1
|
Carlsson MJ, Herzog N, Felske C, Ackermann G, Regier A, Wittmann S, Fernández Cereijo R, Sturla SJ, Küpper JH, Fahrer J. The DNA Repair Protein MGMT Protects against the Genotoxicity of N-Nitrosodimethylamine, but Not N-Nitrosodiethanolamine and N-Nitrosomethylaniline, in Human HepG2 Liver Cells with CYP2E1 Expression. Chem Res Toxicol 2025. [PMID: 40390554 DOI: 10.1021/acs.chemrestox.5c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
N-nitrosamines are genotoxic contaminants that occur in the diet, consumer products, and the environment. More recently, N-nitrosamines were also detected as drug impurities. After uptake, N-nitrosamines undergo metabolic activation by cytochrome P450 monooxygenases (CYPs), resulting in DNA damage and tumor formation. In this study, the genotoxicity and cytotoxicity of three N-nitrosamines with structurally distinct substituents, N-nitrosodimethylamine (NDMA), N-nitrosodiethanolamine (NDELA) and N-nitrosomethylaniline (NMA), were analyzed in human HepG2 liver cell models proficient or deficient in CYP2E1 biotransformation. Furthermore, the impact of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) was investigated. The novel genetically engineered HepG2-CYP2E1 cell line strongly expressed CYP2E1, which was not detectable in wildtype (WT) HepG2 cells. We then confirmed that the CYP2E1 substrate NDMA caused O6-methyldesoxyguanosine adducts and DNA strand breaks in a CYP2E1-dependent manner, leading to cytotoxicity. By the same approach, we demonstrated that NDELA induced DNA strand breaks in HepG2-CYP2E1 cells, whereas no effect was observed for NMA. However, NMA was revealed to cause DNA cross-links. Furthermore, both NDELA and NMA were cytotoxic in HepG2-CYP2E1 cells, but not in WT cells. Subsequently, the pharmacological MGMT inhibitor O6-benzylguanine was used to deplete MGMT in both HepG2 cell models. MGMT inhibition clearly increased DNA strand break levels due to NDMA exposure, whereas DNA strand break formation by NDELA and NMA were not affected by inhibiting MGMT. In line with these findings, the clastogenic effects of NDMA were potentiated in the absence of MGMT. In contrast to that, NDELA- and NMA-induced clastogenicity was not influenced by MGMT inhibition. Taken together, our study revealed that all three structurally diverse N-nitrosamines are cytotoxic and clastogenic in a CYP2E1-dependent manner, while only NDMA and NDELA caused DNA strand breaks. Furthermore, we demonstrated for the first time that DNA repair by MGMT does not confer protection against NDELA and NMA-triggered DNA strand break induction and clastogenicity.
Collapse
Affiliation(s)
- Max J Carlsson
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Natalie Herzog
- Division of Molecular Cell Biology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Christina Felske
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Gabriel Ackermann
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Alexander Regier
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Simon Wittmann
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | | | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Jan-Heiner Küpper
- Division of Molecular Cell Biology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Puig-Herreros C, Sanz JL, García-Bernal D, Rodríguez-Lozano FJ, Murcia L, Forner L, Ghilotti J, Oñate-Sánchez RE, López-García S. Comparative Cytotoxicity of Menthol and Eucalyptol: An In Vitro Study on Human Gingival Fibroblasts. Pharmaceutics 2024; 16:521. [PMID: 38675182 PMCID: PMC11054097 DOI: 10.3390/pharmaceutics16040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the influence of eucalyptol and menthol on the cell viability, migration, and reactive oxygen species production of human gingival fibroblasts (GFs) in vitro. Three different concentrations of eucalyptol and menthol were prepared following ISO 10993-5 guidelines (1, 5, and 10 mM). GFs were isolated from extracted teeth from healthy donors. The following parameters were assessed: cell viability via MTT, Annexin-V-FITC and 7-AAD staining, and IC50 assays; cell migration via horizontal scratch wound assay; and cell oxidative stress via reactive oxygen species assay. Data were analyzed using one-way ANOVA and Tukey's post hoc test. Statistical significance was established at p < 0.05. Eucalyptol and Menthol exhibited high cytotoxicity on gingival fibroblasts, as evidenced by cytotoxicity assays. Eucalyptol showed lower levels of cytotoxicity than menthol, compared to the control group. The cytotoxicity of the tested substances increased in a concentration-dependent manner. The same occurred in a time-dependent manner, although even 10 min of exposure to the tested substances showed a high cytotoxicity to the GFs. Commercially available products for oral application with these substances in their composition should be tested for cytotoxicity before their use.
Collapse
Affiliation(s)
- Clara Puig-Herreros
- Speech Therapy University Clinic, Department of Basic Psychology, Universitat de València, 46010 Valencia, Spain
| | - José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107 Murcia, Spain
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - James Ghilotti
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - Ricardo E. Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Sergio López-García
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| |
Collapse
|
3
|
Pries R, Jeschke S, Leichtle A, Bruchhage KL. Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites 2023; 13:751. [PMID: 37367909 DOI: 10.3390/metabo13060751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The monoterpene 1,8-Cineol is a natural plant-based therapeutic agent that is commonly applied to treat different inflammatory diseases due to its mucolytic, anti-microbial and anti-inflammatory properties. It has become increasingly clear in the recent years that 1,8-Cineol spreads almost everywhere in the human body after its oral administration, from the gut to the blood to the brain. Its anti-microbial potential and even its anti-viral effects have been observed to include numerous bacteria and fungi species. Many recent studies help to better understand the cellular and molecular immunological consequences of 1,8-Cineol treatment in inflammatory diseases and further provide information concerning the mechanistic modes of action in the regulation of distinct inflammatory biosynthetic pathways. This review aims to present a holistic and understandable overview of the different aspects of 1,8-Cineol in infections and inflammation.
