1
|
Rosengart AL, Bidwell AL, Wolfe MK, Boehm AB, Townes FW. Spatiotemporal Variability of the Pepper Mild Mottle Virus Biomarker in Wastewater. ACS ES&T WATER 2025; 5:341-350. [PMID: 39816978 PMCID: PMC11731321 DOI: 10.1021/acsestwater.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Since the start of the coronavirus-19 pandemic, the use of wastewater-based epidemiology (WBE) for disease surveillance has increased throughout the world. Because wastewater measurements are affected by external factors, processing WBE data typically includes a normalization step in order to adjust wastewater measurements (e.g., viral ribonucleic acid (RNA) concentrations) to account for variation due to dynamic population changes, sewer travel effects, or laboratory methods. Pepper mild mottle virus (PMMoV), a plant RNA virus abundant in human feces and wastewater, has been used as a fecal contamination indicator and has been used to normalize wastewater measurements extensively. However, there has been little work to characterize the spatiotemporal variability of PMMoV in wastewater, which may influence the effectiveness of PMMoV for adjusting or normalizing WBE measurements. Here, we investigate its variability across space and time using data collected over a two-year period from sewage treatment plants across the United States. We find that most variation in PMMoV measurements can be attributed to longitude and latitude followed by site-specific variables. Further research into cross-geographical and -temporal comparability of PMMoV-normalized pathogen concentrations would strengthen the utility of PMMoV in WBE.
Collapse
Affiliation(s)
- AnnaElaine L. Rosengart
- Department
of Statistics & Data Science, Dietrich College of Humanities and
Social Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amanda L. Bidwell
- Department
of Civil & Environmental Engineering, School of Engineering and
Doerr School of Sustainability, Stanford
University, Stanford, California 94305, United States
| | - Marlene K. Wolfe
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Alexandria B. Boehm
- Department
of Civil & Environmental Engineering, School of Engineering and
Doerr School of Sustainability, Stanford
University, Stanford, California 94305, United States
| | - F. William Townes
- Department
of Statistics & Data Science, Dietrich College of Humanities and
Social Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Lee SY, Kim JH, Kang S, Park KC, Cho SM, Salinas CX, Rebolledo L, Benítez HA, Mejías TC, Soutullo A, Juri E, Kim S. Detection of human enteric viral genes in a non-native winter crane fly, Trichocera maculipennis (Diptera) in the sewage treatment facilities at Antarctic stations. Parasit Vectors 2024; 17:485. [PMID: 39582010 PMCID: PMC11587659 DOI: 10.1186/s13071-024-06555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The Antarctic environment is susceptible to the introduction of non-native species due to its unique ecosystem, which has evolved under geographical isolation and extreme climatic conditions over an extended period. The recent introduction of the non-native winter crane fly, Trichocera maculipennis, to maritime Antarctica may pose a potential threat to the Antarctic ecosystem. In this study, we evaluated the possibility of the mechanical transmission of viruses by T. maculipennis. METHODS We assessed the potential for the mechanical transmission of viruses using next-generation sequencing (NGS), quantitative PCR (qPCR), and virus isolation methods from T. maculipennis (Tm)-related samples (Tm body-wash fluid and Tm body-ground samples) collected from habitats and sewage treatment facilities located at three research stations in Antarctica. RESULTS Virome analysis detected the genomic fragments of human adenovirus (AdV) and human endogenous retrovirus (HERV) in Tm-related samples. These viruses are commonly found in human feces. In addition, plant viruses, such as pepper mild mottle virus (PMMoV) and cucumber green mottle mosaic virus (CGMMV), both known indicators of enteric viruses, were identified in all Tm-related samples, likely originating from wastewater. However, the low quantities of AdV and HERV genomes detected in Tm-related samples through qPCR, coupled with the non-viability of AdV in virus isolation tests, indicate that T. maculipennis has limited potential for mechanical transmission under the conditions in the studies. CONCLUSIONS Our study represents the first evaluation of the potential risk of non-native species serving as vectors for viral pathogens in Antarctica. Although the viruses detected were in relatively low quantities and non-viable, this study highlights the importance of further evaluating the risks associated with non-native species, particularly as the likelihood of their introduction increases to Antarctica due to climate change and increased human activity.
