1
|
Soares AG, Teixeira SA, Thakore P, Santos LG, Filho WDRP, Antunes VR, Muscará MN, Brain SD, Costa SKP. Disruption of Atrial Rhythmicity by the Air Pollutant 1,2-Naphthoquinone: Role of Beta-Adrenergic and Sensory Receptors. Biomolecules 2023; 14:57. [PMID: 38254656 PMCID: PMC10813334 DOI: 10.3390/biom14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart health, especially during vulnerable phases. Our prior study showed that premature exposure to 1,2-naphthoquinone (1,2-NQ), a chemical found in diesel exhaust particles (DEP), exacerbated asthma in adulthood. Moreover, increased concentration of 1,2-NQ contributed to airway inflammation triggered by PM2.5, employing neurogenic pathways related to the up-regulation of transient receptor potential vanilloid 1 (TRPV1). However, the potential impact of early-life exposure to 1,2-naphthoquinone (1,2-NQ) on atrial fibrillation (AF) has not yet been investigated. This study aims to investigate how inhaling 1,2-NQ in early life affects the autonomic adrenergic system and the role played by TRPV1 in these heart disturbances. C57Bl/6 neonate male mice were exposed to 1,2-NQ (100 nM) or its vehicle at 6, 8, and 10 days of life. Early exposure to 1,2-NQ impairs adrenergic responses in the right atria without markedly affecting cholinergic responses. ECG analysis revealed altered rhythmicity in young mice, suggesting increased sympathetic nervous system activity. Furthermore, 1,2-NQ affected β1-adrenergic receptor agonist-mediated positive chronotropism, which was prevented by metoprolol, a β1 receptor blocker. Capsazepine, a TRPV1 blocker but not a TRPC5 blocker, reversed 1,2-NQ-induced cardiac changes. In conclusion, neonate mice exposure to AP 1,2-NQ results in an elevated risk of developing cardiac adrenergic dysfunction, potentially leading to atrial arrhythmia at a young age.
Collapse
Affiliation(s)
- Antonio G. Soares
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Simone A. Teixeira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
| | - Pratish Thakore
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Research Excellence, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK;
| | - Larissa G. Santos
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
| | - Walter dos R. P. Filho
- Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho, Ministério do Trabalho e Previdência Social, Rua Capote Valente, nº 710, São Paulo 05409-002, SP, Brazil;
| | - Vagner R. Antunes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil;
| | - Marcelo N. Muscará
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
| | - Susan D. Brain
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Research Excellence, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK;
| | - Soraia K. P. Costa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Research Excellence, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK;
| |
Collapse
|
2
|
Oliveira Ferreira CKD, Campolim CM, Zordão OP, Simabuco FM, Anaruma CP, Pereira RM, Boico VF, Salvino LG, Costa MM, Ruiz NQ, de Moura LP, Saad MJA, Costa SKP, Kim YB, Prada PO. Subchronic exposure to 1,2-naphthoquinone induces adipose tissue inflammation and changes the energy homeostasis of mice, partially due to TNFR1 and TLR4. Toxicol Rep 2023; 11:10-22. [PMID: 37383489 PMCID: PMC10293596 DOI: 10.1016/j.toxrep.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023] Open
Abstract
Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.
Collapse
Affiliation(s)
| | - Clara Machado Campolim
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Olívia Pizetta Zordão
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | | | - Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | | | | | | | - Maíra Maftoum Costa
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | | | - Leandro Pereira de Moura
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Young-Bum Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia Oliveira Prada
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
3
|
Yoon M, Ryu MH, Huff RD, Belvisi MG, Smith J, Carlsten C. Effect of traffic-related air pollution on cough in adults with polymorphisms in several cough-related genes. Respir Res 2022; 23:113. [PMID: 35509099 PMCID: PMC9066887 DOI: 10.1186/s12931-022-02031-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
With prevalent global air pollution, individuals with certain genetic predispositions and sensitivities are at of higher risk of developing respiratory symptoms including chronic cough. Studies to date have relied on patient-filled questionnaires in epidemiological studies to evaluate the gene-by-environment interactions. In a controlled human exposure study, we evaluated whether genetic risk score (GRS) based on cough-related single-nucleotide polymorphisms (SNPs) are associated with a cough count over 24 h post-exposure to diesel exhaust (DE), a model for traffic-related air pollution. DE is a mixture of several known air pollutants including PM2.5, CO, NO, NO2, and volatile organic compounds. Under closely observed circumstances, we determined that GRS constructed from 7 SNPs related to TRPA1, TRPV1, and NK-2R were correlated with cough count. Selection of channels were based on prior knowledge that SNPs in these channels lead to acute airway inflammation as a result of their increased sensitivity to particulate matter. We performed a linear regression analysis and found a significant, positive correlation between GRS and cough count following DE exposure (p = 0.002, R2 = 0.61) and filtered air (FA) exposure (p = 0.028, R2 = 0.37). Although that correlation was stronger for DE than for FA, we found no significant exposure-by-GRS interaction. In summary, cough-relevant GRS was associated with a higher 24 h cough count in a controlled setting, suggesting that individuals with a high GRS may be more susceptible to developing cough regardless of their exposure. The trend towards this susceptibility being more prominent in the context of traffic-related air pollution remains to be confirmed. Trial registration: ClinicalTrial.gov NCT02236039; NCT0223603. Registered on August 11, 2014, https://clinicaltrials.gov/ct2/show/NCT02236039.
