1
|
El-Shehawi AM, Sayed S, Elseehy MM, Alotaibi S, Alharthi SB, Alsharif G, Soliman M. Screening of Salsola imbricata extract impacts against acrylamide induced hepatic toxicity in rats through the regulation of different global gene expression. Toxicol Res (Camb) 2025; 14:tfaf038. [PMID: 40103578 PMCID: PMC11912560 DOI: 10.1093/toxres/tfaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Acrylamide (A) is known for its biological toxicity and S. imbricata is recognized for its various biological activities. The leaf extract of S. imbricata was utilized as a protective approach from acrylamide-induced oxidative stress at the transcriptome level by analyzing global gene expression, biological processes and pathways. Three groups of rats were used to investigate the protective effect of S. imbricata leaf extract on the liver transcriptome: Group C (Control), group A (received acrylamide), and group A_S (received acrylamide and S. imbricata extract). Transcriptome analysis was conducted using RNAseq with the Illumina NovaSeq 6,000. The results identified 53 differentially expressed genes (DEGs) in A/C and 91 genes in A_S/C comparisons. Various GO terms were significantly enriched, with 19 terms in the A/C comparison and 6 terms in the A_S/C comparison. In addition, several pathways were enriched, including ATP biosynthesis, mitochondrial inner membrane, and iron binding. The extract of S. imbricata exhibited various effects, including A-like, A-antagonistic, or A-agonistic on gene expression. This explains the observed contradiction of S. imbricata extract on the global gene expression of rat liver. The identified DEGs in the current study are associated with various pathways, including electron transport chain, mitochondrial apoptosis, ribosome function, iron binding, and homeostasis. The findings indicate an A-like transcriptomic toxicity of S. imbricata, although its previously reported antioxidant and anti-inflammatory activities. This raises concerns about the safety of medicinal plants and their widespread use in food supplements and alternative medicine, emphasizing the need for their assessment at various biological levels.
Collapse
Affiliation(s)
- Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Aflatoun St., El Shatby, Alexandria 21526, Egypt
| | - Saqer Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Siraj B Alharthi
- Molecular Diagnostic Unit, Alhada Armed Forces Hospital, Al Hada, Taif 26792, Saudi Arabia
- Department of Biological Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, P.O.Box 9515, Jeddah 21423,Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center, P.O.Box 9515 Jeddah 21423, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University 21995, Saudi Arabia
| |
Collapse
|
2
|
Zhang Y, Wang Y, Zhao Y, Hu R, Yuan H. Design of aggregation-induced emission materials for biosensing of molecules and cells. Biosens Bioelectron 2025; 267:116805. [PMID: 39321612 DOI: 10.1016/j.bios.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In recent years, aggregation-induced emission (AIE) materials have gained significant attention and have been developed for various applications in different fields including biomedical research, chemical analysis, optoelectronic devices, materials science, and nanotechnology. AIE is a unique luminescence phenomenon, and AIEgens are fluorescent moieties with relatively twisted structures that can overcome the aggregation-caused quenching (ACQ) effect. Additionally, AIEgens offer advantages such as non-washing properties, deep tissue penetration, minimal damage to biological structures, high signal-to-noise ratio, and excellent photostability. Fluorescent probes with AIE characteristics exhibit high sensitivity, short response time, simple operation, real-time detection capability, high selectivity, and excellent biocompatibility. As a result, they have been widely applied in cellular imaging, luminescent sensing, detection of physiological abnormalities in the human body, as well as early diagnosis and treatment of diseases. This review provides a comprehensive summary and discussion of the progress over the past four years regarding the detection of metal ions, small chemical molecules, biomacromolecules, microbes, and cells based on AIE materials, along with discussing their potential applications and future development prospects.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
3
|
Wu J, Lin X, Li J, Lv Z, Duan N, Wang Z, Wu S. Dual-color nanospheres based on aggregation-induced emission and catalytic hairpin assembly for simultaneous imaging of acrylamide and miR-21 in living cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132815. [PMID: 37879280 DOI: 10.1016/j.jhazmat.2023.132815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Acrylamide (AA) is a heat-processed potent food carcinogen that is widely used in industry, posing a significant risk to human health. Therefore, it is necessary to investigate the toxic effects and mechanism of AA. miR-21 is a representative biomarker during AA-induced carcinogenesis. Here, dual-color aggregation-induced emission nanoparticles (AIENPs) were developed for the detection and simultaneous imaging of AA and miR-21. AIENPs were synthesized by combining aggregation-induced emission (AIE) dyes and a poly (styrene-co-maleic anhydride) (PSMA) amphiphilic polymer modified with hairpin DNA. Upon AA intervention and aptamer recognition, cDNA was dissociated, leading to miR-21 overexpression and initiating the catalytic hairpin assembly cycle. Consequently, fluorescence quenching was observed due to FRET between AIENPs and labeled quenchers. The relative fluorescence intensities of dual-color AIENPs displayed good linear relationships with logarithmic AA and miR-21 concentrations. Moreover, there was a gradual decrease in dual-color AIENP fluorescence as the HepG2 cell concentration of AA (0-500 μM) and stimulation time (0-12 h) increased, making it possible to simultaneously image AA and AA-induced miR-21. The findings of this work are valuable for revealing the cytotoxic mechanism of AA.
