1
|
Xu W, Gao L, Zou W, Tang X, Nian W, Zheng W, Huang R, Wang P. Compound kushen injection improves radiation enteritis via cannabinoid receptor 1 in rats. BMC Complement Med Ther 2025; 25:70. [PMID: 39987176 PMCID: PMC11847357 DOI: 10.1186/s12906-025-04820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Clinical studies have shown that Compound Kushen Injection (CKI) can alleviate the inflammatory symptoms of radiation enteritis. However, the mechanism of action remains unclear. The aim of this study was to explore the possible targets and mechanisms of CKI in the treatment of radiation enteritis. METHODS Network pharmacology was used to predict the potential targets of CKI for the treatment of radiation enteritis, and GO and KEGG enrichment analyses were subsequently performed. SD rats were randomly divided into one of the following groups: control, model, CB1 agonist, CKI and CKI + CB1 antagonist. Except for the control group, the remaining groups were irradiated the abdomen with 6 MV medical high-energy x-ray linear accelerator to establish the model of radiation enteritis. After one week of treatment, the expression of inflammatory factors, SOD and GSH-Px activities, MDA, ROS and NO contents; NF-κB signaling activation and the expression of NOX4, CB1, p38 MAPK, p-p38 MAPK in the ileal tissues of rats were examined to assess the therapeutic effect and possible mechanism of CKI on radiation enteritis, respectively. RESULTS According to network pharmacology, CB1 might be a target of CKI. GO and KEGG enrichment analyses revealed that CKI was significantly enriched in analgesic, endocannabinoid and inflammatory pathways. In the rat model, Compared with that in the radiotherapy group, the extent of ileal injury was significantly improved in the CKI group compared to the control group. In addition, the infiltration of CD68 and CD16b was significantly reduced, and the expression of MCP1, TNF-α, IL-1β and IL-10 was significantly decreased. In addition, the activities of SOD and GSH-Px were increased, and the activities of MDA, ROS and NO were decreased. The CKI group also showed inhibition of NF-κB signaling and a significant decrease in the expression of NOX4, CB1 and p-p38 MAPK/p38 MAPK. The use of a CB1 agonist could also alleviate radiation enteritis, whereas the addition of a CB1 antagonist could interfere with the ameliorative effect of CKI on radiation enteritis. CONCLUSIONS CKI might exert an anti-radiation enteritis effect by targeting the cannabinoid receptor 1.
Collapse
Affiliation(s)
- Wenjing Xu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Liping Gao
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Wenjuan Zou
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Xiaohui Tang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Weiqi Nian
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Weiqin Zheng
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Rongzhong Huang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Pei Wang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| |
Collapse
|
2
|
Khodamoradi E, Rahmani N, Rashidi K, Najafi M, Shahsavari S, Mohammadi M. Exploring the Potential of Metformin in Mitigating Radiation-induced Gastrointestinal and Hematopoietic System Injury in Rats After Whole-body X-ray Radiation: An Experimental Study. Curr Radiopharm 2024; 17:200-208. [PMID: 38231059 DOI: 10.2174/0118744710261673231115062547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The modern world faces a growing concern about the possibility of accidental radiation events. The Hematopoietic system is particularly vulnerable to radiationinduced apoptosis, which can lead to death. Metformin, a drug used to treat diabetes, has been shown to protect normal cells and tissues from the toxic effects of radiation. This study aimed to evaluate the effectiveness of metformin in mitigating radiation injury to the gastrointestinal and hematological systems of rats. MATERIALS AND METHODS The study involved 73 male rats. After total body irradiation with 7.5 Gy of X-rays, rats were treated with metformin. Seven days later, the rats were sacrificed and blood samples were taken for evaluation. RESULTS The study found that metformin was not effective in mitigating radiation injury. The histopathological assessment showed no significant changes in goblet cell injury, villi shortening, inflammation, or mucous layer thickness. In terms of biochemical evaluation, metformin did not significantly affect oxidative stress markers, but irradiation increased the mean MDA level in the radiation group. The complete blood count revealed a significant decrease in WBC and platelet, counts in the radiation group compared to the control group, but no significant difference was found between the radiation and radiation + metformin groups. CONCLUSION In conclusion, metformin may not be a good option for reducing radiation toxicity after accidental exposure. Despite treatment, there was no improvement in platelet, white blood cell, and lymphocyte counts, nor was there any decrease in oxidative stress. Further research is needed to explore other potential treatments for radiation injury.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nafiseh Rahmani
- Student Research Committee, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soodeh Shahsavari
- Department of Health Information Technology, Faculty of Allied Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mohammadi