Collapse
Affiliation(s)
- Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | - Stephanie Jeschke
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | - Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | | |
Collapse
|
4
|
de Brito-Machado D, Ramos YJ, Defaveri ACAE, de Queiroz GA, Guimarães EF, de Lima Moreira D. Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:3535. [PMID: 36559647 PMCID: PMC9785739 DOI: 10.3390/plants11243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The aim of this study was to monitor the volatile chemical composition from leaves and reproductive organs of Piper mollicomum Kunth (PM), in its reproduction period, as well as register inflorescence visitors, microclimate and phenological information. The essential oils (EOs) obtained from the different fresh organs by hydrodistillation were identified and quantified by Gas Chromatography/Mass Spectrometry (GC/MS) and by GC coupled to a Flame Ionization Detector (GC/FID), respectively. The cercentage content of some volatiles present in reproductive organs, such as limonene, 1,8-cineole, linalool and eupatoriochromene, increased during the maturation period of the inflorescences, and decreased during the fruiting period, suggesting a defense/attraction activities. Furtermore, a biosynthetic dichotomy between 1,8-cineole (leaves) and linalool (reproductive organs) was recorded. A high frequency of bee visits was registered weekly, and some correlations showed a positive relationship between this variable and terpenes. Microclimate has an impact on this species' phenological cycles and insect visiting behavior. All correlations between volatiles, insects, phenology and microclimate allowed us to present important data about the complex information network in PM. These results are extremely relevant for the understanding of the mechanisms of chemical-ecological plant-insect interactions in Piperaceae, a basal angiosperm.
Collapse
Affiliation(s)
- Daniel de Brito-Machado
- Instituto de Biologia, Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Centro de Responsabilidade Socioambiental do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Ygor Jessé Ramos
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Centro de Responsabilidade Socioambiental do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Anna Carina Antunes e Defaveri
- Centro de Responsabilidade Socioambiental do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - George Azevedo de Queiroz
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Elsie Franklin Guimarães
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Davyson de Lima Moreira
- Instituto de Biologia, Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
5
|
Teaima MH, Eltabeeb MA, El-Nabarawi MA, Abdellatif MM. Utilization of propranolol hydrochloride mucoadhesive invasomes as a locally acting contraceptive: in-vitro, ex-vivo, and in-vivo evaluation. Drug Deliv 2022; 29:2549-2560. [PMID: 35912869 PMCID: PMC9347470 DOI: 10.1080/10717544.2022.2100514] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
It was found that propranolol hydrochloride (PNL), which is a beta-blocker used for hypertension treatment, has a potent spermicidal activity through local anesthetic activity or beta-blocking effect on sperm cells subsequently it could be used as a contraceptive remedy. This study aimed to entrap PNL into invasomes (INVs) and then formulate it as a locally acting contraceptive gel. PNL-loaded mucoadhesive INVs were prepared via the thin-film hydration technique. The D-optimal design was utilized to fabricate INVs employing lipid concentration (X1), terpenes concentration (X2), terpenes type (X3), and chitosan concentration (X4) as independent variables, while their impact was observed for entrapment efficiency percent (Y1; EE%), particle size (Y2; PS), zeta potential (Y3; ZP), and amount of drug released after 6 h (Y4; Q6h). Design Expert® was bestowed to nominate the desired formula. The selected INV was subjected to further studies and formulated into a mucoadhesive gel for ex-vivo and in-vivo investigations. The optimum INV showed a spherical shape with EE% of 65.01 ± 1.24%, PS of 243.75 ± 8.13 nm, PDI of 0.203 ± 0.01, ZP of 49.80 ± 0.42 mV, and Q6h of 53.16 ± 0.73%. Differential scanning calorimetry study asserted the capability of INVs to entrap PNL. Permeation studies confirmed the desired sustained effect of PNL-loaded INVs-gel compared to PNL-gel, INVs, and PNL solution. Sperm motility assay proved the potency of INVs-gel to inhibit sperm motility. Besides, the histopathological investigation verified the tolerability of the prepared INVs-gel. Taken together, the gained data justified the efficacy of PNL-loaded INVs-gel as a potential locally acting contraceptive.
Collapse
Affiliation(s)
- Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo, Egypt
| | - Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
6
|
Carlsson MJ, Vollmer AS, Demuth P, Heylmann D, Reich D, Quarz C, Rasenberger B, Nikolova T, Hofmann TG, Christmann M, Fuhlbrueck JA, Stegmüller S, Richling E, Cartus AT, Fahrer J. p53 triggers mitochondrial apoptosis following DNA damage-dependent replication stress by the hepatotoxin methyleugenol. Cell Death Dis 2022; 13:1009. [PMID: 36446765 PMCID: PMC9708695 DOI: 10.1038/s41419-022-05446-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Liver cancer is one of the most frequent tumor entities worldwide, which is causally linked to viral infection, fatty liver disease, life-style factors and food-borne carcinogens, particularly aflatoxins. Moreover, genotoxic plant toxins including phenylpropenes are suspected human liver carcinogens. The phenylpropene methyleugenol (ME) is a constituent of essential oils in many plants and occurs in herbal medicines, food, and cosmetics. Following its uptake, ME undergoes Cytochrome P450 (CYP) and sulfotransferase 1A1 (SULT1A1)-dependent metabolic activation, giving rise to DNA damage. However, little is known about the cellular response to the induced DNA adducts. Here, we made use of different SULT1A1-proficient cell models including primary hepatocytes that were treated with 1'-hydroxymethyleugenol (OH-ME) as main phase I metabolite. Firstly, mass spectrometry showed a concentration-dependent formation of N2-MIE-dG as major DNA adduct, strongly correlating with SULT1A1 expression as attested in cells with and without human SULT1A1. ME-derived DNA damage activated mainly the ATR-mediated DNA damage response as shown by phosphorylation of CHK1 and histone 2AX, followed by p53 accumulation and CHK2 phosphorylation. Consistent with these findings, the DNA adducts decreased replication speed and caused replication fork stalling. OH-ME treatment reduced viability particularly in cell lines with wild-type p53 and triggered apoptotic cell death, which was rescued by pan-caspase-inhibition. Further experiments demonstrated mitochondrial apoptosis as major cell death pathway. ME-derived DNA damage caused upregulation of the p53-responsive genes NOXA and PUMA, Bax activation, and cytochrome c release followed by caspase-9 and caspase-3 cleavage. We finally demonstrated the crucial role of p53 for OH-ME triggered cell death as evidenced by reduced pro-apoptotic gene expression, strongly attenuated Bax activation and cell death inhibition upon genetic knockdown or pharmacological inhibition of p53. Taken together, our study demonstrates for the first time that ME-derived DNA damage causes replication stress and triggers mitochondrial apoptosis via the p53-Bax pathway.