Collapse
Affiliation(s)
- Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ziyu Lv
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Bridgeman L, Juan C, Juan-García A, Berrada H. Individual and combined effect of acrylamide, fumitremorgin C and penitrem A on human neuroblastoma SH-SY5Y cells. Food Chem Toxicol 2023; 182:114114. [PMID: 37879530 DOI: 10.1016/j.fct.2023.114114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Acrylamide (AA) is a chemical compound that can be formed in certain foods during high-temperature cooking processes such as frying, baking, and roasting. Exposure to AA has been linked to several neurological effects, including peripheral neuropathy, ataxia, and impaired cognitive function. Penitrem A (PEN A) and Fumitremorgin C (FTC) are toxic mycotoxins produced by certain species of fungi, such as Penicillium Crustosum, Aspergillus Fumigatus and Neosartorya Fischeri. Both mycotoxins are commonly found in contaminated foods and animal feeds and have been linked to several adverse health effects in humans and animals, including the ability to disrupt normal functioning of the nervous system, tremors, seizures, muscle spasms, and convulsions. AA, PEN A, and FTC are all chemical contaminants. Understanding their toxicity and how they may affect human cells can help food safety authorities to establish safe exposure levels for these compounds through food and develop strategies to reduce their presence. The aim of this study was to explore the combined in vitro toxicological effects of AA, PEN A and FTC in SH-SY5Y cells. For this purpose, cells were treated with AA, FTC, and PEN A as an individual and combined treatment. The types of interactions were assessed by the isobologram analysis. The cell cycle was performed by flow cytometry. Additive effect in binary and tertiary combinations was the major effect according to isobologram graphics. Our results demonstrate that PEN A possessed the highest potential in disturbing cell cycle progression by disrupting cell density in G0/G1 phase.
Collapse
Affiliation(s)
- Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Houda Berrada
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
5
|
Timoshen K, Khrebina A, Lebedev V, Loglio G, Miller R, Sedov V, Noskov B. Dynamic surface properties of carboxyfullerene solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
El-Shehawi AM, Sayed S, Hassan MM, Al-Otaibi S, Althobaiti F, Elseehy MM, Soliman M. Taify Pomegranate Juice (TPJ) Abrogates Acrylamide-Induced Oxidative Stress Through the Regulation of Antioxidant Activity, Inflammation, and Apoptosis-Associated Genes. Front Vet Sci 2022; 9:833605. [PMID: 35392110 PMCID: PMC8980525 DOI: 10.3389/fvets.2022.833605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acrylamide (ACR) has various effects on biological systems, including oxidative stress and its associated metabolic disorders. Previous research reports that plants growing at high altitude have a different profile of antioxidants. In the current report, the Taify pomegranate juice (TPJ) of the Taify pomegranate growing at the Taif region (high altitude), Saudi Arabia, was investigated for its protective activity from ACR-induced oxidative stress. Rats were treated with ACR, TPJ, or TPJ+ACR, and various assays, including blood chemistry, liver function biomarkers, gene expression of endogenous antioxidant enzymes, oxidative stress regulatory genes, inflammation biomarkers, and apoptosis, were estimated using biochemical, real-time PCR, histopathological, and immunohistochemical analysis. TPJ showed a protective function of ACR-induced alteration of AST, ALT, GGT, urea, total proteins, albumin, MDA, and NO. It also increased the level of the endogenous antioxidative enzymes, including SOD, catalase, and GSH. It showed anti-inflammatory activity by reduction the TNF-α, IL-6 secretion and the enhancing of IL-10 levels. At the gene expression level, TPJ upregulated the expression of endogenous antioxidant genes (SOD and catalase) and of antioxidant-regulating genes Nrf2 and HO-1; downregulated the expression of inflammatory genes TGF-β1, COX2, and the apoptotic gene caspase-3; and upregulated the expression of antiapoptotic gene Bcl2. At the histological level, TPJ showed a protective effect from the ACR-induced hepatic histological damage. Results of this study conclude that TPJ has a protective effect from ACR-induced oxidative stress and its associated metabolic alterations through its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Ahmed M. El-Shehawi