- Student Research Committee, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Marjanović JS, Ćoćić D, Caković AZ, Petrović N, Kosanić M, Kostić MD, Divac VM. Seleno‐L‐cystine and Vanillin Schiff's base: Synthesis, Reaction Mechanism and Biological activity. ChemistrySelect 2023. [DOI: 10.1002/slct.202204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jovana S Marjanović
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Dušan Ćoćić
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Angelina Z Caković
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Nevena Petrović
- Department of Biology and Ecology Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Marijana Kosanić
- Department of Biology and Ecology Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Marina D Kostić
- Institute for Information Technologies Kragujevac University of Kragujevac Jovana Cvijića bb 34 000 Kragujevac Serbia
| | - Vera M Divac
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| |
Collapse
|
4
|
Zheng JY, Xu JY, Zhang L, Wang ZM, Yin XB, Qin LQ. Effect of 3,3'-diselenodipropionic Acid on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. Biol Trace Elem Res 2022:10.1007/s12011-022-03491-1. [PMID: 36418634 DOI: 10.1007/s12011-022-03491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
3,3'-Diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention because of its antioxidant properties and safety. Its protective effect against dextran sodium sulfate (DSS)-induced mouse ulcerative colitis (UC) and the role of T helper 17 (Th17) cell proliferation were investigated. Fifty C57BL/6 male mice were randomly assigned to one of five groups: control (Con), DSePA, DSS, low-dose DSePA (LSe), and high-dose DSePA (HSe). Mice in the DSS, LSe, and HSe groups drank 2% DSS to induce UC, and received normal saline, 1 and 2 mg/mL DSePA solution by intraperitoneal injection, respectively. The DSePA group only received 2 mg/mL DSePA solution. After 5 weeks, DSS challenge induced UC in the mice, which manifested as decreased body weight, shortened colon length, the loss of goblet cells, activated proliferating cells, and multiple signs of intestinal lesions by histological observation, all of which were reversed to varying degrees by DSePA administration. DSS upregulated the colonic protein expression of the macrophage marker F4/80 and proinflammatory cytokines (IL-1β, IL-6, and TNFα), whereas DSePA administration downregulated the expression of these factors. DSS upregulated the mRNA expression of retinoic acid receptor-related orphan receptor γt (RORγt, mainly expressed in Th17 cells), IL-17A, and IL-17F and the levels of IL-17A and IL-17F in the colon, whereas DSePA administration decreased them. No difference was observed between the Con group and the DSePA group without DSS induction. Thus, DSePA administration ameliorated DSS-induced UC by regulating Th17-cell proliferation and the secretion of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jia-Yang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zhang-Min Wang
- Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for Functional Agriculture Science and Technology (iFAST), Nanjing, China
| | - Xue-Bin Yin
- Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for Functional Agriculture Science and Technology (iFAST), Nanjing, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
5
|
Turkyilmaz IB, Us H, Sezen Us A, Karabulut-Bulan O, Yanardag R. Protective effect of melatonin and carnosine against radiation induced kidney injury. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Kunwar A, Priyadarsini KI, Jain VK. 3,3'-Diselenodipropionic acid (DSePA): A redox active multifunctional molecule of biological relevance. Biochim Biophys Acta Gen Subj 2020; 1865:129768. [PMID: 33148501 DOI: 10.1016/j.bbagen.2020.129768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Extensive research is being carried out globally to design and develop new selenium compounds for various biological applications such as antioxidants, radio-protectors, anti-carcinogenic agents, biocides, etc. In this pursuit, 3,3'-diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention for its biological activities. SCOPE OF REVIEW This review intends to give a comprehensive account of research on DSePA so as to facilitate further research activities on this organoselenium compound and to realize its full potential in different areas of biological and pharmacological sciences. MAJOR CONCLUSIONS It is an interesting diselenide structurally related to selenocystine. It shows moderate glutathione peroxidase (GPx)-like activity and is an excellent scavenger of reactive oxygen species (ROS). Exposure to radiation, as envisaged during radiation therapy, has been associated with normal tissue side effects and also with the decrease in selenium levels in the body. In vitro and in vivo evaluation of DSePA has confirmed its ability to reduce radiation induced side effects into normal tissues. Administration of DSePA through intraperitoneal (IP) or oral route to mice in a dose range of 2 to 2.5 mg/kg body weight has shown survival advantage against whole body irradiation and a significant protection to lung tissue against thoracic irradiation. Pharmacokinetic profiling of DSePA suggests its maximum absorption in the lung. GENERAL SIGNIFICANCE Research work on DSePA reported in fifteen years or so indicates that it is a promising multifunctional organoselenium compound exhibiting many important activities of biological relevance apart from radioprotection.
