at 3204 m. However, at an altitude of 3750 m, P. parvifolia mainly affected the bacterial community. Potentilla parvifolia increased the bacterial community richness. This is in agreement with the findings based on the functional prediction that P. parvifolia favors the growth and enrichment of denitrifying communities at 3550 and 3750 m. The results provide a scientific basis for predicting the evolutionary trends of the effects of P. parvifolia on soil microbial communities and functions and have important implications for ecological governance in the QLMs.
Collapse
Affiliation(s)
- Miaomiao Cheng
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Jinge Song
- School of StomatologyLanzhou UniversityLanzhouChina
| | - Weikun Li
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Yiming Zhao
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and EngineeringLanzhouChina
| | - Yong Chen
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Haining Gao
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
| |
Collapse
|
2
|
Soil organic carbon, aggregation and fungi community after 44 years of no-till and cropping systems in the Central Great Plains, USA. Arch Microbiol 2023; 205:84. [PMID: 36750497 DOI: 10.1007/s00203-023-03421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
Implementing sustainable agricultural land management practices such as no-till (NT) and diversified crops are important for maintaining soil health properties. This study focuses on the soil health of three long-term (44 years) tillage systems, NT, reduced tillage (RT), and conventional tillage (CT), in monoculture winter wheat-fallow (W-F) (Triticum aestivum L.) and wheat-soybean (W-S) (Glycine max (L.) Merrill) rotation. Soil organic carbon (C) was higher in NT than CT in the surface 0-5 cm, but not different in the 5-15 cm, demonstrating SOC stratification on the soil profile. The soil water content was higher in NT followed by RT and CT in the top 0-5 cm. We found an association between increased carbon, aggregation, and AMF biomass. Greater soil aggregation, carbon and AMF were observed in NT at 0-5 cm soil depth. The W-S cropping system had greater soil microbial community composition based on fungi biomass, AMF and fungal to bacteria ratio from phospholipid fatty acid analysis (PLFA). Large macroaggregates were positively correlated with total C and N, microbial biomass, Gram + , and AMF. Soil water content was positively correlated with macroaggregates, total C and N, and AC. No-till increased soil carbon content even after 44 years of cultivation. By implementing conservation tillage systems and diversified crop rotation, soil quality can be improved through greater soil organic C, water content, greater soil structure, and higher AMF biomass than CT practice in the Central Great Plains.
Collapse
|
3
|
Zhang Z, Han X, Pan F, Liu H, Yan J, Zou W, McLaughlin NB, Hao X. Land use alters diazotroph community structure by regulating bacterivores in Mollisols in Northeast China. Front Microbiol 2022; 13:941170. [PMID: 35910639 PMCID: PMC9335130 DOI: 10.3389/fmicb.2022.941170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Changes in land use can generate environmental pressures that influence soil biodiversity, and numerous studies have examined the influences of land use on the soil microbial communities. However, little is known about the effects of land use on ecological interactions of soil microbes and their predators. Diazotrophs are key soil microbes that play important functional roles in fixing atmospheric nitrogen. In this study, we investigated the co-association of diazotroph community members and patterns of diazotroph and bacterivore networks under different long-term land uses including cropland, grassland, and bare land. Diazotroph community was characterized by high-throughput sequencing. The results indicated that land use type influenced the dominant genera of diazotrophs and shaped the occurrence of specific indicator diazotroph taxa. Co-existing pattern analysis of diazotrophs and bacterivores indicated that grassland converted from cropland increased the complexity of diazotroph and bacterivore network structure. The number of nodes for diazotrophs and bacterivores was higher in grassland than in cropland and bare land. Random forest analysis revealed that six bacterivore genera Cephalobus, Protorhabditis, Acrobeloides, Mesorhabditis, Anaplectus, and Monhystera had significant effects on diazotrophs. Bacterivores were found to have predominantly negative effects in bare land. Different bacterivores had differing effects with respect to driving changes in diazotroph community structure. Structural equation model showed that land use could control diazotroph community composition by altering soil properties and regulating abundance of bacterivores. These findings accordingly enhance our current understanding of mechanisms underlying the influence of land use patterns on diazotrophs from the perspective of soil food webs.