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Kacar S, Sahinturk V. The Protective Agents Used against Acrylamide Toxicity: An In Vitro Cell Culture Study-Based Review. CELL JOURNAL 2021; 23:367-381. [PMID: 34455711 PMCID: PMC8405082 DOI: 10.22074/cellj.2021.7286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/19/2020] [Indexed: 01/23/2023]
Abstract
Acrylamide is a dangerous electrophile with the potency to react with many biological moieties including proteins, and nucleic acids as well as other macromolecules. Acrylamide was first only known a chemical exposed in working areas as a neurotoxicant, it was later discovered that beyond just being a neurotoxicant exposed in industrial areas, acrylamide is exposed via daily foods as well. As such, several strategies have been sought to be developed to relieve the toxic spectrum of this chemical. The utilization of a protective agent against acrylamide toxicity was one of those strategies. To date, many agents with protective potency have been investigated. Herein, we compiled these agents and their effects shown in in vitro studies. We used the search engines of Web of Knowledge and searched the keywords "acrylamide" and "protect" in the titles along with the keyword "cell" in the topics. Twenty-one directly related articles out of 35 articles were examined. Briefly, all agents used against acrylamide were reported to exhibit protective activity. In most of these reports, 5 mM concentration of acrylamide and 24-hour treatment were the employed dose and duration. Usually, the beneficial agents were pre-treated to the cells. PC12 cells were the most utilized cell line, and the mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways were the most studied pathways. This study, beside other importance, can be utilized as a guide for how the protective studies against acrylamide were done and which parameters were investigated in in vitro acrylamide studies. In conclusion, taking measures is of utmost importance to prevent or alleviate the toxicity of acrylamide, to which we are daily exposed even in our homes. Therefore, future studies should persist in focusing on mitigating acrylamide toxicity.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Varol Sahinturk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
8
|
Sharoyko VV, Iurev GO, Postnov VN, Meshcheriakov AA, Ageev SV, Ivanova DA, Petrov AV, Luttsev MD, Nashchekin AV, Iamalova NR, Vasina LV, Solovtsova IL, Murin IV, Semenov KN. Biocompatibility of a nanocomposite based on Aerosil 380 and carboxylated fullerene C 60[C(COOH) 2] 3. J Biotechnol 2021; 331:83-98. [PMID: 33727085 DOI: 10.1016/j.jbiotec.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Silica is silicon dioxide, which, depending on the production method, can exist in various amorphous forms with varying specific surface area, particle size, pore volume and size, and, as a result, with different physicochemical and sorption characteristics. The presence of silanol groups on the surface of silicas provides the possibility of its further functionalisation. In addition, the developed specific surface of Aerosil allows to obtain composites with a high content of biologically active substances. In this work, we studied the biocompatibility of a composite based on Aerosil 380 and carboxylated fullerene C60[C(COOH)2]3, namely: haemolysis (spontaneous and photoinduced), platelet aggregation, binding to HSA, cyto- and genotoxicity, antiradical activity. Interest in the creation of this nanomaterial is due to the fact that carboxylated fullerenes have potential applications in various fields of biomedicine, including the ability to bind reactive oxygen species, inhibition of tumour development, inactivation of viruses and bacteria. The obtained composite can be used for the immobilisation of various drugs and the further development of drugs for theranostics.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Almazov National Medical Research Centre, 2 Akkuratova ulitsa, Saint Petersburg, 197341, Russia
| | - Viktor N Postnov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Michail D Luttsev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Alexei V Nashchekin
- Ioffe Institute, 26 Politekhnicheskaya ulitsa, Saint Petersburg, 194021, Russia
| | - Nailia R Iamalova
- Agrophysical Research Institute, 14 Grazhdanskii prospect, Saint Petersburg, 195220, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Irina L Solovtsova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| |
Collapse
|
9
|
Abdel-Daim MM, Abo El-Ela FI, Alshahrani FK, Bin-Jumah M, Al-Zharani M, Almutairi B, Alyousif MS, Bungau S, Aleya L, Alkahtani S. Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37709-37717. [PMID: 32608003 DOI: 10.1007/s11356-020-09516-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 05/07/2023]
Abstract
