1
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
3
|
Zhou G, Zhong W, Chen Y, Wang Y, Li T, Hua J, Zhou Y, Li M, Gu N, Zhao Y. Mixed-valence gold-porphyrin two-dimensional coordination networks for repurposing of chrysotherapy. Biomaterials 2023; 302:122361. [PMID: 37898022 DOI: 10.1016/j.biomaterials.2023.122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Catalytic gold nanomaterials typically exhibit antibacterial properties, albeit significantly weaker than ionic gold in chrysotherapy. The inherent stability of gold nanoparticles prevents the release of gold ions, limiting their ability to achieve efficient antibacterial therapy. To address this limitation, we propose a novel sustained ionic gold release strategy through the construction of a mixed-valence gold-porphyrin coordination network (Au-Por). By adjusting the ratio of Au to porphyrin molecule, an ultrathin two-dimensional Au-Por nanosheet was successfully synthesized, which contains 85.9 % of Au (III). In addition, the remaining gold existed in the form of uniformly distributed ultrasmall nanoclusters on the Au-Por nanosheet. Notably, the Au-Por nanosheet exhibited a sustained release of gold ions. Thus, a multimodal antibacterial therapy was achieved by integrating the direct bactericidal action of ionic gold and lethal reactive oxygen species (ROS) generated through the peroxidase (POD)-like activity of gold nanoclusters and photodynamic therapy (PDT) using porphyrins. The innovative Au-Por exerted broad-spectrum bactericidal activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria mediated by bacterial membrane disruption and DNA damage. Moreover, in vivo studies demonstrated the synergistic effect of Au-Por on combating skin wound infections and facilitating wound healing. Comprehensive safety evaluations proved that Au-Por exhibited no hematotoxicity or hepatorenal toxicity, and it also displayed rapid renal clearance after treatment, indicating favorable biocompatibility. The repurposing of chrysotherapy has revolutionized the antibacterial strategy of nanoscale gold, resulting in a dramatic boost in antibacterial activity and valuable insights for designing highly efficient nanoscale antibacterial agents.
Collapse
Affiliation(s)
- Gaoxin Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yang Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yipin Wang
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Hua
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yaoxuan Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Mei Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China; Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
4
|
Ebadati A, Oshaghi M, Saeedi S, Parsa P, Mahabadi VP, Karimi M, Hajiebrahimdehi AJ, Hamblin MR, Karimi M. Mechanism and antibacterial synergies of poly(Dabco-BBAC) nanoparticles against multi-drug resistant Pseudomonas aeruginosa isolates from human burns. Bioorg Chem 2023; 140:106718. [PMID: 37566942 DOI: 10.1016/j.bioorg.2023.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Multi-drug resistant bacteria are a major problem in the treatment of infectious diseases, such as pneumonia, meningitis, or even coronavirus disease 2019 (COVID-19). Cationic nanopolymers are a new type of antimicrobial agent with high efficiency. We synthesized and characterized cationic polymer based on 1,4-diazabicyclo [2.2.2] octane (DABCO) and Bis (bromoacetyl)cystamine (BBAC), named poly (DABCO-BBAC) nanoparticles(NPs), and produced 150 nm diameter NPs. The antibacterial activity of poly (DABCO-BBAC) against eight multi drug resistant (MDR) Pseudomonas aeruginosa isolates from human burns, its possible synergistic effect with gentamicin, and the mechanism of action were examined. Poly(DABCO-BBAC) could effectively inhibit and kill bacterial strains at a very low concentration calculated by minimum inhibitory concentration (MIC) assay. Nevertheless, its synergism index with gentamicin showed an indifferent effect. Moreover, transmission electron microscopy and lipid peroxidation assays showed that poly (DABCO-BBAC) distorted and damaged the bacterial cell wall. These results suggest that the poly (DABCO-BBAC) could be an effective antibacterial agent for MDR clinical pathogens.
