1
|
Jing Z, Ye F, Liu X, Gao H. A critical review of microbial profiles in black and odorous waters. ENVIRONMENTAL RESEARCH 2025; 270:120972. [PMID: 39884529 DOI: 10.1016/j.envres.2025.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of waters. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
2
|
Tang M, Chen Q, Xiao X, Lyu Y, Sun W. Differential impacts of water diversion and environmental factors on bacterial, archaeal, and fungal communities in the eastern route of the South-to-North water diversion project. ENVIRONMENT INTERNATIONAL 2025; 195:109280. [PMID: 39824026 DOI: 10.1016/j.envint.2025.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Water diversion projects effectively mitigate the uneven distribution of water resources but can also influence aquatic biodiversity and ecosystem functions. Despite their importance, the impacts of such projects on multi-domain microbial community dynamics and the underlying mechanisms remain poorly understood. Utilizing high-throughput sequencing, we investigated bacterial, archaeal, and fungal community dynamics along the eastern route of the South-to-North water diversion project during both non-water diversion period (NWDP) and water diversion period (WDP). Our findings revealed competitive exclusion effects among bacterial and archaeal communities during the WDP, characterized by decreased species richness and increased biomass, while fungal biomass significantly declined. Distance-decay relationships suggested microbial homogenization during the WDP. Robustness analyses revealed reduced community stability during the WDP, with water diversion primarily influencing bacterial stability, while environmental factors had a greater impact on archaeal and fungal communities. Stochastic processes, primarily homogenizing dispersal and drift, intensified for bacterial and fungal communities during the WDP. Notably, only bacterial functional diversity decreased during the WDP, with increased relative abundance of chemoheterotrophic and organic compound catabolic bacteria and declined photoautotrophic bacteria. PLS-PM indicated that water diversion primarily shaped bacterial assembly processes and functional guilds, whereas environmental factors had a greater influence on archaeal communities. This study enhances our understanding of microbial dynamics during the WDP and underscores the importance of assessing both direct impacts and resulting environmental fluctuations.
Collapse
Affiliation(s)
- Moran Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China
| | - Xinzong Xiao
- China South-to-North Water Diversion Middle Route Corporation Limited, Beijing 100038 China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China.
| |
Collapse
|
3
|
Wan R, Zha Y, Wu M, Li X, Yang H, Liu H. Long-term effective remediation of black-odorous water via regulating calcium nitrate sustained-release. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1065. [PMID: 37598137 DOI: 10.1007/s10661-023-11659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Nitrate addition is reported as a cost-effective method for remediating black-odorous water, which is mainly induced by the deficiency of electron acceptor. However, excessive release of nitrate and lack of long-term effectiveness significantly limited the application of direct nitrate dosing technology. Herein, for remediating black-odorous water, we constructed a nitrate sustained-release ecological concrete (ecoN-concrete), in which calcium nitrate (Ca(NO3)2) was dosed into concrete block to regulate the release of nitrate. The results showed that chemical oxygen demand (COD), turbidity, ammonia, phosphate, and sulfate were significantly removed in an ecoN-concrete-contained reactor fed with black-odorous water, and its removal efficiency was largely dependent on Ca(NO3)2 dosage. Meanwhile, the released nitrate was lower than 25% of its total dosage and nitrite was lower than 1.5 mg/L during 14 days remediation. After three recycles, the removal efficiencies of COD and turbidity by using ecoN-concrete were still more than 85%, indicating an excellent nitrate sustained-release performance of ecoN-concrete, which can be applied for preventing water re-blackening and re-stinking. Further investigation illustrated that the ecoN-concrete (1) decreased the abundance of Desulfovibrio, Desulfomonile, and Desulforhabdus in the phylum of Desulfobacterota to alleviate the odorous gas production and (2) significantly increased the abundance of Bacillus and Thermomonas, which utilized the released-nitrate for consuming organic matters and ammonia. This study provided an artful Ca(NO3)2 dosing strategy and long-term effective method for black-odorous water remediation.