Acrylamide (AA), an industrial monomer, may cause multi-organ toxicity through induction of oxidative stress and inflammation. The antioxidant properties of thymoquinone (TQ), an active constituent of Nigella sativa, have been established before. The aim of the current study was to assess the protective effects of TQ against AA-induced toxicity in rats. Forty-eight male Wistar rats were divided into six groups each of eight rats. The first group acted as a negative control and received normal saline. Groups II and III were administered TQ orally at doses of 10 and 20 mg/kg b.wt., respectively, for 21 days. The four group received AA (20 mg/kg b.wt.) for 14 days. The five and six groups were given TQ at either dose for 21 days, starting seven days before AA supplementation (for 14 days). Acrylamide intoxication was associated with significant (p < 0.05) increases in serum levels of liver injury biomarkers (alanine transferase, aspartate transferase, and alkaline phosphatase), renal function products (urea, creatinine), DNA oxidative damage biomarker (8-oxo-2'-deoxyguanosine), and pro-inflammatory biomarkers (interleukin-1β, interleukin-6, and tumor necrosis factor-α). Moreover, AA intoxication was associated with increased lipid peroxidation and nitric oxide levels, while reduced glutathione concentration and activities of glutathione peroxidase, superoxide dismutase, and catalase in the liver, kidney, and brain. TQ administration normalized AA-induced changes in most serum parameters and enhanced the antioxidant capacity in the liver, kidney, and brain tissues in a dose-dependent manner. In conclusion, the current experiment showed that TQ exerted protective and antioxidant activities against AA-induced toxicity in mice.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Fatma I Abo El-Ela
- Pharmacology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatima K Alshahrani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - May Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Bader Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, F-25030, Besançon Cedex, France
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Shur M, Fallegger F, Pirondini E, Roux A, Bichat A, Barraud Q, Courtine G, Lacour SP. Soft Printable Electrode Coating for Neural Interfaces. ACS APPLIED BIO MATERIALS 2020; 3:4388-4397. [DOI: 10.1021/acsabm.0c00401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Shur
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva 1211, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Adrien Roux
- Tissue Engineering Laboratory, HEPIA - HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva 1202, Switzerland
- Swiss Center for Applied Human Toxicology (SCAHT), Basel 4055, Switzerland
| | - Arnaud Bichat
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1002, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1002, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1002, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Stéphanie P. Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| |
Collapse
|
11
|
Gaponenko IN, Ageev SV, Iurev GO, Shemchuk OS, Meshcheriakov AA, Petrov AV, Solovtsova IL, Vasina LV, Tennikova TB, Murin IV, Semenov KN, Sharoyko VV. Biological evaluation and molecular dynamics simulation of water-soluble fullerene derivative C 60[C(COOH) 2] 3. Toxicol In Vitro 2019; 62:104683. [PMID: 31639450 DOI: 10.1016/j.tiv.2019.104683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
One of the most studied fullerene members, C60, has a potential of application in various fields of biomedicine including reactive oxygen species (ROS) scavenging activity, inhibiting of tumours development, inactivating of viruses and bacteria, as well as elaboration of diagnostic and targeted drug delivery tools. However, the hydrophobicity of this molecule impedes its practical use, therefore the actuality of the research devoted to functionalisation of fullerenes leading to amphiphilic derivatives remains important. In this work, the water-soluble carboxylated fullerene derivative C60[C(COOH)2]3 was studied. Extensive biomedical investigation of this compound, namely, the binding with human serum albumin (HSA), radical scavenging activity in the reaction with diphenylpicrylhydrazyl (DPPH) radical, photodynamic properties, cytotoxicity in human embryonic kidney (HEK293) cell line, erythrocytes' haemolysis, platelet aggregation, and genotoxicity in human peripheral mononuclear cells (PBMC) was conducted. Moreover, the dynamic and structural characteristics of C60[C(COOH)2]3-H2O binary system were obtained using molecular dynamic (MD) method, and size distribution of C60[C(COOH)2]3 associates was measured.