Collapse
Affiliation(s)
- Zhiming Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozeng Han
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Fengjuan Pan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- *Correspondence: Fengjuan Pan,
| | - Hang Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, China
| | - Jun Yan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Wenxiu Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Neil B. McLaughlin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Xiangxiang Hao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
4
|
Bobul'ská L, Espíndola SP, Coelho MA, Ferreira AS. Impact of land use on soil function and bacterial community in the Brazilian savanna. AN ACAD BRAS CIENC 2021; 93:e20201906. [PMID: 34550206 DOI: 10.1590/0001-3765202120201906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/20/2021] [Indexed: 11/21/2022] Open
Abstract
Land use systems have a great impact on soil function and microbial diversity in tropical soils. Our study aimed to evaluate soil biochemical indicators and community composition and to assess the relationship between soil biochemical and microbial indicators and bacterial diversity of three agroecosystems (pine forest, soya and sugarcane) and native Cerrado forest in the Brazilian savanna. Soil biochemical indicators (soil organic matter and enzymes) and high-throughput sequencing of 16S rDNA were performed in two topsoil depths (0-5 cm and 5-10 cm). Soil microbial and enzyme activity showed that agricultural soil usage has a negative impact on soil function compared to native and pine forests. Results also revealed higher enzyme activities in 0-5 cm depth compared to 5-10 cm depth, but enzymatic activities depend on land use systems. Soil bacterial community was affected by land use systems and depth, revealing changes in structure and abundance of bacterial composition. Alpha-diversity indexes were higher in the agricultural systems than in the forests, however they showed a significant negative correlation with most of the studied soil microbial and biochemical indicators. Our research had brought new relevant information about the relationship between the soil biochemical indicators and the bacterial diversity in the Brazilian Cerrado.
Collapse
Affiliation(s)
- Lenka Bobul'ská
- University of Prešov in Prešov, Department of Ecology, Faculty of Humanities and Natural Sciences, 17, November 1, Prešov 080 01, Slovakia
| | - Suéllen P Espíndola
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| | - Michelle A Coelho
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| | - Adão S Ferreira
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| |
Collapse
|
5
|
Silva-Olaya AM, Mora-Motta DA, Cherubin MR, Grados D, Somenahally A, Ortiz-Morea FA. Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLoS One 2021; 16:e0255669. [PMID: 34407107 PMCID: PMC8372923 DOI: 10.1371/journal.pone.0255669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Soil enzymes mediate key processes and functions of the soils, such as organic matter decomposition and nutrient cycling in both natural and agricultural ecosystems. Here, we studied the activity of five extracellular soil enzymes involved in the C, N, and P-mineralizing process in both litter and surface soil layer of rainforest in the northwest region of the Colombian Amazon and the response of those soil enzymes to land use change. The experimental study design included six study sites for comparing long-term pasture systems to native forest and regeneration practices after pasture, within the main landscapes of the region, mountain and hill landscapes separately. Results showed considerable enzymatic activity in the litter layer of the forest, highlighting the vital role of this compartment in the nutrient cycling of low fertility soils from tropical regions. With the land use transition to pastures, changes in soil enzymatic activities were driven by the management of pastures, with SOC and N losses and reduced absolute activity of soil enzymes in long-term pastures under continuous grazing (25 years). However, the enzyme activities expressed per unit of SOC did not show changes in C and N-acquiring enzymes, suggesting a higher mineralization potential in pastures. Enzymatic stoichiometry analysis indicated a microbial P limitation that could lead to a high catabolic activity with a potential increase in the use of SOC by microbial communities in the search for P, thus affecting soil C sequestration, soil quality and the provision of soil-related ecosystem services.
Collapse
Affiliation(s)
| | - Dúber A. Mora-Motta
- Amazonian Research Center CIMAZ-MACAGUAL, University of the Amazon, Florencia, Colombia
| | - Maurício R. Cherubin
- Department of Soil Science, ‘‘Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Grados
- Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n Chucuito, Callao, Perú
| | - Anil Somenahally
- Department of Soil and Crop Sciences, Texas A&M University, Overton, Texas, United States of America
| | - Fausto A. Ortiz-Morea
- Amazonian Research Center CIMAZ-MACAGUAL, University of the Amazon, Florencia, Colombia
| |
Collapse
|
6
|
de Souza LC, Procópio L. The profile of the soil microbiota in the Cerrado is influenced by land use. Appl Microbiol Biotechnol 2021; 105:4791-4803. [PMID: 34061229 DOI: 10.1007/s00253-021-11377-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
Extensive areas of the Cerrado biome have been deforested by the rapid advance of agricultural frontiers, especially by agricultural monocultures, and cultivated pastures. The objective of this study was to characterize the soil microbial community of an environment without anthropogenic interference and to compare it with soybean soil and pasture areas. For that, metagenomic sequencing techniques of the 16S rRNA gene were employed. Consistent changes in the profiles of diversity and abundance were described between communities in relation to the type of soil. The soil microbiome of the native environment was influenced by the pH level and content of Al3+, whereas the soil microbiomes cultivated with soybean and pasture were associated with the levels of nutrients N and P and the ions Ca2+ and Mg2+, respectively. The analysis of bacterial communities in the soil of the native environment showed a high abundance of members of the Proteobacteria phylum, with emphasis on the Bradyrhizobium and Burkholderia genera. In addition, significant levels of species of the Bacillus genus, and Dyella ginsengisoli, and Edaphobacter aggregans of the Acidobacteria phylum were detected. In the soil community with soybean cultivation, there was a predominance of Proteobacteria, mainly of the Sphingobium and Sphingomonas genera. In the pasture, the soil microbiota was dominated by the Firmicutes, which was almost entirely represented by the Bacillus genus. These results suggest an adaptation of the bacterial community to the soybean and pasture cultivations and will support understanding how environmental and anthropogenic factors shape the soil microbial community. KEY POINTS: • The Cerrado soil microbiota is sensitive to impacts on the biome. • Microbial communities have been altered at all taxonomic levels.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil.