Collapse
Affiliation(s)
- Sook-Young Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Ji Hee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Seunghyun Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Kye Chung Park
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Sung Mi Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | | | - Lorena Rebolledo
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Hugo A Benítez
- Millennium Institute Biodiversity of Antarctic and Subantartic Ecosystem (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Villiams, Chile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Tamara Contador Mejías
- Millennium Institute Biodiversity of Antarctic and Subantartic Ecosystem (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Villiams, Chile
- Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Alvaro Soutullo
- Centro Universitario Regional del Este, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Juri
- Instituto Antártico Uruguayo, Montevideo, Uruguay
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea.
| |
Collapse
|
3
|
Owusu-Agyeman I, Perez-Zabaleta M, Cetecioglu Z. The fate of severe acute respiratory syndrome coronavirus-2 and pepper mild mottle virus at various stages of wastewater treatment process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117097. [PMID: 39332205 DOI: 10.1016/j.ecoenv.2024.117097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
This study investigated the efficiency of the treatment processes of wastewater treatment plants (WWTPs) to remove severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pepper mild mottle virus (PMMoV) from the wastewater and sewage sludge, as well as the influence of the mode of operation on the quality of the treated wastewater. SARS-CoV-2 and PMMoV were detected and quantified at different stages of the wastewater and sludge treatment process of three major WWTPs in Stockholm, Sweden. The results showed that primary, biological, and advanced membrane treatment processes are effective in removing SARS-CoV-2 from the wastewater with removal efficiencies of 99-100 % for all WWTPs, while the virus was accumulated in the primary and waste-activated sludges due to higher affinity to biosolids. Operation strategies such as bypass reintroduced the virus into the treated wastewater. The WWTPs achieved relatively low PMMoV removal efficiencies (63-87 %) most probably due to the robust capsid structure of the virus. Anaerobic digestion could not completely remove SARS-CoV-2 and PMMoV from the sludge leading to increased levels of SARS-CoV-2 and PMMoV in dewatered sludge. The study gives an overview of WWTPs' role in tackling pathogen spread in society in the event of a pandemic and disease breakout.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden.
| | - Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| |
Collapse
|
4
|
Wang S, Wei S, Ding Y, Zhang Y, Zhang Z, Sun S, Guo H, Yin S. Analysis of Coinfection Pathogens From Foot-and-Mouth Disease Virus Persistently Infected Cattle Using Oxford Nanopore Sequencing. Transbound Emerg Dis 2024; 2024:9703014. [PMID: 40303157 PMCID: PMC12016752 DOI: 10.1155/2024/9703014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 05/02/2025]
Abstract
The persistent infection caused by foot-and-mouth disease virus (FMDV) still lacks a reliable explanation, as its etiology and maintenance are intricate and potentially involve concurrent infections with multiple pathogens. In this study, we utilized the nanopore platform for direct sequencing of clinical samples obtained from cattle persistently infected with FMDV serotype O and investigated the distribution characteristics of coinfecting pathogens in their pharyngeal region. Briefly, we exploited Oxford Nanopore sequencing technology to generate high-quality and sufficient sequence data for the comprehensive characterization of microbial genomes. Furthermore, we performed sequence comparison, alignment, and phylogenetic tree construction. Our findings revealed a total of 23 viruses in FMDV carrier bovine, with FMDV, bovine orthopneumovirus, and Choristoneura fumiferana granulovirus emerging as the top three identified pathogens. The analysis unexpectedly revealed the presence of porcine circovirus type 2 and pepper mild mottle virus among the viral genes detected in the bovine FMDV carrier. Compared to noncarrier, carrier bovine of FMDV exhibited a greater diversity and abundance of mycoplasma types as well as reads counts. Therefore, we propose that the establishment and perpetuation of persistent FMDV infection may be attributed to the simultaneous presence of other viral agents and mycoplasmas. These findings highlight the significance of investigating multipathogen coinfection in elucidating the etiology of persistent FMD virus infection.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhihui Zhang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
5
|