Collapse
Affiliation(s)
- Michael Yoon
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Ryan D Huff
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Maria G Belvisi
- Research and Early Development, Respiratory Pharmacology Group, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jaclyn Smith
- Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, 16 Manchester Academic Health Sciences Centre, and Manchester University NHS Foundation 17 Trust, Manchester, UK
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada. .,The Lung Center, Vancouver General Hospital-Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
4
|
Achanta S, Jordt SE. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci 2020; 1480:73-103. [PMID: 32892378 PMCID: PMC7933981 DOI: 10.1111/nyas.14472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The lung is highly sensitive to chemical injuries caused by exposure to threat agents in industrial or transportation accidents, occupational exposures, or deliberate use as weapons of mass destruction (WMD). There are no antidotes for the majority of the chemical threat agents and toxic inhalation hazards despite their use as WMDs for more than a century. Among several putative targets, evidence for transient receptor potential (TRP) ion channels as mediators of injury by various inhalational chemical threat agents is emerging. TRP channels are expressed in the respiratory system and are essential for homeostasis. Among TRP channels, the body of literature supporting essential roles for TRPA1, TRPV1, and TRPV4 in pulmonary chemical injuries is abundant. TRP channels mediate their function through sensory neuronal and nonneuronal pathways. TRP channels play a crucial role in complex pulmonary pathophysiologic events including, but not limited to, increased intracellular calcium levels, signal transduction, recruitment of proinflammatory cells, neurogenic inflammatory pathways, cough reflex, hampered mucus clearance, disruption of the integrity of the epithelia, pulmonary edema, and fibrosis. In this review, we summarize the role of TRP channels in chemical threat agents-induced pulmonary injuries and how these channels may serve as medical countermeasure targets for broader indications.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Soares AG, Muscara MN, Costa SKP. Molecular mechanism and health effects of 1,2-Naphtoquinone. EXCLI JOURNAL 2020; 19:707-717. [PMID: 32636724 PMCID: PMC7332801 DOI: 10.17179/excli2020-1210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Extensive literature regarding the health side effects of ambient pollutants (AP) are available, such as diesel exhaust particles (DEPs), but limited studies are available on their electrophilic contaminant 1,2-Naphthoquinone (1,2-NQ), enzymatically derived from naphthalene. This review summarizes relevant toxicologic and biological properties of 1,2-NQ as an environmental pollutant or to a lesser degree as a backbone in drug development to treat infectious diseases. It presents evidence of 1,2-NQ-mediated genotoxicity, neurogenic inflammation, and cytotoxicity due to several mechanistic properties, including the production of reactive oxygen species (ROS), that promote cell damage, carcinogenesis, and cell death. Many signal transduction pathways act as a vulnerable target for 1,2-NQ, including kappaB kinase b (IKKbeta) and protein tyrosine phosphatase 1B (PTP1B). Antioxidant molecules act in defense against ROS/RNS-mediated 1,2-NQ responses to injury. Nonetheless, its inhibitory effects at PTP1B, altering the insulin signaling pathway, represents a new therapeutic target to treat diabetes type 2. Questions exist whether exposure to 1,2-NQ may promote arylation of the Keap1 factor, a negative regulator of Nrf2, as well as acting on the sepiapterin reductase activity, an NADPH-dependent enzyme which catalyzes the formation of critical cofactors in aromatic amino acid metabolism and nitric oxide biosynthesis. Exposure to 1,2-NQ is linked to neurologic, behavioral, and developmental disturbances as well as increased susceptibility to asthma. Limited new knowledge exists on molecular modeling of quinones molecules as antitumoral and anti-microorganism agents. Altogether, these studies suggest that 1,2-NQ and its intermediate compounds can initiate a number of pathological pathways as AP in living organisms but it can be used to better understand molecular pathways.