Collapse
Affiliation(s)
- A Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - K Indira Priyadarsini
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India.
| | - Vimal K Jain
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India.
| |
Collapse
|
8
|
Cao W, McCallum NC, Ni QZ, Li W, Boyce H, Mao H, Zhou X, Sun H, Thompson MP, Battistella C, Wasielewski MR, Dhinojwala A, Shawkey MD, Burkart MD, Wang Z, Gianneschi NC. Selenomelanin: An Abiotic Selenium Analogue of Pheomelanin. J Am Chem Soc 2020; 142:12802-12810. [DOI: 10.1021/jacs.0c05573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Cao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Naneki C. McCallum
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Qing Zhe Ni
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States of America
| | - Weiyao Li
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States of America
| | - Hannah Boyce
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Xuhao Zhou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Hao Sun
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Matthew P. Thompson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Claudia Battistella
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States of America
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, The University of Ghent, 9000 Ghent, Belgium
| | - Michael D. Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States of America
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States of America
| | - Nathan C. Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| |
Collapse
|
9
|
Sadeghi H, Bagheri H, Shekarchi B, Javadi A, Najafi M. Mitigation of Radiation-Induced Gastrointestinal System Injury by Melatonin: A Histopathological Study. Curr Drug Res Rev 2020; 12:72-79. [PMID: 32578524 DOI: 10.2174/2589977511666191031094625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 06/11/2023]
Abstract
AIMS The current study aimed to investigate the potential role of melatonin in the mitigation of radiation-induced gastrointestinal injury. BACKGROUND Organs of the gastrointestinal system such as the intestines, colon, duodenum, ileum etc. are sensitive to ionizing radiation. Mitigation of radiation-induced gastrointestinal injury is an interesting topic in radiobiology and a life-saving approach for exposed persons after a radiation event or improving the quality of life of radiotherapy patients. OBJECTIVE The study aimed to find the possible mitigation effect of melatonin on radiation-induced damage to the small and large intestines. METHODS 40 male mice were randomly assigned into four groups namely G1: control, G2: melatonin treatment, G3: whole-body irradiation, and G4: melatonin treatment after whole-body irradiation. A cobalt-60 gamma-ray source was used to deliver 7 Gy to the whole body. 100 mg/kg melatonin was administered orally 24 h after irradiation and continued for 5 days. Thirty days after irradiation, histopathological evaluations were performed. RESULTS The whole-body irradiation led to remarkable inflammation, villi shortening, apoptosis and damage to goblet cells of the small intestine. Furthermore, moderate to severe inflammation, apoptosis, congestion, crypt injury and goblet cell damage were reported for the colon. Treatment with melatonin after whole-body irradiation led to significant mitigation of radiation toxicity in both small and large intestines. CONCLUSION Melatonin could mitigate intestinal injury following whole-body exposure to radiation. Treatment with melatonin after an accidental exposure to radiation may increase survival via mitigation of damages to radiosensitive organs, including the gastrointestinal system.