Monleon AJC, Gill LW. Pepper mild mottle virus as an effective tool in microbial source tracking for deficient domestic on-site water treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173229. [PMID: 38763202 DOI: 10.1016/j.scitotenv.2024.173229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Pollution from domestic on-site wastewater treatment systems (OWTS) is a significant contaminant pressure in many rural catchments. However, due to their design, and dispersed proliferation, it is difficult to assess their impact. Water testing methodologies employ bacterial culturing methods and chemical analysis which may lose resolution and/or specificity being confounded by diffuse agricultural sources within a rural environment. In this study, we successfully assessed the applicability of Pepper Mild Mottle Virus (PMMoV) as a human faecal source tracker for deficient on-site wastewater treatment systems. The transport of PMMoV was first studied in the effluent of a 30 cm deep soil column which was dosed for 510 days with primary influent from a conventional septic system. The removal of PMMoV through the 30 cm deep soil column was quantified with a 5-day seeding trial employing primary influent mixed with PMMoV sourced from Tabasco pepper product ®. The trial was then carried out at field scale with the seeding solution dosed into an operational percolation trench receiving septic tank effluent which had been instrumented for porewater sampling. Samples were taken at depths of 10 cm, 30 cm, and 50 cm across the length of the trench at distances of 1 m, 7.5 m, and 17.5 m from the inlet of the trench. PMMoV was detected on all days of the trial, with a peak concentration of 1 × 106 found at the rear of the trench on day 2 of the seeding trial. Finally, to assess the effectiveness of PPMoV as a microbial source tracking tool from a water receptor perspective, three rural catchments with high densities of OWTSs were sampled and analysed for hourly variations in biological parameters which included total coliforms, Escherichia coli, PMMoV, and chemical parameters total organic carbon, total nitrogen, and total carbon. PMMoV was detected in all river samples over a 24-hour period, thereby indicating its suitability as a tracer of human wastewater effluent in such environments with multiple diffuse sources.
Collapse
Affiliation(s)
- Alejandro Javier Criado Monleon
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Laurence W Gill
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
6
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
7
|
Meuchi Y, Nakada M, Kuroda K, Hanamoto S, Hata A. Applicability of F-specific bacteriophage subgroups, PMMoV and crAssphage as indicators of source specific fecal contamination and viral inactivation in rivers in Japan. PLoS One 2023; 18:e0288454. [PMID: 37450468 PMCID: PMC10348522 DOI: 10.1371/journal.pone.0288454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
To date, several microbes have been proposed as potential source-specific indicators of fecal pollution. 16S ribosomal RNA gene markers of the Bacteroidales species are the most widely applied due to their predominance in the water environment and source specificity. F-specific bacteriophage (FPH) subgroups, especially FRNA phage genogroups, are also known as potential source-specific viral indicators. Since they can be quantified by both culture-based and molecular assays, they may also be useful as indicators for estimating viral inactivation in the environment. Pepper mild mottle virus (PMMoV) and crAssphage, which are frequently present in human feces, are also potentially useful as human-specific indicators of viral pollution. This study aimed to evaluate the applicability of FPH subgroups, PMMoV, and crAssphage as indicators of source-specific fecal contamination and viral inactivation using 108 surface water samples collected at five sites affected by municipal and pig farm wastewater. The host specificity of the FPH subgroups, PMMoV, and crAssphage was evaluated by principal component analysis (PCA) along with other microbial indicators, such as 16S ribosomal RNA gene markers of the Bacteroidales species. The viabilities (infectivity indices) of FRNA phage genogroups were estimated by comparing their numbers determined by infectivity-based and molecular assays. The PCA explained 58.2% of the total information and classified microbes into three groups: those considered to be associated with pig and human fecal contamination and others. Infective and gene of genogroup IV (GIV)-FRNA phage were assumed to be specific to pig fecal contamination, while the genes of GII-FRNA phage and crAssphage were identified to be specific to human fecal contamination. However, PMMoV, infective GI-FRNA phage, and FDNA phage were suggested to not be specific to human or pig fecal contamination. FRNA phage genogroups, especially the GIV-FRNA phage, were highly inactivated in the warm months in Japan (i.e., July to November). Comparing the infectivity index of several FRNA phage genogroups or other viruses may provide further insight into viral inactivation in the natural environment and by water treatments.