Collapse
Affiliation(s)
- Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, USA. 7703 Floyd Curl Dr. San Antonio, TX, USA 78229.,Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| | - Marcelo N Muscara
- Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| | - Soraia K P Costa
- Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| |
Collapse
|
6
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Deering-Rice CE, Shapiro D, Romero EG, Stockmann C, Bevans TS, Phan QM, Stone BL, Fassl B, Nkoy F, Uchida DA, Ward RM, Veranth JM, Reilly CA. Activation of Transient Receptor Potential Ankyrin-1 by Insoluble Particulate Material and Association with Asthma. Am J Respir Cell Mol Biol 2016; 53:893-901. [PMID: 26039217 DOI: 10.1165/rcmb.2015-0086oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inhaled irritants activate transient receptor potential ankyrin-1 (TRPA1), resulting in cough, bronchoconstriction, and inflammation/edema. TRPA1 is also implicated in the pathogenesis of asthma. Our hypothesis was that particulate materials activate TRPA1 via a mechanism distinct from chemical agonists and that, in a cohort of children with asthma living in a location prone to high levels of air pollution, expression of uniquely sensitive forms of TRPA1 may correlate with reduced asthma control. Variant forms of TRPA1 were constructed by mutating residues in known functional elements and corresponding to single-nucleotide polymorphisms in functional domains. TRPA1 activity was studied in transfected HEK-293 cells using allyl-isothiocynate, a model soluble electrophilic agonist; 3,5-ditert butylphenol, a soluble nonelectrophilic agonist and a component of diesel exhaust particles; and insoluble coal fly ash (CFA) particles. The N-terminal variants R3C and R58T exhibited greater, but not additive, activity with all three agonists. The ankyrin repeat domain-4 single nucleotide polymorphisms E179K and K186N exhibited decreased response to CFA. The predicted N-linked glycosylation site residues N747A and N753A exhibited decreased responses to CFA, which were not attributable to differences in cellular localization. The pore-loop residue R919Q was comparable to wild-type, whereas N954T was inactive to soluble agonists but not CFA. These data identify roles for ankyrin domain-4, cell surface N-linked glycans, and selected pore-loop domain residues in the activation of TRPA1 by insoluble particles. Furthermore, the R3C and R58T polymorphisms correlated with reduced asthma control for some children, which suggest that TRPA1 activity may modulate asthma, particularly among individuals living in locations prone to high levels of air pollution.
Collapse
Affiliation(s)
| | - Darien Shapiro
- 1 Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| | - Erin G Romero
- 1 Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| | - Chris Stockmann
- 1 Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and.,2 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tatjana S Bevans
- 1 Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| | - Quang M Phan
- 1 Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| | - Bryan L Stone
- 2 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Bernhard Fassl
- 2 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Flory Nkoy
- 2 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Derek A Uchida
- 2 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Robert M Ward
- 2 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - John M Veranth
- 1 Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| | - Christopher A Reilly
- 1 Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
8
|
Yokota S, Oshio S, Takeda K. In utero exposure to diesel exhaust particles induces anxiogenic effects on male offspring via chronic activation of serotonergic neuron in dorsal raphe nucleus. J Toxicol Sci 2016; 41:583-93. [DOI: 10.2131/jts.41.583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Satoshi Yokota
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Shigeru Oshio
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science
| |
Collapse
|
9
|
Malek N, Mrugala M, Makuch W, Kolosowska N, Przewlocka B, Binkowski M, Czaja M, Morera E, Di Marzo V, Starowicz K. A multi-target approach for pain treatment. Pain 2015; 156:890-903. [DOI: 10.1097/j.pain.0000000000000132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Kurhanewicz N, McIntosh-Kastrinsky R, Tong H, Walsh L, Farraj AK, Hazari MS. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses. Part Fibre Toxicol 2014; 11:54. [PMID: 25318591 PMCID: PMC4203862 DOI: 10.1186/s12989-014-0054-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM) and gas, to determine whether pollutant interactions alter (e.g. synergistically, antagonistically) the health response. This study examines the independent effects of fine (FCAPs) and ultrafine (UFCAPs) concentrated ambient particles on cardiac function, and determine the impact of ozone (O3) co-exposure on the response. We hypothesized that UFCAPs would cause greater decrement in mechanical function and electrical dysfunction than FCAPs, and that O3 co-exposure would enhance the effects of both particle-types. Methods Conscious/unrestrained radiotelemetered mice were exposed once whole-body to either 190 μg/m3 FCAPs or 140 μg/m3 UFCAPs with/without 0.3 ppm O3; separate groups were exposed to either filtered air (FA) or O3 alone. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure, and cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 hrs post-exposure. Results FCAPs alone caused a significant decrease in baseline left ventricular developed pressure (LVDP) and contractility, whereas UFCAPs did not; neither FCAPs nor UFCAPs alone caused any ECG changes. O3 co-exposure with FCAPs caused a significant decrease in heart rate variability when compared to FA but also blocked the decrement in cardiac function. On the other hand, O3 co-exposure with UFCAPs significantly increased QRS-interval, QTc and non-conducted P-wave arrhythmias, and decreased LVDP, rate of contractility and relaxation when compared to controls. Conclusions These data suggest that particle size and gaseous interactions may play a role in cardiac function decrements one day after exposure. Although FCAPs + O3 only altered autonomic balance, UFCAPs + O3 appeared to be more serious by increasing cardiac arrhythmias and causing mechanical decrements. As such, O3 appears to interact differently with FCAPs and UFCAPs, resulting in varied cardiac changes, which suggests that the cardiovascular effects of particle-gas co-exposures are not simply additive or even generalizable. Additionally, the mode of toxicity underlying this effect may be subtle given none of the exposures described here impaired post-ischemia recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0054-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Kurhanewicz
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Rachel McIntosh-Kastrinsky
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Leon Walsh
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| |
Collapse
|
11
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
12
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
13
|
Early postnatal, but not late, exposure to chemical ambient pollutant 1,2-naphthoquinone increases susceptibility to pulmonary allergic inflammation at adulthood. Arch Toxicol 2014; 88:1589-605. [PMID: 24554396 DOI: 10.1007/s00204-014-1212-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
Abstract
High diesel exhaust particle levels are associated with increased health effects; however, knowledge on the impact of its chemical contaminant 1,2-naphthoquinone (1,2-NQ) is limited. We investigated whether postnatal and adult exposures to 1,2-NQ influence allergic reaction and the roles of innate and adaptive immunity. Male neonate (6 days) and adult (56 days) C57Bl/6 mice were exposed to 1,2-NQ (100 nM; 15 min) for 3 days, and on day 59, they were sensitized and later challenged with ovalbumin (OVA). Airway hyper-responsiveness (AHR) and production of cytokines, immunoglobulin E (IgE) and leukotriene B4 (LTB4) were measured in the airways. Postnatal exposure to 1,2-NQ activated dendritic cells in splenocytes by increasing expressing cell surface molecules (e.g., CD11c). Co-exposure to OVA effectively polarized T helper (Th) type 2 (Th2) by secreting Th2-mediated cytokines. Re-stimulation with unspecific stimuli (PMA and ionomycin) generated a mixed Th1 (CD4(+)/IFN-γ(+)) and Th17 (CD4(+)/IL-17(+)) phenotype in comparison with the vehicle-matched group. Postnatal exposure to 1,2-NQ did not induce eosinophilia in the airways at adulthood, although it evoked neutrophilia and exacerbated OVA-induced eosinophilia, Th2 cytokines, IgE and LTB4 production without affecting AHR and mast cell degranulation. At adulthood, 1,2-NQ exposure evoked neutrophilia and increased Th1/Th2 cytokine levels, but failed to affect OVA-induced eosinophilia. In conclusion, postnatal exposure to 1,2-NQ increases the susceptibility to antigen-induced asthma. The mechanism appears to be dependent on increased expression of co-stimulatory molecules, which leads to cell presentation amplification, Th2 polarization and enhanced LTB4, humoral response and Th1/Th2 cytokines. These findings may be useful for future investigations on treatments focused on pulmonary illnesses observed in children living in heavy polluted areas.
Collapse
|
14
|
Sava F, MacNutt MJ, Carlsten CR. Nasal neurogenic inflammation markers increase after diesel exhaust inhalation in individuals with asthma. Am J Respir Crit Care Med 2013; 188:759-60. [PMID: 24032391 DOI: 10.1164/rccm.201302-0330le] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Francesco Sava
- 1 University of British Columbia Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
15
|
Shapiro D, Deering-Rice CE, Romero EG, Hughen RW, Light AR, Veranth JM, Reilly CA. Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material. Chem Res Toxicol 2013; 26:750-8. [PMID: 23541125 DOI: 10.1021/tx400024h] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM < 2.5 μm) of wood smoke were the most potent TRPA1 agonists and several chemical constituents of wood smoke particulate, 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid, were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pretreated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.