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Fan D, Wang S, Guo Y, Liu J, Agathokleous E, Zhu Y, Han J. The role of bacterial communities in shaping Cd-induced hormesis in 'living' soil as a function of land-use change. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124996. [PMID: 33444951 DOI: 10.1016/j.jhazmat.2020.124996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Bacterial communities and soil physicochemical properties shape soil enzymes activities. However, how environmental factors and bacterial communities affect the relationship between increasing doses of soil pollutants and soil alkaline phosphatase (ALP), an index of soil microbiota activity, remains poorly understood. In this study, we investigated the response of soil ALP to 13 doses of Cd (0 and 0.01-100 mg/kg) under four land uses, viz. grassland (GL), natural forest (NF), plantation forest (PF), and wheat field (WF). We found that Cd commonly induced hormetic-like responses of soil ALP, with a maximum stimulation of 10.7%, 10.1%, 11.6%, and 14.5% in GL, NF, PF, and WF, respectively. The size of the hormetic zone (Horzone), an integrated indicator of the stimulation phase and biological plasticity, was in the order GL > WF > PF > NF, and the hormetic zone occurred in the dose range of 5-10, 0.3-10, 0.8-3, and 3-5 mg/kg, respectively. These results indicate highly pleiotropic responses of 'living' soil system to promote resilience to Cd contamination, with soil microbiota potentially contributing to soil ALP's hormetic-like response under different land uses. The hormetic-like response of 'living' soil ALP in different land uses offers a new insight into the identification and minimization of the ecological risks of land-use change in Cd-contaminated lands.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengyan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanhui Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
8
|
Zhang L, Zhuang T, Bai J, Ye X, Wang D, Wang W, Guan Y. Dynamics of phosphorus fractions and potential bioavailability along soil profiles from seasonal-flooding wetlands in a Chinese estuary. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6549-6560. [PMID: 32997246 DOI: 10.1007/s11356-020-10732-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Soil phosphorus fractions in wetland ecosystems have received increasing attention due to its high eutrophication risks. Soil samples were collected to 40 cm depth in three sampling seasons to investigate the seasonal dynamics of organic and inorganic phosphorus fractions, bioavailability, and relationship between those and soil properties in a seasonal-flooding wetland in the Yellow River Estuary. The results showed that inorganic phosphorus (IP) and organic phosphorus (OP) contents exhibited much higher levels in the top 10 cm soils, and declined along soil profiles in spring. IP kept constant along soil profiles in fall, while OP decreased in summer and fall. They were greatly affected by water content (WC), pH, Cl-/SO42-, soil organic matter (SOM), and electrical conductivity (EC). Middle labile organic phosphorus (MLOP) and non-labile organic phosphorus (NLOP) accounted for higher percentages of total OP in summer and fall respectively than labile organic phosphorus (LOP) in spring. MLOP and NLOP levels showed a decrease along soil profiles in spring and in spring/fall, respectively, while NLOP significantly increased with depth in summer. Ca-P was the dominant IP fraction in all soils in three sampling seasons, declined with depth in spring/fall and increased in summer. Comparatively, soluble/loosely-P(S/L-P) generally decreased with depth along soil profiles in three sampling seasons. And residual P (Res-P) kept little change with depth in spring. Fe/Al-P levels decreased firstly and then increased with depth in spring and summer. Available phosphorus and potential bioavailable phosphorus contents decreased with depth in spring and summer not in fall, and had a strong significant positive correlation with WC and SOM. Alkaline phosphatase not acid phosphatase was the key factor influencing soil MLOP levels. Generally, the fractions and bioavailability of phosphorus as well as phosphatase in this region were affected by soil depth, sampling seasons, and soil properties (e.g., WC, pH, Cl-/SO42-, SOM, and EC).
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, 257500, China
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Tao Zhuang
- Jinan Environmental Research Academy, Jinan, 250102, China.
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, 257500, China.
| | - Xiaofei Ye
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, 257500, China
| | - Dawei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, 257500, China
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, 257500, China
| | - Yanan Guan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, 257500, China
| |
Collapse
|