Collapse
Affiliation(s)
- Max J. Carlsson
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Anastasia S. Vollmer
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany ,grid.411544.10000 0001 0196 8249Present Address: Department of Dermatology, University Medical Center, 69120 Heidelberg, Germany
| | - Philipp Demuth
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Diana Reich
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Caroline Quarz
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Birgit Rasenberger
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Teodora Nikolova
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Thomas G. Hofmann
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Markus Christmann
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Julia A. Fuhlbrueck
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simone Stegmüller
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Elke Richling
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Alexander T. Cartus
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Fahrer
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany ,grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany ,grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
7
|
Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022; 27:molecules27134175. [PMID: 35807418 PMCID: PMC9268689 DOI: 10.3390/molecules27134175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD.
Collapse
|
8
|
Kőhidai Z, Takács A, Lajkó E, Géczi Z, Pállinger É, Láng O, Kőhidai L. The effects of mouthwashes in human gingiva epithelial progenitor (HGEPp) cells. Clin Oral Investig 2022; 26:4559-4574. [PMID: 35257248 PMCID: PMC9203393 DOI: 10.1007/s00784-022-04422-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The gingiva epithelium accounts for a significant proportion of the surface around the tooth. An inflammatory reaction occurs in the presence of bacterial biofilm, adhesion is reduced, and the depth of the sulcus gingivalis increases. The most common antiseptic agents in oral rinses are chlorhexidine digluconate (CHX) and cetylpyridinium chloride. We examined long-lasting effects of residual concentrations of eight commercially available rinses. Our main goals were (i) to analyze the effect of different chemical compositions on cell proliferation, (ii) to examine apoptosis, and (iii) cell morphology on human epithelial progenitor cell line (HGEPp). MATERIALS AND METHODS Cell proliferation was measured in a real-time system (0-48 h) by impedimetry (xCELLigence). Apoptosis was measured with labeled Annexin-V (BD-FACScalibur). RESULTS Changes in proliferation were measured at certain concentrations: (i) H2O2 proved to be cytotoxic at almost all concentrations; (ii) low concentrations of CHX (0.0001%; 0.0003%) were proliferation inducers, while higher concentrations were cytotoxic; (iii) for ClO2, advantageous proliferative effect was observed over a broad concentration range (0.06-6 ppm). In mouthwashes, additives in the formulation (e.g., allantoin) appeared to influence cellular responses positively. Apoptosis marker assay results suggested a low-level activation by the tested agents. CONCLUSIONS Mouthwashes and their reference compounds proved to have concentration-dependent cytotoxic effects on human gingival epithelial cells. CLINICAL RELEVANCE A better understanding of the effects of mouthwashes and their reference compounds is particularly important. These concentration-dependent effects (cytotoxic or proliferation inducing) interfere with human cells physiology while being used in the fight against the pathogenic flora.
Collapse
Affiliation(s)
- Zsófia Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- Department of Oral Diagnostics, Semmelweis University, Budapest, Hungary.
| | - Angéla Takács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Géczi
- Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Arnold C, Demuth P, Seiwert N, Wittmann S, Boengler K, Rasenberger B, Christmann M, Huber M, Brunner T, Linnebacher M, Fahrer J. The mitochondrial disruptor devimistat (CPI-613®) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a Bim-dependent manner. Mol Cancer Ther 2021; 21:100-112. [PMID: 34750196 DOI: 10.1158/1535-7163.mct-21-0393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities, with an increasing incidence and mortality in younger adults in Europe and the US. 5-year survival rates for advanced CRC are still low, highlighting the need for novel targets in CRC therapy. Here, we investigated the therapeutic potential of the compound devimistat (CPI 613®) that targets altered mitochondrial cancer cell metabolism and its synergism with the antineoplastic drugs 5-fluorouracil (5-FU) and irinotecan (IT) in CRC. Devimistat exerted a comparable cytotoxicity in a panel of established CRC cell lines and patient-derived short-term culture independent of their genetic and epigenetic status, whereas human colonic epithelial cells were more resistant indicating tumor selectivity. These findings were corroborated in intestinal organoid and tumoroid models. Mechanistically, devimistat disrupted mitochondrial membrane potential and severely impaired mitochondrial respiration, resulting in CRC cell death induction independent of p53. Combination treatment of devimistat with 5-FU or IT demonstrated synergistic cell killing in CRC cells as shown by Combenefit modelling and Chou-Talalay analysis. Increased cell death induction was revealed as major mechanism involving downregulation of anti-apoptotic genes and accumulation of pro-apoptotic Bim, which was confirmed by its genetic knockdown. In human CRC xenograft mouse models, devimistat showed anti-tumor activity and synergized with IT, resulting in prolonged survival and enhanced therapeutic efficacy. In human tumor xenografts, devimistat prevented IT-triggered p53 stabilization and caused synergistic Bim induction. Taken together, our study revealed devimistat as a promising candidate in CRC therapy by synergizing with established antineoplastic drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Carina Arnold
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | - Philipp Demuth
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | - Nina Seiwert
- Institute of Toxicology, Medical Center of the University Mainz
| | - Simon Wittmann
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | | | | | | | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipp University of Marburg
| | | | - Michael Linnebacher
- Department of General Surgery, Division of Molecular Oncology and Immunotherapy, University of Rostock
| | - Jörg Fahrer
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| |
Collapse
|
10
|
Kim MH, Lee SM, An KW, Lee MJ, Park DH. Usage of Natural Volatile Organic Compounds as Biological Modulators of Disease. Int J Mol Sci 2021; 22:ijms22179421. [PMID: 34502333 PMCID: PMC8430758 DOI: 10.3390/ijms22179421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Plants produce a wide variety of natural volatile organic compounds (NVOCs), many of which are unique to each species. These compounds serve many purposes, such as fending off herbivores and adapting to changes in temperature and water supply. Interestingly, although NVOCs are synthesized to deter herbivores, many of these compounds have been found to possess several therapeutic qualities, such as promoting nerve stability, enhancing sleep, and suppressing hyperresponsiveness, in addition to acting as antioxidants and anti-inflammatory agents. Therefore, many NVOCs are promising drug candidates for disease treatment and prevention. Given their volatile nature, these compounds can be administered to patients through inhalation, which is often more comfortable and convenient than other administration routes. However, the development of NVOC-based drug candidates requires a careful evaluation of the molecular mechanisms that drive their therapeutic properties to avoid potential adverse effects. Furthermore, even compounds that appear generally safe might have toxic effects depending on their dose, and therefore their toxicological assessment is also critical. In order to enhance the usage of NVOCs this short review focuses not only on the biological activities and therapeutic mode of action of representative NVOCs but also their toxic effects.