Collapse
Affiliation(s)
- Hossein Sadeghi
- AJA Radiation Sciences Radiation Sciences (ARSRC), Tehran, Iran
| | - Hamed Bagheri
- AJA Radiation Sciences Radiation Sciences (ARSRC), Tehran, Iran
| | - Babak Shekarchi
- AJA Radiation Sciences Radiation Sciences (ARSRC), Tehran, Iran
| | - Abdolreza Javadi
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Bartolini D, Tew KD, Marinelli R, Galli F, Wang GY. Nrf2-modulation by seleno-hormetic agents and its potential for radiation protection. Biofactors 2020; 46:239-245. [PMID: 31617634 DOI: 10.1002/biof.1578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023]
Abstract
The trace element selenium (Se) is an essential component of selenoproteins and plays a critical role in redox signaling via regulating the activity of selenoenzymes such as thioredoxin reductase-1 and glutathione peroxidases. Se compounds and its metabolites possess a wide range of biological functions including anticancer and cytoprotection effects, modulation of hormetic genes and antioxidant enzyme activities. Radiation-induced injury of normal tissues is a significant side effect for cancer patients who receive radiotherapy in the clinic and the development of new and effective radioprotectors is an important goal of research. Others and we have shown that seleno-compounds have the potential to protect ionizing radiation-induced toxicities in various tissues and cells both in in vitro and in vivo studies. In this review, we discuss the potential utilization of Se compounds with redox-dependent hormetic activity as novel radio-protective agents to alleviate radiation toxicity. The cellular and molecular mechanisms underlying the radioprotection effects of these seleno-hormetic agents are also discussed. These include Nrf2 transcription factor modulation and the consequent upregulation of the adaptive stress response to IR in bone marrow stem cells and hematopoietic precursors.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Rita Marinelli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
11
|
Kunwar A, Patil A, Kumar S, Deshpande R, Gota V, Goda JS, Jain V, Indira Priyadarsini K. Toxicological safety evaluation of 3,3′-diselenodipropionic acid (DSePA), a pharmacologically important derivative of selenocystine. Regul Toxicol Pharmacol 2018; 99:159-167. [DOI: 10.1016/j.yrtph.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
|
12
|
Verma P, Kunwar A, Arai K, Iwaoka M, Priyadarsini KI. Mechanism of radioprotection by dihydroxy-1-selenolane (DHS): Effect of fatty acid conjugation and role of glutathione peroxidase (GPx). Biochimie 2018; 144:122-133. [DOI: 10.1016/j.biochi.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
|
13
|
Karabulut-Bulan O, Us H, Bayrak BB, Sezen-Us A, Yanardag R. The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Mangoni M, Sottili M, Gerini C, Desideri I, Bastida C, Pallotta S, Castiglione F, Bonomo P, Meattini I, Greto D, Cappelli S, Di Brina L, Loi M, Biti G, Livi L. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity. United European Gastroenterol J 2017; 5:218-226. [PMID: 28344789 PMCID: PMC5349355 DOI: 10.1177/2050640616640443] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Because of its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-neoplastic properties, the PPAR-γ agonist rosiglitazone is an interesting drug for investigating for use in the prevention and treatment of radiation-induced intestinal damage. We aimed to evaluate the radioprotective effect of rosiglitazone in a murine model of acute intestinal damage, assessing whether radioprotection is selective for normal tissues or also occurs in tumour cells. METHODS Mice were total-body irradiated (12 Gy), with or without rosiglitazone (5 mg/kg/day). After 24 and 72 hours, mice were sacrificed and the jejunum was collected. HT-29 human colon cancer cells were irradiated with a single dose of 2 (1000 cells), 4 (1500 cells) or 6 (2000 cells) Gy, with or without adding rosiglitazone (20 µM) 1 hour before irradiation. HT-29-xenografted CD1 mice were irradiated (16 Gy) with or without rosiglitazone; tumour volumes were measured for 33 days. RESULTS Rosiglitazone markedly reduced histological signs of altered bowel structures, that is, villi shortening, submucosal thickening, necrotic changes in crypts, oedema, apoptosis, and inflammatory infiltrate induced by irradiation. Rosiglitazone significantly decreased p-NF-kB p65 phosphorylation and TGFβ protein expression at 24 and 72 hours post-irradiation and significantly decreased gene expression of Collagen1, Mmp13, Tnfα and Bax at 24 hours and p53 at 72 hours post-irradiation. Rosiglitazone reduced HT-29 clonogenic survival, but only produced a slight reduction of xenograft tumour growth. CONCLUSION Rosiglitazone exerts a protective effect on normal tissues and reduces alterations in bowel structures and inflammation in a radiation-induced bowel toxicity model, without interfering with the radiation effect on HT-29 cancer cells. PPAR-γ agonists should be further investigated for their application in abdominal and pelvic irradiation.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Mariangela Sottili
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Chiara Gerini
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Isacco Desideri
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Cinzia Bastida
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Stefania Pallotta