Collapse
Affiliation(s)
- Ivan N Gaponenko
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Sergei V Ageev
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia
| | - Olga S Shemchuk
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Anatolii A Meshcheriakov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Irina L Solovtsova
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia
| | - Tatiana B Tennikova
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia.
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| |
Collapse
|
12
|
Zhang J, Xu J, Ma H, Bai H, Liu L, Shu C, Li H, Wang S, Wang C. Designing an Amino-Fullerene Derivative C 70-(EDA) 8 to Fight Superbacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14597-14607. [PMID: 30938506 DOI: 10.1021/acsami.9b01483] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Along with the rapid appearance of superbacteria with multidrug resistance, it is a challenge to develop new antibacterial materials to address this big issue. Herein, we report a novel amine group-modified fullerene derivative (C70-(ethylenediamine)8 abrr. C70-(EDA)8), which reveals a high performance in killing superbacteria, and most importantly, it shows negligible toxicity to the mammalian cells. The strong antibacterial ability of this material was attributed to its unique molecular structure. On one hand, amino groups on the EDA part make it easy to affix onto the outer membrane of multidrug resistance Escherichia coli by electrostatic interactions. On the other hand, the hydrophobic surface on the C70 part makes it easy to form a strong hydrophobic interaction with the inner membrane of bacteria. Finally, C70-(EDA)8 leads to the cytoplast leakage of superbacteria. In contrast, the C70-(EDA)8 is nontoxic for mammalian cells due to different distributions of the negative charges in the cell membrane. In vivo studies indicated that C70-(EDA)8 mitigated bacterial infection and accelerated wound healing by regulating the immune response and secretion of growth factors. Our amine group-based fullerene derivatives are promising for clinical treatment of wound infection and offer a new way to fight against the superbacteria.
Collapse
|
13
|
Kianfar M, Nezami A, Mehri S, Hosseinzadeh H, Hayes AW, Karimi G. The protective effect of fasudil against acrylamide-induced cytotoxicity in PC12 cells. Drug Chem Toxicol 2018; 43:595-601. [DOI: 10.1080/01480545.2018.1536140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mostafa Kianfar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nezami
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- University of South Florida College of Public Health, USA
- Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Sahinturk V, Kacar S, Vejselova D, Kutlu HM. Acrylamide exerts its cytotoxicity in NIH/3T3 fibroblast cells by apoptosis. Toxicol Ind Health 2018; 34:481-489. [PMID: 29734925 DOI: 10.1177/0748233718769806] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Acrylamide is a chemical utilized in various industries, and many studies have demonstrated its toxicity. The NIH/3T3 mouse embryonic cell line is the standard cell line of fibroblasts, which have a pivotal role with their versatile functions in the body. However, only two studies have attempted to investigate the effect of acrylamide on these crucial cells. To fill this knowledge gap, we aimed to determine the effects of acrylamide on NIH/3T3 cells. METHOD First, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and calculated the IC50 dose of acrylamide. Then, we treated cells with the IC50 dose of acrylamide for 24 h and determined whether the dominant death mode of NIH/3T3 cells was apoptosis or necrosis by annexin V and caspase 3/7 assays. Finally, we performed confocal microscopy and transmission electron microscope (TEM) analysis for observing the morphological alterations. RESULTS MTT assay results showed that acrylamide treatment reduced the viability of NIH/3T3 cells dose-dependently and that the IC50 of acrylamide was 6.73 mM. Based on annexin V and caspase 3/7 assays, the dominant death mode of NIH/3T3 cells was determined to be apoptosis. Also, caspase 3/7 activities of the acrylamide-treated NIH/3T3 cells were three times greater than those of the untreated NIH/3T3 cells. Furthermore, we observed membrane blebbing, nuclear chromatin clumping, and cytoplasmic vacuolization in TEM analysis and apparent apoptotic bodies, nuclear fragmentations, and condensations in confocal microscopy. CONCLUSIONS In conclusion, our results suggested that the IC50 of acrylamide against NIH/3T3 cells for 24 h was 6.73 mM and that acrylamide exerted its cytotoxic and anti-proliferative effects on these cells mainly via apoptosis.