Collapse
Affiliation(s)
- Min-Hee Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Seung-Min Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Wan An
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Jae Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| |
Collapse
|
11
|
Beltzig L, Frumkina A, Schwarzenbach C, Kaina B. Cytotoxic, Genotoxic and Senolytic Potential of Native and Micellar Curcumin. Nutrients 2021; 13:nu13072385. [PMID: 34371895 PMCID: PMC8308652 DOI: 10.3390/nu13072385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Curcumin, a natural polyphenol and the principal bioactive compound in Curcuma longa, was reported to have anti-inflammatory, anti-cancer, anti-diabetic and anti-rheumatic activity. Curcumin is not only considered for preventive, but also for therapeutic, purposes in cancer therapy, which requires a killing effect on cancer cells. A drawback, however, is the low bioavailability of curcumin due to its insolubility in water. To circumvent this limitation, curcumin was administered in different water-soluble formulations, including liposomes or embedded into nanoscaled micelles. The high uptake rate of micellar curcumin makes it attractive also for cancer therapeutic strategies. Native curcumin solubilised in organic solvent was previously shown to be cytotoxic and bears a genotoxic potential. Corresponding studies with micellar curcumin are lacking. METHODS We compared the cytotoxic and genotoxic activity of native curcumin solubilised in ethanol (Cur-E) with curcumin embedded in micells (Cur-M). We measured cell death by MTT assays, apoptosis, necrosis by flow cytometry, senolysis by MTT and C12FDG and genotoxicity by FPG-alkaline and neutral singe-cell gel electrophoresis (comet assay). RESULTS Using a variety of primary and established cell lines, we show that Cur-E and Cur-M reduce the viability in all cell types in the same dose range. Cur-E and Cur-M induced dose-dependently apoptosis, but did not exhibit senolytic activity. In the cytotoxic dose range, Cur-E and Cur-M were positive in the alkaline and the neutral comet assay. Genotoxic effects vanished upon removal of curcumin, indicating efficient and complete repair of DNA damage. For inducing cell death, which was measured 48 h after the onset of treatment, permanent exposure was required while 60 min pulse-treatment was ineffective. In all assays, Cur-E and Cur-M were equally active, and the concentration above which significant cytotoxic and genotoxic effects were observed was 10 µM. Micelles not containing curcumin were completely inactive. CONCLUSIONS The data show that micellar curcumin has the same cytotoxicity and genotoxicity profile as native curcumin. The effective concentration on different cell lines, including primary cells, was far above the curcumin concentration that can be achieved systemically in vivo, which leads us to conclude that native curcumin and curcumin administered as food supplement in a micellar formulation at the ADI level are not cytotoxic/genotoxic, indicating a wide margin of safety.
Collapse
|
12
|
Natural Merosesquiterpenes Activate the DNA Damage Response via DNA Strand Break Formation and Trigger Apoptotic Cell Death in p53-Wild-type and Mutant Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133282. [PMID: 34209047 PMCID: PMC8268692 DOI: 10.3390/cancers13133282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bowel cancer is a serious disease, which affects many people worldwide. Unfortunately, the disease is often diagnosed in an advanced stage, which impairs the chance of survival. Furthermore, resistance to therapy occurs frequently. Thus, novel therapeutic approaches are required to improve cancer therapy. Here, we studied whether merosesquiterpenes might be useful for cancer treatment. These compounds occur in marine sponges and were isolated by our group. We were able to identify three compounds with potent cytotoxic activity in different cell lines established from human large bowel cancer. Our experiments provided evidence that the compounds cause DNA damage and trigger cell death, so-called mitochondrial apoptosis, which was attested in cancer cells with expression of wild-type and mutated p53 tumor suppressor. Finally, we show that merosesquiterpenes also kill intestinal tumor organoids, an ex vivo model of large bowel cancer. Abstract Colorectal cancer (CRC) is a frequently occurring malignant disease with still low survival rates, highlighting the need for novel therapeutics. Merosesquiterpenes are secondary metabolites from marine sponges, which might be useful as antitumor agents. To address this issue, we made use of a compound library comprising 11 isolated merosesquiterpenes. The most cytotoxic compounds were smenospongine > ilimaquinone ≈ dactylospontriol, as shown in different human CRC cell lines. Alkaline Comet assays and γH2AX immunofluorescence microscopy demonstrated DNA strand break formation in CRC cells. Western blot analysis revealed an activation of the DNA damage response with CHK1 phosphorylation, stabilization of p53 and p21, which occurred both in CRC cells with p53 knockout and in p53-mutated CRC cells. This resulted in cell cycle arrest followed by a strong increase in the subG1 population, indicative of apoptosis, and typical morphological alterations. In consistency, cell death measurements showed apoptosis following exposure to merosesquiterpenes. Gene expression studies and analysis of caspase cleavage revealed mitochondrial apoptosis via BAX, BIM, and caspase-9 as the main cell death pathway. Interestingly, the compounds were equally effective in p53-wild-type and p53-mutant CRC cells. Finally, the cytotoxic activity of the merosesquiterpenes was corroborated in intestinal tumor organoids, emphasizing their potential for CRC chemotherapy.
Collapse
|
13
|
Giuliani C, Bottoni M, Ascrizzi R, Milani F, Papini A, Flamini G, Fico G. Lavandula dentata from Italy: Analysis of Trichomes and Volatiles. Chem Biodivers 2020; 17:e2000532. [PMID: 32965746 DOI: 10.1002/cbdv.202000532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/22/2020] [Indexed: 11/08/2022]
Abstract
This study presented a micromorphological and phytochemical survey on Lavandula dentata L. cultivated at the Ghirardi Botanic Garden (Toscolano Maderno, BS, Italy). The morphological investigation revealed the presence of peltate, short- and medium-stalked capitate trichomes. The histochemical survey showed terpene production by peltates and medium-stalked capitates, hydrophilic secretions by short-stalked capitates. The phytochemical survey was developed on leaf and flower volatile organic compounds (VOCs) and on the essential oil (EO) from the flowering aerial parts. The VOC profiles represented an element of novelty and were dominated by oxygenated monoterpenes, among which 1,8-cineole and β-pinene were the most abundant (77.40 %, 7.11 % leaves; 81.08 %, 10.46 % flowers). The EO of L. dentata was dominated by oxygenated monoterpenes with a high percentage of 1,8-cineole (69.08 %), followed by β-pinene, trans-pinocarveol and myrtenal. Evaluations about the ecological role, the potential biological activity and the sensory attributes were proposed, based on literature contributions.