Collapse
Affiliation(s)
- Darien Shapiro
- Department of Pharmacology and Toxicology, University of Utah , 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, Utah 84112, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Fariss MW, Gilmour MI, Reilly CA, Liedtke W, Ghio AJ. Emerging mechanistic targets in lung injury induced by combustion-generated particles. Toxicol Sci 2013; 132:253-67. [PMID: 23322347 PMCID: PMC4447844 DOI: 10.1093/toxsci/kft001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/21/2012] [Indexed: 12/25/2022] Open
Abstract
The mechanism for biological effect following exposure to combustion-generated particles is incompletely defined. The identification of pathways regulating the acute toxicological effects of these particles provides specific targets for therapeutic manipulation in an attempt to impact disease following exposures. Transient receptor potential (TRP) cation channels were identified as "particle sensors" in that their activation was coupled with the initiation of protective responses limiting airway deposition and inflammatory responses, which promote degradation and clearance of the particles. TRPA1, V1, V4, and M8 have a capacity to mediate adverse effects after exposure to combustion-generated particulate matter (PM); relative contributions of each depend upon particle composition, dose, and deposition. Exposure of human bronchial epithelial cells to an organic extract of diesel exhaust particle was followed by TRPV4 mediating Ca(++) influx, increased RAS expression, mitogen-activated protein kinase signaling, and matrix metalloproteinase-1 activation. These novel pathways of biological effect can be targeted by compounds that specifically inhibit critical signaling reactions. In addition to TRPs and calcium biochemistry, humic-like substances (HLS) and cell/tissue iron equilibrium were identified as potential mechanistic targets in lung injury after particle exposure. In respiratory epithelial cells, iron sequestration by HLS in wood smoke particle (WSP) was associated with oxidant generation, cell signaling, transcription factor activation, and release of inflammatory mediators. Similar to WSP, cytotoxic insoluble nanosized spherical particles composed of HLS were isolated from cigarette smoke condensate. Therapies that promote bioelimination of HLS and prevent the disruption of iron homeostasis could function to reduce the harmful effects of combustion-generated PM exposure.
Collapse
Affiliation(s)
| | - M. Ian Gilmour
- †U.S. Environmental Protection Agency, Durham, North Carolina
| | - Christopher A. Reilly
- ‡Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| | - Wolfgang Liedtke
- §Department of Medicine, Duke University, Durham, North Carolina
| | - Andrew J. Ghio
- †U.S. Environmental Protection Agency, Durham, North Carolina
| |
Collapse
|
17
|
Deering-Rice CE, Johansen ME, Roberts JK, Thomas KC, Romero EG, Lee J, Yost GS, Veranth JM, Reilly CA. Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material. Mol Pharmacol 2012; 81:411-9. [PMID: 22155782 PMCID: PMC3286291 DOI: 10.1124/mol.111.076067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/08/2011] [Indexed: 12/29/2022] Open
Abstract
Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.
Collapse
|
18
|
Deering-Rice CE, Romero EG, Shapiro D, Hughen RW, Light AR, Yost GS, Veranth JM, Reilly CA. Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP. Chem Res Toxicol 2011; 24:950-9. [PMID: 21591660 DOI: 10.1021/tx200123z] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inhalation of environmental particulate matter (PM) is correlated with adverse health effects in humans, but gene products that couple detection with cellular responses, and the specific properties of PM that target different pathways, have not been fully elucidated. TRPA1 and V1 are two cation channels expressed by sensory neurons and non-neuronal cells of the respiratory tract that have been implicated as possible mediators of PM toxicity. The goals of this research were to determine if environmental PM preferentially activated TRPA1 and to elucidate the criteria responsible for selectivity. Quantification of TRPA1 activation by 4 model PM revealed that diesel exhaust PM (DEP) and coal fly ash PM (CFA1) were TRPA1 agonists at concentrations >0.077 mg/mL. DEP was more potent, and approximately 97% of the activity of DEP was recovered by serial extraction of the solid DEP with ethanol and hexane/n-butyl chloride. Modification of the electrophile/agonist binding sites on TRPA1 (C621, C641, C665, and K710) to non-nucleophilic residues reduced TRPA1 activation by DEP and abolished activation by DEP extracts as well as multiple individual electrophilic chemical components of DEP. However, responses to CFA1 and DEP solids were not affected by these mutations. Activity-guided fractionation of DEP and high resolution mass spectroscopy identified several new DEP-derived TRPA1 agonists, and activation of mouse dorsal root ganglion neurons demonstrated that TRPA1 is a primary target for DEP in a heterogeneous population of primary sensory nerves. It is concluded that TRPA1 is a specific target for electrophilic chemical components of DEP and proposed that activation of TRPA1 in the respiratory tract is likely to be an important mechanism for DEP pneumotoxicity.
Collapse
Affiliation(s)
- Cassandra E Deering-Rice
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | | | | | | | | | | | |
Collapse
|