Collapse
Affiliation(s)
- Varol Sahinturk
- 1 Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- 1 Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Djanan Vejselova
- 2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - Hatice Mehtap Kutlu
- 2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
15
|
Sun G, Wang X, Li T, Qu S, Sun J. Taurine attenuates acrylamide-induced apoptosis via a PI3K/AKT-dependent manner. Hum Exp Toxicol 2018; 37:960327118765335. [PMID: 29607694 DOI: 10.1177/0960327118765335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a potent neurotoxic agent, acrylamide (ACR) is formed in food processing at higher temperature. Taurine (TAU), a nonessential amino acid, is used to cure neurodegenerative disorders, followed by activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. In this article, we certified that antiapoptotic efficacy of TAU in vivo and vitro. ACR-treated rats received TAU by drinking water 2 weeks after ACR intoxication. The results showed that in treated rats, TAU alleviated ACR-induced neuronal apoptosis, which was associated with the activation of PI3K/AKT signaling pathway. TAU attenuated apoptosis caused by ACR through observing terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, measure of protein expression of Bcl-2, Bax, and caspase 3 activity. TAU-induced antiapoptotic effect is PI3K/AKT-dependent, which was proved in ACR-intoxicated ventral spinal cord 4.1 cells in the presence of AKT inhibitor, MK-2206. Therefore, our results demonstrated that TAU-attenuated ACR-induced apoptosis in vivo through a PI3K/AKT-dependent manner provided new sights in the molecular mechanism of TAU protection against ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- G Sun
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - X Wang
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - T Li
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - S Qu
- 2 Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - J Sun
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| |
Collapse
|
16
|
|
17
|
Al-Serwi RH, Ghoneim FM. The impact of vitamin E against acrylamide induced toxicity on skeletal muscles of adult male albino rat tongue: Light and electron microscopic study. J Microsc Ultrastruct 2015; 3:137-147. [PMID: 30023192 PMCID: PMC6014282 DOI: 10.1016/j.jmau.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/08/2015] [Indexed: 01/21/2023] Open
Abstract
Acrylamide, one of the major environmental public health problems, results from its increased accumulation in the process of cooking food materials. This study aimed to demonstrate the light and electron microscopic structural effects of acrylamide on the skeletal muscle fibers of adult male albino rat tongue and to investigate the possible protective effect of vitamin E co-administration. Thirty adult male albino Sprague-Dawley rats were divided into 3 groups, each group included 10 rats. Group I (control), group II which was subdivided into two equal subgroups: subgroup IIa: included 5 rats that received acrylamide orally once daily for 20 days. Subgroup IIb: included 5 rats that received acrylamide orally once daily for 40 days. Group III was also subdivided into two equal subgroups: subgroup IIIa: included 5 rats that received acrylamide and vitamin E orally once daily for 20 days. Subgroup IIIb: included 5 rats that received acrylamide and vitamin E orally once daily for 40 days. At the end of the experiment the tongue was dissected out for histological and electron microscopic studies, another muscle sample was homogenized and processed for biochemical estimation of malondialdehyde (MDA) and total antioxidant capacity (TAC). Light microscopic study of tongue skeletal muscles in acrylamide exposed animals revealed abnormal wavy course and splitting of the muscle fibers with fatty infiltration in between. Moreover, pyknosis and remnants of nuclei were detected. EM revealed marked aggregation of mitochondria of different size and shape with giant cells formation, and partial loss of myofilaments. There were statistically significant increase in MDA and decrease in TAC indicating oxidative stress in acrylamide administrated groups (group II) than the control group which increased by prolonged duration (subgroup IIb versus subgroup IIa, p < 0.0001). This oxidative stress could explain the histological changes in tongue muscles of acrylamide exposed rats. Co-administration of vitamin E with acrylamide ameliorated most of the above mentioned histological changes in the animals used and signs of improvement that became better with prolonged administration of it (subgroup IIIb versus subgroup IIIa, p < 0.0001) were detected. It could be concluded that, chronic exposure to acrylamide might lead to skeletal muscle damage in rat tongue which becomes worth with prolonged duration of exposure. Acrylamide induced oxidative stress is the implicated mechanism of such histological changes. This toxic effect of acrylamide could be minimized when vitamin E is given concomitantly with it by its antioxidant effect.