Collapse
Affiliation(s)
- Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy.,Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088, Toscolano Maderno, Italy
| | - Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy.,Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088, Toscolano Maderno, Italy
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy.,Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088, Toscolano Maderno, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Via La Pira 4, 50121, Florence, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy.,Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088, Toscolano Maderno, Italy
| |
Collapse
|
14
|
Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis 2020; 11:787. [PMID: 32968051 PMCID: PMC7511955 DOI: 10.1038/s41419-020-02950-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The consumption of red meat is probably carcinogenic to humans and is associated with an increased risk to develop colorectal cancer (CRC). Red meat contains high amounts of heme iron, which is thought to play a causal role in tumor formation. In this study, we investigated the genotoxic and cytotoxic effects of heme iron (i.e., hemin) versus inorganic iron in human colonic epithelial cells (HCEC), human CRC cell lines and murine intestinal organoids. Hemin catalyzed the formation of reactive oxygen species (ROS) and induced oxidative DNA damage as well as DNA strand breaks in both HCEC and CRC cells. In contrast, inorganic iron hardly affected ROS levels and only slightly increased DNA damage. Hemin, but not inorganic iron, caused cell death and reduced cell viability. This occurred preferentially in non-malignant HCEC, which was corroborated in intestinal organoids. Both hemin and inorganic iron were taken up into HCEC and CRC cells, however with differential kinetics and efficiency. Hemin caused stabilization and nuclear translocation of Nrf2, which induced heme oxygenase-1 (HO-1) and ferritin heavy chain (FtH). This was not observed after inorganic iron treatment. Chemical inhibition or genetic knockdown of HO-1 potentiated hemin-triggered ROS generation and oxidative DNA damage preferentially in HCEC. Furthermore, HO-1 abrogation strongly augmented the cytotoxic effects of hemin in HCEC, revealing its pivotal function in colonocytes and highlighting the toxicity of free intracellular heme iron. Taken together, this study demonstrated that hemin, but not inorganic iron, induces ROS and DNA damage, resulting in a preferential cytotoxicity in non-malignant intestinal epithelial cells. Importantly, HO-1 conferred protection against the detrimental effects of hemin.
Collapse
|
15
|
Contini A, Di Bello D, Azzarà A, Giovanelli S, D'Urso G, Piaggi S, Pinto B, Pistelli L, Scarpato R, Testi S. Assessing the cytotoxic/genotoxic activity and estrogenic/antiestrogenic potential of essential oils from seven aromatic plants. Food Chem Toxicol 2020; 138:111205. [DOI: 10.1016/j.fct.2020.111205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
|
16
|
Rodenak-Kladniew B, Castro A, Stärkel P, Galle M, Crespo R. 1,8-Cineole promotes G0/G1 cell cycle arrest and oxidative stress-induced senescence in HepG2 cells and sensitizes cells to anti-senescence drugs. Life Sci 2020; 243:117271. [DOI: 10.1016/j.lfs.2020.117271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
|
17
|
Marschner C, Krockenberger MB, Higgins DP, Mitchell C, Moore BD. Ingestion and Absorption of Eucalypt Monoterpenes in the Specialist Feeder, the Koala (Phascolarctos cinereus). J Chem Ecol 2019; 45:798-807. [PMID: 31422515 DOI: 10.1007/s10886-019-01097-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/26/2022]
Abstract
The koala is a specialist feeder with a diet consisting almost exclusively of potentially toxic eucalypt leaves. Monoterpenes, an abundant class of plant secondary metabolites in eucalypts, are highly lipophilic. Chronic absorption and systemic exposure can be anticipated for the koala, causing health effects in various ways when consumed in high amounts, but particularly causing alterations in immune function in this species. Therefore, careful leaf selection, efficient detoxification pathways, and other specialist adaptations are required to protect animals from acute intoxication. This is the first paper providing insight into the systemic exposure of koalas to these compounds. Profiles of six selected major monoterpenes were investigated in the ingesta of deceased koalas from four different regions of NSW and South-East Queensland. Concentrations of the same compounds were measured in lymphoid tissues of deceased koalas and in the blood of live koalas from other regions of NSW. Analytical methods included liquid extraction and solid-phase micro-extraction, followed by gas-chromatography/ mass-spectrometry. Concentrations in the ingesta of individual animals vary remarkably, though the average proportions of individual monoterpenes in the ingesta of animals from the four different regions are highly comparable. Blood concentrations of the selected monoterpenes also varied considerably. The highest blood concentrations were found for 1,8-cineole, up to 971 ng/ml. There was similarity between circulating monoterpene profiles and ingesta profiles. Based on the observed lack of similarity between blood and lymph tissue concentrations, individual monoterpenes either exhibit different affinities for lymphatic tissue compared to blood or their accumulation in blood and lymph tissue differs temporally. In general, blood monoterpene concentrations found in koalas were low compared to those reported in other marsupial eucalypt feeders, but significant concentrations of monoterpenes were detected in all samples analysed. This data on blood and lymphatic tissue monoterpene concentrations builds the fundamental groundwork for future research into the effects of dietary monoterpenes on various biological processes of specialist herbivores and into the significance of these animals' metabolic and behavioural strategies for coping with these compounds. We have shown that the systemic exposure of koalas to potentially anti-inflammatory eucalypt monoterpenes is continuous, and we provide data on physiological concentrations which will allow realistic future studies of the effects of monoterpenes on immune cell function.