Collapse
Affiliation(s)
- Arefeh Ebadati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Oshaghi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Saeedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Parsa
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Karimi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Karen Diagnostic Laboratory, Varamin, Iran; Sepid Diagnostic Laboratory, Varamin, Iran
| | - Atefeh Jahandideh Hajiebrahimdehi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Marques A, Carabineiro SAC, Aureliano M, Faleiro L. Evaluation of Gold Complexes to Address Bacterial Resistance, Quorum Sensing, Biofilm Formation, and Their Antiviral Properties against Bacteriophages. TOXICS 2023; 11:879. [PMID: 37999531 PMCID: PMC10674251 DOI: 10.3390/toxics11110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
The worldwide increase in antibiotic resistance poses a significant challenge, and researchers are diligently seeking new drugs to combat infections and prevent bacterial pathogens from developing resistance. Gold (I and III) complexes are suitable for this purpose. In this study, we tested four gold (I and III) complexes, (1) chlorotrimethylphosphine gold(I); (2) chlorotriphenylphosphine gold(I); (3) dichloro(2-pyridinecarboxylate) gold (III); and (4) 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene gold(I) chloride, for their antibacterial, antibiofilm, antiviral, and anti-quorum sensing activities. Results reveal that 1 significantly inhibits Escherichia coli DSM 1077 and Staphylococcus aureus ATCC 6538, while 2, 3, and 4 only inhibit S. aureus ATCC 6538. The minimum inhibitory concentration (MIC) of 1 for S. aureus ATCC 6538 is 0.59 μg/mL (1.91 μM), and for methicillin-resistant S. aureus strains MRSA 12 and MRSA 15, it is 1.16 μg/mL (3.75 μM). For E. coli DSM 1077 (Gram-negative), the MIC is 4.63 μg/mL (15 μM), and for multi-resistant E. coli I731940778-1, it is 9.25 μg/mL (30 μM). Complex 1 also disrupts biofilm formation in E. coli and S. aureus after 6 h or 24 h exposure. Moreover, 1 and 2 inhibit the replication of two enterobacteria phages. Anti-quorum sensing potential still requires further clarification. These findings highlight the potential of gold complexes as effective agents to combat bacterial and viral infections.
Collapse
Affiliation(s)
- Ana Marques
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
6
|
Zhang Y, Qian Y, Zhang M, Qiao W. Repairing of rutin to the toxicity of combined F-53B and chromium pollution on the biofilm formed by Pseudomonas aeruginosa. J Environ Sci (China) 2023; 127:158-168. [PMID: 36522050 DOI: 10.1016/j.jes.2021.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/17/2023]
Abstract
The wastewater discharge from the process of chrome plating, which contains 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and chromium (Cr), may be toxic to biofilm. In this study we found that the biofilm formed by Pseudomonas aeruginosa PAO1 was inhibited by exposure to a combination of F-53B and Cr(VI). The combined pollution damaged the cell membranes and the structure of the biofilm, and inhibited the production of the Pseudomonas quinolone-based signal, which affected biofilm formation. Moreover, the secretion of extracellular polymeric substances decreased as a result of this combined exposure. Exposure to F-53B and Cr(VI) individually or in combination could induce the excessive accumulation of intracellular reactive oxygen species (ROS), and the ROS positive rate of the bacteria increased under the treatment with 0.2 mmol/L of Cr(VI) and 250 nmol/L of F-53B, respectively. In addition, the activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced for scavenging ROS in the bacteria that were exposed to Cr(VI) and F-53B. As an antioxidant, rutin was used to repair the toxicity of Cr(VI) and F-53B towards the biofilm formed by the bacteria. When rutin was added to the bacteria medium, with either Cr(VI) or F-53B as pollutant, or with the combined pollutants, the extracellular protein content of the bacteria recovered to 0.84, 0.94, and 0.85 times that of the control, respectively. Meanwhile, the accumulation of ROS and the activities of SOD and CAT decreased, which indicated that the addition of rutin can alleviate the oxidative stress and promote the antioxidant stress system.
Collapse
Affiliation(s)
- Yunhao Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Qian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Paesa M, Remirez de Ganuza C, Alejo T, Yus C, Irusta S, Arruebo M, Sebastian V, Mendoza G. Elucidating the mechanisms of action of antibiotic-like ionic gold and biogenic gold nanoparticles against bacteria. J Colloid Interface Sci 2023; 633:786-799. [PMID: 36493743 DOI: 10.1016/j.jcis.2022.11.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
The antimicrobial action of gold depends on different factors including its oxidation state in the intra- and extracellular medium, the redox potential, its ability to produce reactive oxygen species (ROS), the medium components, the properties of the targeted bacteria wall, its penetration in the bacterial cytosol, the cell membrane potential, and its interaction with intracellular components. We demonstrate that different gold species are able to induce bacterial wall damage as a result of their electrostatic interaction with the cell membrane, the promotion of ROS generation, and the consequent DNA damage. In-depth genomic and proteomic studies on Escherichia coli confirmed the superior toxicity of Au (III) vs Au (I) based on the different molecular mechanisms analyzed including oxidative stress, bacterial energetic metabolism, biosynthetic processes, and cell transport. At equivalent bactericidal doses of Au (III) and Au (I) eukaryotic cells were not as affected as bacteria did, maintaining unaffected cell viability, morphology, and focal adhesions; however, increased ROS generation and disruption in the mitochondrial membrane potential were also observed. Herein, we shed light on the antimicrobial mechanisms of ionic and biogenic gold nanoparticles against bacteria. Under selected conditions antibiotic-like ionic gold can exert a strong antimicrobial activity while being harmless to human cells.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Cristina Remirez de Ganuza