Collapse
Affiliation(s)
- Rasha H Al-Serwi
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Egypt
| | - Fatma M Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
18
|
Mehri S, Karami HV, Hassani FV, Hosseinzadeh H. Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. IRANIAN BIOMEDICAL JOURNAL 2014; 18:101-6. [PMID: 24518551 DOI: 10.6091/ibj.1291.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acrylamide (ACR) is a well-known industrial toxic chemical that produces neurotoxicity, which is characterized by progressive central and peripheral neuronal degeneration. Chrysin is a natural, biologically active flavonoid compound, which is commonly found in many plants. The antioxidant and neuroprotective properties of chrysin have been demonstrated. METHODS In this study, the possible effect of chrysin on ACR-induced toxicity was evaluated in both in vitro and in vivo experiments. PC12 cells were used as a suitable in vitro model. Cells were exposed to chrysin (0.5-5 µM) for 12 and 24 h, and then ACR in IC50 concentration was added to the cells. Finally, cell viability was determined using (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. For in vivo assay, Wistar rats were treated with ACR (50 mg/kg i.p. for 11 days) alone or in combination with chrysin (12.5, 25, and 50 mg/kg). At the end of treatment, behavioral index was evaluated. RESULTS ACR decreased cell viability and pre-treatment with chrysin (0.5-5 µM) significantly decreased ACR-induced cytotoxicity in the time- and dose-dependent manner. In Wistar rats, exposure to ACR significantly induced severe gait abnormalities, but treatment with chrysin (50 mg/kg) reduced ACR-induced neurotoxicity in animals. CONCLUSION In the current study, chrysin exhibited neuroprotective effect on PC12 cells as an in vitro model and also on Wistar rats.
Collapse
Affiliation(s)
- Soghra Mehri
- Pharmaceutical Research Center, Dept. of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Veis Karami
- Dept. of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Vahdati Hassani
- Dept. of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Dept. of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Mehri S, Meshki MA, Hosseinzadeh H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol 2014; 38:162-6. [DOI: 10.3109/01480545.2014.919585] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Liu Q, Zhang X, Zhang X, Zhang G, Zheng J, Guan M, Fang X, Wang C, Shu C. C70-carboxyfullerenes as efficient antioxidants to protect cells against oxidative-induced stress. ACS APPLIED MATERIALS & INTERFACES 2013; 5:11101-11107. [PMID: 24150592 DOI: 10.1021/am4033372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Oxidative stress induced by excessive production of reactive oxygen species (ROS) has been implicated in the etiology of many human diseases. Acquiring a highly efficient antioxidant with good biocompatibility is of significance in eliminating the deleterious effect induced by the oxidative stress. Herein, we address our efforts on investigating the cytoprotective effect of carboxyfullerenes on H2O2-injured cells. Meanwhile, the uptake and intracellular location of carboxyfullerenes were studied. The results show that C70-carboxyfullerenes (dimalonic acid C70 fullerene (DF70) and trimalonic acid C70 fullerene (TF70)) exhibit an obviously protective effect against oxidative stress on C2C12 cells at concentrations as low as 2.5 μmol L(-1), whereas C60-carboxyfullerenes (dimalonic acid C60 fullerene (DF60) and quadri-malonic acid C60 fullerene (QF60)) show a protective effect at relatively higher concentration (40 μmol L(-1)). The molecular structure of carboxyfullerenes and the physiological state of cells play an important role in the different cytoprotective capability. Further study reveals that DF70 and TF70 could enter into cells and mainly localize into the lysosome, which possibly involves the protective mechanism by stabilizing lysosome. The use of a significantly low concentration of C70-carboxyfullerene as the antioxidative agent will benefit the therapeutic approaches aiming at alleviating ROS-induced injuries such as muscle disorder and arthritis.
Collapse
Affiliation(s)
- Qiaoling Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Q, Zheng J, Guan M, Fang X, Wang C, Shu C. Protective effect of C70-carboxyfullerene against oxidative-induced stress on postmitotic muscle cells. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4328-4333. [PMID: 23618319 DOI: 10.1021/am400535j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Satellite muscle cells play an important role in regeneration of skeletal muscle. However, they are particularly vulnerable to oxidative stress. Herein, we address our efforts on the cytoprotective activities of carboxyfullerenes with different cage size (C60 vs C70) and adduct number on postmitotic muscle cell (C2C12 cell). The correlation of the structural effect on the cytoprotective capability of carboxyfullerenes was evaluated. We find that quadri-malonic acid C70 fullerene (QF70) exhibits higher capability on protecting cells from oxidative-induced stress among these tested carboxyfullerenes. The accumulation of intracellular superoxide dismutase (SOD) is proposed to play an important role in their diverse antioxidative ability. Moreover, the pretreatment of QF70 could also obviously enhance the viability of myotubes originated from oxidative-stressed C2C12 cells, which facilitates the future application of carboxyfullerenes in tissue engineering and nanomedicine.