Collapse
Affiliation(s)
- Caroline Marschner
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Damien P Higgins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Christopher Mitchell
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
18
|
Lipoic Acid Synergizes with Antineoplastic Drugs in Colorectal Cancer by Targeting p53 for Proteasomal Degradation. Cells 2019; 8:cells8080794. [PMID: 31366086 PMCID: PMC6721634 DOI: 10.3390/cells8080794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lipoic acid (LA) is a redox-active disulphide compound, which functions as a pivotal co-factor for mitochondrial oxidative decarboxylation. LA and chemical derivatives were shown to target mitochondria in cancer cells with altered energy metabolism, thereby inducing cell death. In this study, the impact of LA on the tumor suppressor protein p53 was analyzed in various colorectal cancer (CRC) cell lines, with a focus on the mechanisms driving p53 degradation. First, LA was demonstrated to trigger the depletion of both wildtype and mutant p53 protein in all CRC cells tested without influencing its gene expression and preceded LA-triggered cytotoxicity. Depletion of p53 coincided with a moderate, LA-dependent ROS production, but was not rescued by antioxidant treatment. LA induced the autophagy receptor p62 and differentially modulated autophagosome formation in CRC cells. However, p53 degradation was not mediated via autophagy as shown by chemical inhibition and genetic abrogation of autophagy. LA treatment also stabilized and activated the transcription factor Nrf2 in CRC cells, which was however dispensable for p53 degradation. Mechanistically, p53 was found to be readily ubiquitinylated and degraded by the proteasomal machinery following LA treatment, which did not involve the E3 ubiquitin ligase MDM2. Intriguingly, the combination of LA and anticancer drugs (doxorubicin, 5-fluorouracil) attenuated p53-mediated stabilization of p21 and resulted in synergistic killing in CRC cells in a p53-dependant manner.
Collapse
|
19
|
Castillo-Morales RM, Carreño Otero AL, Mendez-Sanchez SC, Da Silva MAN, Stashenko EE, Duque JE. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:29-37. [PMID: 30905844 DOI: 10.1016/j.cbpc.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
The aim of this research study was to understand the mechanism of action of Salvia officinalis (Lamiaceae) essential oil (EO) on Aedes aegypti larvae. We evaluated the effect on DNA damage, acetylcholinesterase (AChE) inhibition and mitochondrial enzymatic alterations. The major components were analyzed in silico using OSIRIS and Molispiration free software. Aedes aegypti DNA was extracted from mosquito larvae between third (L3) and fourth (L4) instars to determine the DNA fragmentation or degradation at S. officinalis EO lethal concentrations (LC10, LC20, LC50, and LC90). DNA integrity was assessed in both LCs in larvae treated for 24 h and in larvae homogenized with EO; we also assessed purified DNA larvae by a densitometric analysis. The AChE inhibition was quantified in protein larvae L3-L4 following Ellman's method and the enzymatic activities related to the mitochondrial respiratory chain of mitochondrial proteins was estimated by spectrophotometry. In silico analysis of 1,8-cineol and of α-thujone, major EO components, showed that they were highly permeable in biological membranes without mutagenic risks. Alterations in the integrity of DNA were observed in larvae exposed and homogenized with S. officinalis EO. The EO induced an AChE inhibition of 37 ± 2.6% to IC50. On the other hand, mitochondrial bioenergetics suggest that EO inhibits electrons entry to the respiratory chain, via Complex II. AChE activity alteration causes mortality of individuals, by blocking the insect cholinergic functions. These results indicate that EO affects the integrity of DNA, the mitochondrial respiration chain and the AChE activity.
Collapse
Affiliation(s)
- Ruth Mariela Castillo-Morales
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Aurora L Carreño Otero
- Laboratorio de Química Orgánica y Biomolecular-LQOBio, Facultad de Ciencias, Escuela de Química, Centro de Investigaciónes en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Stelia Carolina Mendez-Sanchez
- Grupo de Investigación en Bioquímica y Microbiología-GIBIM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Mario Antônio Navarro Da Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Universidade Federal do Paraná, Departamento de Zoología, Pós-graduação em Entomología, PO Box 19020, 81531-980 Curitiba, Paraná, Brazil.
| | - Elena E Stashenko
- Centro de Investigación en Biomoléculas-CIBIMOL, Centro Nacional de Investigación para la Agroindustrialización de Plantas Aromáticas y Medicinales Tropicales - CENIVAM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander Parque Tecnológico y de Investigaciones Guatiguara, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia.
| |
Collapse
|
20
|
Thapa D, Richardson AJ, Zweifel B, Wallace RJ, Gratz SW. Genoprotective Effects of Essential Oil Compounds Against Oxidative and Methylated DNA Damage in Human Colon Cancer Cells. J Food Sci 2019; 84:1979-1985. [PMID: 31206673 DOI: 10.1111/1750-3841.14665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Essential oils (EO) are widely used in foods as flavoring and preservative agents. Many of the biological activities of EO have been attributed to major essential oil compounds (EOC) but their direct interaction with colonic epithelial cells and their genotoxic and genoprotective effects are not well established. In this study, the cytotoxicity and genotoxicity of EOC including nerolidol, thymol, geraniol, methylisoeugenol, eugenol, linalool, and a commercial blend (Agolin) were determined. Furthermore, the genoprotective effects of EOC against oxidative and methylating damage were assessed using the comet assay in HT-29 colorectal adenocarcinoma cells. The majority of EOC were cytotoxic to HT-29 cells at or above 250 ppm after 24 hr exposure. At noncytotoxic doses, none of the EOC was genotoxic in the comet assay. Genoprotection against oxidative DNA damage was observed for nerolidol (at 62.5 ppm), thymol (at 12.5 ppm), geraniol, and methylisoeugenol (both at 125 ppm), as well as linalool and Agolin (both at 250 ppm). Thymol was the most protective compound against oxidative DNA damage and geraniol (at 125 ppm) also protected cells against methylating DNA damage. This study highlights the potential of EOC such as thymol to protect the colonic epithelium against oxidative DNA damage and geraniol against methylating DNA damage. Further in vivo studies are needed to confirm these findings for safety and efficacy to exploit their potential pharmaceutical or nutraceutical uses for colonic health.