Collapse
Affiliation(s)
- Yuno Meuchi
- Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Miu Nakada
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Keisuke Kuroda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| |
Collapse
|
8
|
Hayase S, Katayama YA, Hatta T, Iwamoto R, Kuroita T, Ando Y, Okuda T, Kitajima M, Natsume T, Masago Y. Near full-automation of COPMAN using a LabDroid enables high-throughput and sensitive detection of SARS-CoV-2 RNA in wastewater as a leading indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163454. [PMID: 37061063 PMCID: PMC10098305 DOI: 10.1016/j.scitotenv.2023.163454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising tool to efficiently monitor COVID-19 prevalence in a community. For WBE community surveillance, automation of the viral RNA detection process is ideal. In the present study, we achieved near full-automation of a previously established method, COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater), which was then applied to detect SARS-CoV-2 in wastewater for half a year. The automation line employed the Maholo LabDroid and an automated-pipetting device to achieve a high-throughput sample-processing capability of 576 samples per week. SARS-CoV-2 RNA was quantified with the automated COPMAN using samples collected from two wastewater treatment plants in the Sagami River basin in Japan between 1 November 2021 and 24 May 2022, when the numbers of daily reported COVID-19 cases ranged from 0 to 130.3 per 100,000 inhabitants. The automated COPMAN detected SARS-CoV-2 RNA from 81 out of 132 samples at concentrations of up to 2.8 × 105 copies/L. These concentrations showed direct correlations with subsequently reported clinical cases (5-13 days later), as determined by Pearson's and Spearman's cross-correlation analyses. To compare the results, we also conducted testing with the EPISENS-S (Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids, Ando et al., 2022), a previously reported detection method. SARS-CoV-2 RNA detected with EPISENS-S correlated with clinical cases only when using Spearman's method. Our automated COPMAN was shown to be an efficient method for timely and large-scale monitoring of viral RNA, making WBE more feasible for community surveillance.
Collapse
Affiliation(s)
- Shin Hayase
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yuka Adachi Katayama
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomohisa Hatta
- Robotic Biology Institute, Inc., 2-5-10, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ryo Iwamoto
- AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiro Kuroita
- AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiko Okuda
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tohru Natsume
- Robotic Biology Institute, Inc., 2-5-10, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yusaku Masago
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
9
|
Pepper Mild Mottle Virus: An Infectious Pathogen in Pepper Production and a Potential Indicator of Domestic Water Quality. Viruses 2023; 15:v15020282. [PMID: 36851496 PMCID: PMC9962380 DOI: 10.3390/v15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pepper (Capsicum spp.; Family: Solanaceae; 2n = 24) is an important crop cultivated worldwide for the consumption of its fresh and dried processed fruits. Pepper fruits are used as raw materials in a wide variety of industrial processes. As a multipurpose vegetable crop, there is a need to increase the yield. However, yield productivity of pepper is severely constrained by infectious plant pathogens, including viruses, bacteria, fungi, and oomycetes. The pepper mild mottle virus (PMMoV) is currently one of the most damaging pathogens associated with yield losses in pepper production worldwide. In addition to impacts on pepper productivity, PMMoV has been detected in domestic and aquatic water resources, as well as in the excreta of animals, including humans. Therefore, PMMoV has been suggested as a potential indicator of domestic water quality. These findings present additional concerns and trigger the need to control the infectious pathogen in crop production. This review provides an overview of the distribution, economic impacts, management, and genome sequence variation of some isolates of PMMoV. We also describe genetic resources available for crop breeding against PMMoV.
Collapse
|