Collapse
Affiliation(s)
- Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Mengqi Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Haifeng Yang
- Donghu Innovation Center, Anhui Phoneya Environmental Technology Co. Ltd, Hefei, 230601, China
| | - Hongming Liu
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, China
| |
Collapse
|
4
|
Yang C, Zeng Z, Wang Y, He G, Hu Y, Gao D, Dai Y, Li Q, Zhang H. Ecological risk assessment and identification of the distinct microbial groups in heavy metal-polluted river sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1311-1329. [PMID: 35939250 DOI: 10.1007/s10653-022-01343-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
To assess the health of river ecosystems, it is essential to quantify the ecological risk of heavy metals in river sediments and the structure of microbial communities. As important tributaries of the Tuo River in the upper reaches of the Yangtze River, the Mianyuan River and the Shiting River, are closely related to the economic development and human daily life in the region. This study assessed the ecological risks of heavy-metal-polluted river sediments, the heavy-metal-driven bacterial communities were revealed, and the relationships between the ecological risks and the identical bacterial communities were discussed. The Cd content was significantly greater than the environmental background value, leading to a serious pollution and very high ecological risk at the confluence of the two rivers and the upper reaches of the Mianyuan River. Microbial community analysis showed that Rhodobacter, Nocardioides, Sphingomonas, and Pseudarthrobacter were the dominant bacterial genera in the sediments of the Shiting River. However, the dominant bacterial genera in the Mianyuan River were Kouleothrix, Dechloromonas, Gaiella, Pedomicrobium, and Hyphomicrobium. Mantel test results showed (r = 0.5977, P = 0.005) that the Cd, As, Zn, Pb, Cr, and Cu were important factors that influenced differences in the distribution of sediment bacterial communities Mianyuan and Shiting rivers. A correlation heatmap showed that heavy metals were negatively correlated for most bacterial communities, but some bacterial communities were tolerant and showed a positive correlation. Overall, the microbial structure of the river sediments showed a diverse spatial distribution due to the influence of heavy metals. The results will improve the understanding of rivers contaminated by heavy metals and provide theoretical support for conservation and in situ ecological restoration of river ecosystems.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guangyi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dongdong Gao
- Sichuan Academy of Environmental Science, Chengdu, 610000, China
| | - Yonghong Dai
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qingyu Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Effects of Light-Emitting Diode Illumination on Sediment Surface Biological Activities and Releases of Nutrients and Metals to Overlying Water in Eutrophic Lake Microcosms. WATER 2022. [DOI: 10.3390/w14121839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The release of nutrients and metals from the sediment to the overlying water induced by oxygen depletion is an important issue in eutrophic aquatic systems. Effects of light-emitting diode (LED) illumination on oxygen conditions and release of nutrients and metals from the sediment were examined by comparing with those effects of aeration in microcosms using water and sediment of Lake Taihu, China. Periphyton with filamentous algae developed on the sediment surface in the LED (blue wavelength) treatment. Dissolved oxygen became rapidly saturated and gradually supersaturated in the aeration and LED treatments, respectively, but remained low in the control. A thicker oxic layer developed on the sediment for the LED than aeration but was poorly developed with a blackened surface in the control. Invertebrate burrows were distributed deeper and the bacterial community was more dominated by aerobic species in the LED, indicating deeper penetration of oxygen into the sediment. Nutrients (e.g., N and P) and some metals (e.g., Hg, As, and Mn) in water were lower for the LED and aeration than in the control; nutrients and other solutes that increased electric conductivity (e.g., Ca, Mg) were lower for the LED than aeration. These results suggest that LED can effectively oxygenate the bottom water by stimulating algal photosynthesis and benthic invertebrate activity, resulting in greater retention of nutrients and metals in/on sediment compared to aeration.
Collapse
|