Collapse
Affiliation(s)
- Dinesh Thapa
- Rowett Inst., Univ. of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | | - R John Wallace
- Rowett Inst., Univ. of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Silvia W Gratz
- Rowett Inst., Univ. of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
21
|
Red fruit (Pandanus conoideus Lam) oil stimulates nitric oxide production and reduces oxidative stress in endothelial cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
22
|
A Comparative Evaluation of the Cytotoxic and Antioxidant Activity of Mentha crispa Essential Oil, Its Major Constituent Rotundifolone, and Analogues on Human Glioblastoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2083923. [PMID: 30057673 PMCID: PMC6051078 DOI: 10.1155/2018/2083923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/20/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Cancer is a major public health problem around the globe. This disorder is affected by alterations in multiple physiological processes, and oxidative stress has been etiologically implicated in its pathogenesis. Glioblastoma (GBM) is considered the most common and aggressive brain tumor with poor prognosis despite recent improvements in surgical, radiation, and chemotherapy-based treatment approaches. The purpose of this study was to evaluate antitumor activity from Mentha crispa essential oil (MCEO), its major constituent rotundifolone (ROT), and a series of six analogues on the human U87MG glioblastoma cell line. Cytotoxic effects of the compounds on the human U87MG-GBM cell line were assessed using in vitro cell viability and oxidative and molecular genetic assays. In addition, biosafety assessment tests were performed on cultured human blood cells. Our findings revealed that MCEO, 1,2-perillaldehyde epoxide (EPER1), and perillaldehyde (PALD) were the most cytotoxic compounds against U87MG cells, with IC50 values of 16.263, 15.087, and 14.888 μg/mL, respectively. Further, these compounds increased the expressions of BRAF, EGFR, KRAS, NFκB1, NFκB1A, NFκB2, PIK3CA, PIK3R, PTEN, and TP53 genes at different degrees and decreased the expression of some genes such as AKT1, AKT2, FOS, and RAF1. Finally, treatment with MCEO, EPER1, and PALD did not lead to genotoxic damage in blood cells. Taken together, our findings reveal antiproliferative potential of MCEO, its major component ROT, and its tested analogues. Some of these chemical analogues may be useful as prototypes for the development of novel chemotherapeutic agents for treating human brain cancer and/or other cancers due to their promising activities as well as nonmutagenic property and safety.
Collapse
|
23
|
Cavalleri R, Becker JS, Pavan AM, Bianchetti P, Goettert MI, Ethur EM, Bustamante-Filho IC. Essential oils rich in monoterpenes are unsuitable as additives to boar semen extender. Andrologia 2018; 50:e13074. [PMID: 29938819 DOI: 10.1111/and.13074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Despite the development of efficient boar semen extenders, there is still room for improvement of new formulas using new molecules that could increase fertilisation outcomes and substitute cryoprotectants and antibiotics. The goal of this work was to evaluate if the essential oils from the leaves of Myrrhinium atropurpureum and Cymbopogon citratus are suitable as additives in boar semen extender. The major compounds found in the essential oils from M. atropurpureum were 1,8-cineole (37.37%) and terpinolene (19.18%); and geranial (49.8%) and neral (33.24%) in essential oil of C. citratus. The addition of 1% and 0.1% of both essential oils to extended semen had immediate spermicidal effects (p < 0.05). Lower concentrations were tested and no cytotoxic effect was observed when M. atropurpureum essential oil was added at 0.001%. Differently, essential oil from C. citratus reduced sperm motility, membrane functionality and integrity and mitochondrial membrane potential even in concentrations as low as 0.001%. Also, addition of essential oils in low concentrations had no inhibitory effect against Escherichia coli and Pseudomonas aeruginosa growth. We conclude that the essential oils from C. citratus and M. atropurpureum, rich in monoterpenes, are cytotoxic to swine spermatozoa, therefore unsuitable as semen extender additives.
Collapse
Affiliation(s)
- Rosana Cavalleri
- Núcleo de Estudo e Pesquisa de Plantas e Produtos Naturais, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Júlia Sartori Becker
- Núcleo de Estudo e Pesquisa de Plantas e Produtos Naturais, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Aline Marjana Pavan
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Paula Bianchetti
- Núcleo de Estudo e Pesquisa de Plantas e Produtos Naturais, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Eduardo Miranda Ethur
- Núcleo de Estudo e Pesquisa de Plantas e Produtos Naturais, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | | |
Collapse
|
24
|
Li N, Zhang Q, Jia Z, Yang X, Zhang H, Luo H. Volatile oil from alpinia officinarum promotes lung cancer regression in vitro and in vivo. Food Funct 2018; 9:4998-5006. [DOI: 10.1039/c8fo01151f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The anti-lung cancer activity of volatile oil from Alpinia officinarum (VOAO) and the underlying mechanism has been studied. VOAO could be an effective, low cytotoxicity candidate for lung cancer intervention.
Collapse
Affiliation(s)
- Ning Li
- Department of Biochemistry and Molecular Biology
- Guangdong Medical University
- Zhanjiang
- China
- Laboratory of Hematology
| | - Qingyu Zhang
- Centre of Reproduction
- Development and Aging
- Faculty of Health Sciences
- University of Macau
- Macau
| | - Zhenbin Jia
- School of Pharmacy
- Guangdong Medical University
- Zhanjiang
- China
| | - Xiaohong Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs
- Guangdong Medical University
- Zhanjiang
- China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology
- Guangdong Medical University
- Zhanjiang
- China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs
- Guangdong Medical University
- Zhanjiang
- China
- Marine Biomedical Research Institute
| |
Collapse
|
25
|
Young S, O'Driscoll R, Antony M, Whyte I. Massive eucalyptus oil overdose. Intern Med J 2017; 47:1085-1086. [DOI: 10.1111/imj.13532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Young
- General Medical Unit; St George Hospital; Sydney New South Wales Australia
| | - Ronan O'Driscoll
- Medical Workforce Unit; St George Hospital; Sydney New South Wales Australia
| | - Marissa Antony
- General Medical Unit; St George Hospital; Sydney New South Wales Australia
| | - Ian Whyte
- Department of Clinical Toxicology; Calvary Mater Newcastle; Newcastle New South Wales Australia
| |
Collapse
|
26
|
Rohlfs Domínguez P. A minireview of effects of maternal diet during pregnancy on postnatal vegetable consumption: Implications for future research (a new hypothesis) and recommendations. Crit Rev Food Sci Nutr 2017; 58:2229-2238. [DOI: 10.1080/10408398.2017.1313810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Paloma Rohlfs Domínguez
- Department of Psychology and Anthropology, University of Extremadura, Spain
- Department of Social Psychology and Methodology of Behavior, University of Basque Country-Euskalherriko Univertsitatea, Spain
| |
Collapse
|
27
|
Baldissera MD, Souza CF, Dolci GS, Grando TH, Sagrillo MR, Vaucher RA, da Luz SC, Silveira SO, Duarte MM, Duarte T, da Silva AS, Monteiro SG. Monoterpene alpha-terpinene induced hepatic oxidative, cytotoxic and genotoxic damage is associated to caspase activation in rats. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Mimmler M, Peter S, Kraus A, Stroh S, Nikolova T, Seiwert N, Hasselwander S, Neitzel C, Haub J, Monien BH, Nicken P, Steinberg P, Shay JW, Kaina B, Fahrer J. DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP. Nucleic Acids Res 2016; 44:10259-10276. [PMID: 27599846 PMCID: PMC5137439 DOI: 10.1093/nar/gkw791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 08/27/2016] [Indexed: 11/13/2022] Open
Abstract
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs.