Collapse
Affiliation(s)
- Qiaoling Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Chen JH, Yang CH, Wang YS, Lee JG, Cheng CH, Chou CC. Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells. Food Chem Toxicol 2013; 51:446-52. [DOI: 10.1016/j.fct.2012.10.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 11/24/2022]
|
23
|
Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 2012; 32:227-35. [PMID: 21901509 PMCID: PMC11498610 DOI: 10.1007/s10571-011-9752-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/18/2011] [Indexed: 11/27/2022]
Abstract
Acrylamide (ACR) is a potent neurotoxic in human and animal models. In this study, the effect of crocin, main constituent of Crocus sativus L. (Saffron) on ACR-induced cytotoxicity was evaluated using PC12 cells as a suitable in vitro model. The exposure of PC12 cells to ACR reduced cell viability, increased DNA fragmented cells and phosphatidylserine exposure, and elevated Bax/Bcl-2 ratio. Results showed that ACR increased intracellular reactive oxygen species (ROS) in cells and ROS played an important role in ACR cytotoxicity. The pretreatment of cells with 10-50 μM crocin before ACR treatment significantly attenuated ACR cytotoxicity in a dose-dependent manner. Crocin inhibited the downregulation of Bcl-2 and the upregulation of Bax and decreased apoptosis in treated cells. Also, crocin inhibited ROS generation in cells exposed to ACR. In conclusion, our results indicated that pretreatment with crocin protected cells from ACR-induced apoptosis partly by inhibition of intracellular ROS production.
Collapse
Affiliation(s)
- Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | |
Collapse
|
24
|
Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology 2011; 282:69-81. [DOI: 10.1016/j.tox.2010.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/28/2010] [Accepted: 12/06/2010] [Indexed: 01/23/2023]
|
25
|
Dellinger A, Zhou Z, Norton SK, Lenk R, Conrad D, Kepley CL. Uptake and distribution of fullerenes in human mast cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:575-82. [PMID: 20138243 DOI: 10.1016/j.nano.2010.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/10/2009] [Accepted: 01/19/2010] [Indexed: 11/29/2022]
Abstract
Fullerenes are carbon cages of variable size that can be derivatized with various side chain moieties resulting in compounds that are being developed into nanomedicines. Although fullerene use in several preclinical in vitro and in vivo models of disease has demonstrated their potential as diagnostic and therapeutic agents, little is known about how they enter cells, what organelles they target, and the time course for their cellular deposition. Fullerenes (C(70)) that have already been shown to be potent inhibitors of mast cell (MC)-mediated allergic inflammation were conjugated with Texas red (TR) and used in conjunction with confocal microscopy to determine mechanisms of uptake, the organelle localization, and the duration they can be detected in situ. We show that C(70)-TR are nonspecifically endocytosed into MCs, where they are shuttled throughout the cytoplasm, lysosomes, mitochondria, and into endoplasmic reticulum at different times. No nuclear or secretory granule localization was observed. The C(70)-TR remained detectable within cells at 1 week. These studies show that MCs endocytose fullerenes, where they are shuttled to organelles involved with calcium and reactive oxygen species production, which may explain their efficacy as cellular inhibitors. From the clinical editor: Fullerenes are carbon cages of variable size that have already been shown to be potent inhibitors of mast cell (MC)-mediated allergic inflammation. These were conjugated with Texas red (TR) and used in conjunction with confocal microscopy to determine mechanisms of uptake, the organelle localization, and duration, demonstrating that MCs endocytose fullerenes, which are shuttled to organelles involved with calcium and reactive oxygen species production. This intracellular trafficking may explain the efficacy of fullerenes as cellular inhibitors.
Collapse
Affiliation(s)
- Anthony Dellinger
- Luna Innovations Inc., Nanoworks Division, Danville, Virginia 24541, USA
| | | | | | | | | | | |
Collapse
|
26
|
|