- Medical Physic Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Francesca Castiglione
- Department of Clinical and Experimental
Medicine, University of Florence, Firenze, Italy
| | - Pierluigi Bonomo
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Icro Meattini
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Daniela Greto
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Sabrina Cappelli
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Lucia Di Brina
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Mauro Loi
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Giampaolo Biti
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| |
Collapse
|
15
|
Chen R, Wang YW, Fornace AJ, Li HH. Impairment of the Intrinsic Capability of Th1 Polarization in Irradiated Mice: A Close Look at the Imbalanced Th1/Th2 Response after Irradiation. Radiat Res 2016; 186:559-567. [PMID: 27849436 DOI: 10.1667/rr14401.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two major CD4+ T-helper (Th) lineages are Th1 and Th2, and well balanced Th1/Th2 responses are essential for immune function. In previously published studies, it was reported that radiation induces a Th1/Th2 immune imbalance toward a Th2-dominant direction, and this imbalance may contribute to postirradiation immune dysfunction. The polarization of Th cells is driven by the cytokine milieu and controlled by intracellular regulatory pathways that respond to cytokine signaling. It is widely accepted that radiation induces cytokine aberration, however, the precise alterations of cytokines in various tissue environments have been difficult to evaluate. In addition, the effects of radiation on the intrinsic functions of Th cells remain uncharacterized. Therefore, how radiation affects Th1/Th2 balance remains somewhat unclear. To address this, we investigated the changes in the polarization capability of Th cells by isolating them from mice previously exposed to radiation and assessing the cells in an established in vitro Th polarization system. Our novel results demonstrate that prior exposure to radiation led to the persistent aberration of the inherent capability of Th cells to differentiate into Th1 and Th2 lineages. The parallel changes in expression of Th1-specific master transcription factors and the key genes in metabolic reprograming indicated that radiation affects the core components in Th1 polarization. While Th1 differentiation was impaired after irradiation, little adverse effect was observed in Th2 differentiation; both of these findings contribute to the known phenotypes of Th1/Th2 imbalance caused by radiation.
Collapse
Affiliation(s)
- Renxiang Chen
- a Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D.C. 20057
| | - Yi-Wen Wang
- a Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D.C. 20057
| | - Albert J Fornace
- a Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D.C. 20057.,b Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057
| | - Heng-Hong Li
- a Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D.C. 20057.,b Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057
| |
Collapse
|
16
|
Dihydroxyselenolane (DHS) supplementation improves survival following whole-body irradiation (WBI) by suppressing tissue-specific inflammatory responses. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 807:33-46. [DOI: 10.1016/j.mrgentox.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
|
17
|
Gota V, Goda JS, Doshi K, Patil A, Sunderajan S, Kumar K, Varne M, Kunwar A, Jain VK, Priyadarshini I. Biodistribution and Pharmacokinetic Study of 3,3′ Diseleno Dipropionic Acid (DSePA), A Synthetic Radioprotector, in Mice. Eur J Drug Metab Pharmacokinet 2015; 41:839-844. [DOI: 10.1007/s13318-015-0301-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Cao W, Li X, Zheng S, Zheng W, Wong YS, Chen T. Selenocysteine derivative overcomes TRAIL resistance in melanoma cells: evidence for ROS-dependent synergism and signaling crosstalk. Oncotarget 2015; 5:7431-45. [PMID: 25277183 PMCID: PMC4202134 DOI: 10.18632/oncotarget.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as one of the most promising targeted drug for new cancer therapeutics, is limited in clinical application by the evolution of resistance in many cancer cell lines, especially in malignant melanoma. Thus, it is urgently needed to identify chemosensitizers to enhance the apoptotic inducing efficacy of TRAIL and overcome resistance of malignant melanoma cells. Herein, we reported that 3,3'-diselenodipropionic acid (DSeA), a Selenocysteine derivative, could synergistically enhance the growth inhibitory effect of TRAIL on A375 melanoma cells though induction of ROS-dependent apoptosis with involvement of PTEN-mediated Akt inactivation and DNA damage-mediated p53 phosphorylation, which subsequently activated mitochondrial and death receptor apoptotic pathways. Moreover, silencing of p53 down-regulated the expression levels of p53-inducible genes, and effectively blocked the cell apoptosis. Suppression of PI3K significantly increased the apoptotic cell death. In contrast, antioxidants effectively reversed the cell apoptosis through regulation of Akt and p53 signaling pathways. Taken together, the combination of DSeA and TRAIL could be a novel strategy to overcome TRAIL resistance in malignant melanoma, and DSeA may be candidates for further evaluation as a chemosensitizer in clinical trails.