Collapse
Affiliation(s)
| | - Simon Peter
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Alexander Kraus
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Svenja Stroh
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Nina Seiwert
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | - Carina Neitzel
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jessica Haub
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Bernhard H Monien
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Petra Nicken
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
29
|
Mikhed Y, Fahrer J, Oelze M, Kröller-Schön S, Steven S, Welschof P, Zinßius E, Stamm P, Kashani F, Roohani S, Kress JM, Ullmann E, Tran LP, Schulz E, Epe B, Kaina B, Münzel T, Daiber A. Nitroglycerin induces DNA damage and vascular cell death in the setting of nitrate tolerance. Basic Res Cardiol 2016; 111:52. [DOI: 10.1007/s00395-016-0571-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/07/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
|
30
|
Monteiro-Riviere NA, Ortega MT, Choi K, Koci J, Lin Z, Jeffery B, Riviere JE. Comparative In Vitro Cytotoxicity of 20 Potential Food Ingredients in Canine Liver, Kidney, Bone Marrow-Derived Mesenchymal Stem Cells, and Enterocyte-like Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nancy A. Monteiro-Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Maria T. Ortega
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Kyoungju Choi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Juraj Koci
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Brett Jeffery
- Mars Global Food Safety Center, Yanqi Economic Development Zone, Huairou, Beijing, P.R. China
| | - Jim E. Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
31
|
Choi K, Ortega MT, Jeffery B, Riviere JE, Monteiro-Riviere NA. Oxidative stress response in canine in vitro liver, kidney and intestinal models with seven potential dietary ingredients. Toxicol Lett 2015; 241:49-59. [PMID: 26602166 DOI: 10.1016/j.toxlet.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
In vitro cell culture systems are a useful tool to rapidly assess the potential safety or toxicity of chemical constituents of food. Here, we investigated oxidative stress and organ-specific antioxidant responses by 7 potential dietary ingredients using canine in vitro culture of hepatocytes, proximal tubule cells (CPTC), bone marrow-derived mesenchymal stem cells (BMSC) and enterocyte-like cells (ELC). Cellular production of free radical species by denatonium benzoate (DB), epigallocatechin gallate (EPI), eucalyptol (EUC), green tea catechin extract (GTE) and sodium copper chlorophyllin (SCC), tetrahydroisohumulone (TRA) as well as xylitol (XYL) were continuously measured for reactive oxygen/nitrogen species (ROS/RNS) and superoxide (SO) for up to 24h. DB and TRA showed strong prooxidant activities in hepatocytes and to a lesser degree in ELC. DB was a weak prooxidant in BMSC. In contrast DB and TRA were antioxidants in CPTC. EPI was prooxidant in hepatocytes and BMSC but showed prooxidant and antioxidant activity in CPTC. SCC in hepatocytes (12.5mg/mL) and CPTC (0.78mg/mL) showed strong prooxidant and antioxidant activity in a concentration-dependent manner. GTE was effective antioxidant only in ELC. EUC and XYL did not induce ROS/RNS in all 4 cell types. SO production by EPI and TRA increased in hepatocytes but decreased by SCC in hepatocytes and ELC. These results suggest that organ-specific responses to oxidative stress by these potential prooxidant compounds may implicate a mechanism of their toxicities.
Collapse
Affiliation(s)
- Kyoungju Choi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Maria T Ortega
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Brett Jeffery
- Mars Global Food Safety Center, Yanqi Economic Development Zone, Huairou, Beijing, P.R. China
| | - Jim E Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Nancy A Monteiro-Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
32
|
Comparative study of genotoxic, antigenotoxic and cytotoxic activities of monoterpenes camphor, eucalyptol and thujone in bacteria and mammalian cells. Chem Biol Interact 2015; 242:263-71. [PMID: 26482939 DOI: 10.1016/j.cbi.2015.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
Genotoxic/antigenotoxic, mutagenic/antimutagenic and cytotoxic effects of monoterpenes camphor, eucalyptol and thujone were determined in bacteria and mammalian cells using alkaline comet assay, Escherichia coli K12 reversion test and MTT assay, respectively. When applied in low doses (up to 200 μM in bacterial assay and 50 μM in comet assay) monoterpenes protected repair proficient E. coli and Vero cells against UV-induced mutagenesis and 4NQO-induced DNA strand breaks, respectively. Antimutagenic response was not detected in nucleotide excision repair (NER) deficient bacteria. When monoterpenes were applied in higher doses, a weak mutagenic effect was found in mismatch repair (MMR) and NER deficient E. coli strains, while induction of DNA strand breaks was evident in human fetal lung fibroblasts MRC-5, colorectal carcinoma HT-29 and HCT 116 cells, as well as in Vero cells. Moreover, the involvement of NER, MMR and RecBCD pathways in repair of DNA lesions induced by monoterpenes was demonstrated in E. coli. Camphor, eucalyptol and thujone were cytotoxic to MRC-5, HT-29 and HCT 116 cells. The most susceptible cell line was HCT 116, with IC50 values of 4.5 mM for camphor, 4 mM for eucalyptol and 1 mM for thujone. Observed effects of monoterpenes are consistent with hormesis response, characterized by a low dose beneficial effect and a high dose adverse effect of a stressor agent, and provide a basis for further study of both chemopreventive and chemotherapeutic potential of camphor, eucalyptol and thujone.
Collapse
|
33
|
Vlachojannis C, Chrubasik-Hausmann S, Hellwig E, Al-Ahmad A. A Preliminary Investigation on the Antimicrobial Activity of Listerine®, Its Components, and of Mixtures Thereof. Phytother Res 2015; 29:1590-4. [DOI: 10.1002/ptr.5399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 11/11/2022]
Affiliation(s)
- C. Vlachojannis
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine; Albert-Ludwigs-University; Freiburg Germany
| | | | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine; Albert-Ludwigs-University; Freiburg Germany
| | - A. Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine; Albert-Ludwigs-University; Freiburg Germany
| |
Collapse
|