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Cristina Yus
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Víctor Sebastian
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009-Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| |
Collapse
|
8
|
Hemeg HA. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z NATURFORSCH C 2022; 77:365-378. [PMID: 35234019 DOI: 10.1515/znc-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Some bacteria can withstand the existence of an antibiotic without undergoing any genetic changes. They are neither cysts nor spores and are one of the causes of disease recurrence, accounting for about 1% of the biofilm. There are numerous approaches to eradication and combating biofilm-forming organisms. Nanotechnology is one of them, and it has shown promising results against persister cells. In the review, we go over the persister cell and biofilm in extensive detail. This includes the biofilm formation cycle, antibiotic resistance, and treatment with various nanoparticles. Furthermore, the gene-level mechanism of persister cell formation and its therapeutic interventions with nanoparticles were discussed.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| |
Collapse
|
9
|
Rabiee N, Ahmadi S, Akhavan O, Luque R. Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1799. [PMID: 35269031 PMCID: PMC8911831 DOI: 10.3390/ma15051799] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023]
Abstract
Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles' physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran;
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran;
| | - Rafael Luque
- Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| |
Collapse
|
10
|
Attallah NGM, Elekhnawy E, Negm WA, Hussein IA, Mokhtar FA, Al-Fakhrany OM. In Vivo and In Vitro Antimicrobial Activity of Biogenic Silver Nanoparticles against Staphylococcus aureus Clinical Isolates. Pharmaceuticals (Basel) 2022; 15:194. [PMID: 35215306 PMCID: PMC8878289 DOI: 10.3390/ph15020194] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus can cause a wide range of severe infections owing to its multiple virulence factors in addition to its resistance to multiple antimicrobials; therefore, novel antimicrobials are needed. Herein, we used Gardenia thailandica leaf extract (GTLE), for the first time for the biogenic synthesis of silver nanoparticles (AgNPs). The active constituents of GTLE were identified by HPLC, including chlorogenic acid (1441.03 μg/g) from phenolic acids, and quercetin-3-rutinoside (2477.37 μg/g) and apigenin-7-glucoside (605.60 μg/g) from flavonoids. In addition, the antioxidant activity of GTLE was evaluated. The synthesized AgNPs were characterized using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy (SEM), zeta potential, dynamic light scattering, and X-ray diffraction. The formed AgNPs had a spherical shape with a particle size range of 11.02-17.92 nm. The antimicrobial activity of AgNPs was investigated in vitro and in vivo against S. aureus clinical isolates. The minimum inhibitory concentration (MIC) of AgNPs ranged from 4 to 64 µg/mL. AgNPs significantly decreased the membrane integrity of 45.8% of the isolates and reduced the membrane potential by flow cytometry. AgNPs resulted in morphological changes observed by SEM. Furthermore, qRT-PCR was utilized to examine the effect of AgNPs on the gene expression of the efflux pump genes norA, norB, and norC. The in vivo examination was performed on wounds infected with S. aureus bacteria in rats. AgNPs resulted in epidermis regeneration and reduction in the infiltration of inflammatory cells. Thus, GTLE could be a vital source for the production of AgNPs, which exhibited promising in vivo and in vitro antibacterial activity against S. aureus bacteria.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Alsalam University, Tanta 3111, Egypt;
| | - Omnia Momtaz Al-Fakhrany
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
11
|
Tang Y, Liang Z, Li G, Zhao H, An T. Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water. CHEMOSPHERE 2021; 283:131224. [PMID: 34153911 DOI: 10.1016/j.chemosphere.2021.131224] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The aquatic environment may represent an essential route for transmission of antibiotic resistance to opportunistic human pathogens. Since industrial wastewater is discharged into the river after treatment, understanding the distribution of antibiotic resistance genes (ARGs) in river systems and the possibility of pathogens acquiring antibiotic resistance are challenges with far-reaching significance. This work mainly studied distribution profiles of pathogens and ARGs, and compared their health risk in various industrial wastewater with that of river water. Results showed that 166 pathogens were concurrently shared by the six water samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant, followed by Fusarium graminearum and Magnaporthe oryzae. The similar composition of the pathogens suggests that pathogens in river water may mainly come from sewage discharge of slaughterhouses and that changes in water quality contribute significantly to the prevalence of these pathogens. Of the 57 ARG types detected, bacitracin was the most abundant, followed by sulfonamide, chloramphenicol, tetracycline, and aminoglycoside. Strikingly, the wastewater from a pharmaceutical factory producing Chinese medicine was also rich in bacA, sul1, mexW, mexB, mexF and oprn. It can be seen from the co-occurrence patterns that pathogens and the main ARGs have strong co-occurrence. Higher abundance of offensive virulence factors in industrial wastewater and their strong correlation with pathogens containing ARGs suggest higher microbiological risk. These findings highlight the need to assess ARG acquisition by pathogens in the surface water of human-impacted environments where pathogens and ARGs may co-thrive.
Collapse
Affiliation(s)
- Yao Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huijun Zhao
- Griffith University, Griffith School Environment, Gold Coast Campus, Southport, Qld, 4222, Australia
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|