Collapse
Affiliation(s)
- Wenqiang Cao
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Xiaoling Li
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Shanyuan Zheng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong S.A.R., China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yum-Shing Wong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong S.A.R., China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Wang K, Fu XY, Fu XT, Hou YJ, Fang J, Zhang S, Yang MF, Li DW, Mao LL, Sun JY, Yuan H, Yang XY, Fan CD, Zhang ZY, Sun BL. DSePA Antagonizes High Glucose-Induced Neurotoxicity: Evidences for DNA Damage-Mediated p53 Phosphorylation and MAPKs and AKT Pathways. Mol Neurobiol 2015; 53:4363-74. [DOI: 10.1007/s12035-015-9373-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023]
|
20
|
Synthesis, characterization, and structure of trans-3,4-dihydroxy-1-selenolane {DHS(OH)2} substituted derivatives. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Chaurasia RK, Balakrishnan S, Kunwar A, Yadav U, Bhat N, Anjaria K, Nairy R, Sapra BK, Jain VK, Priyadarsini KI. Cyto-genotoxicity assessment of potential radioprotector, 3,3′-diselenodipropionic acid (DSePA) in Chinese Hamster Ovary (CHO) cells and human peripheral blood lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 774:8-16. [DOI: 10.1016/j.mrgentox.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
|
22
|
Barik A, Singh BG, Sharma A, Jain VK, Priyadarsini KI. Pulse Radiolysis Studies of 3,5-Dimethyl Pyrazole Derivatives of Selenoethers. J Phys Chem A 2014; 118:10179-87. [DOI: 10.1021/jp507369q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atanu Barik
- Radiation & Photochemistry Division and ‡Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Beena G. Singh
- Radiation & Photochemistry Division and ‡Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Asmita Sharma
- Radiation & Photochemistry Division and ‡Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Vimal K. Jain
- Radiation & Photochemistry Division and ‡Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - K. Indira Priyadarsini
- Radiation & Photochemistry Division and ‡Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
23
|
Okić-Djordjević I, Trivanović D, Jovanović M, Ignjatović M, Šećerov B, Mojović M, Bugarski D, Bačić G, Andjus PR. Increased survival after irradiation followed by regeneration of bone marrow stromal cells with a novel thiol-based radioprotector. Croat Med J 2014; 55:45-9. [PMID: 24577826 PMCID: PMC3944417 DOI: 10.3325/cmj.2014.55.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim To investigate the survival of laboratory rats after irradiation and to study the cellularity of their bone marrow and the multipotential mesenchymal stem cells (BM-MSCs) in groups treated with or without a new thiol-based radioprotector (GM2011) Methods Animals were irradiated by a Cobalt gamma source at 6.7 Gy. Treated animals were given i.p. GM2011 30 minutes before and 3 and 7 hours after irradiation. Controls consisted of sham irradiated animals without treatment and animals treated without irradiation. After 30 days post-irradiation, animals were sacrificed and bone marrow cells were prepared from isolated femurs. A colony forming unit-fibroblast (CFU-F) assay was performed to obtain the number of BM-MSCs. Results In the treated group, 87% of animals survived, compared to only 30% in the non-treated irradiated group. Irradiation induced significant changes in the bone marrow of the treated rats (total bone marrow cellularity was reduced by ~ 60% – from 63 to 28 cells ×106/femur and the frequency of the CFU-F per femur by ~ 70% – from 357 to 97), however GL2011 almost completely prevented the suppressive effect observed on day 30 post-irradiation (71 cells ×106/femur and 230 CFU-F/femur). Conclusion Although the irradiation dosage was relatively high, GL2011 acted as a very effective new radioprotector. The recovery of the BN-MSCs and their counts support the effectiveness of the studied radioprotector.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pavle R Andjus
- Pavle R. Andjus, Faculty of Biology University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia,
| |
Collapse
|
24
|
Prabhu P, Singh BG, Noguchi M, Phadnis PP, Jain VK, Iwaoka M, Priyadarsini KI. Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org Biomol Chem 2014; 12:2404-12. [DOI: 10.1039/c3ob42336k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable selone formation in 2,2′-diselenobis[3-amidopyridine], reduces unwanted sulfur exchange reaction in glutathione peroxidase like catalytic cycle and enhances its enzyme activity.
Collapse
Affiliation(s)
- Parashiva Prabhu
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Beena G. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400 085, India
| | - Masato Noguchi
- Department of Chemistry
- School of Science
- Tokai University
- Kanagawa 259-1292, Japan
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Vimal K. Jain
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kanagawa 259-1292, Japan
| | | |
Collapse
|
25
|
Kunwar A, Adhikary B, Jayakumar S, Barik A, Chattopadhyay S, Raghukumar S, Priyadarsini K. Melanin, a promising radioprotector: Mechanisms of actions in a mice model. Toxicol Appl Pharmacol 2012; 264:202-11. [DOI: 10.1016/j.taap.2012.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
|
26
|
|