1
|
Wolf S, Sriram K, Camassa LMA, Pathak D, Bing HL, Mohr B, Zienolddiny-Narui S, Samulin Erdem J. Systematic review of mechanistic evidence for TiO 2 nanoparticle-induced lung carcinogenicity. Nanotoxicology 2024; 18:437-463. [PMID: 39101876 DOI: 10.1080/17435390.2024.2384408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.
Collapse
Affiliation(s)
- Susann Wolf
- National Institute of Occupational Health, Oslo, Norway
| | - Krishnan Sriram
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Dhruba Pathak
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Helene L Bing
- National Institute of Occupational Health, Oslo, Norway
| | | | | | | |
Collapse
|
2
|
Verdon R, Stone V, Murphy F, Christopher E, Johnston H, Doak S, Vogel U, Haase A, Kermanizadeh A. The application of existing genotoxicity methodologies for grouping of nanomaterials: towards an integrated approach to testing and assessment. Part Fibre Toxicol 2022; 19:32. [PMID: 35525968 PMCID: PMC9080165 DOI: 10.1186/s12989-022-00476-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
The incorporation of nanomaterials (NMs) in consumer products has proven to be highly valuable in many sectors. Unfortunately, however, the same nano specific physicochemical properties, which make these material attractive, might also contribute to hazards for people exposed to these materials. The physicochemical properties of NMs will impact their interaction with biological surroundings and influence their fate and their potential adverse effects such as genotoxicity. Due to the large and expanding number of NMs produced, their availability in different nanoforms (NFs) and their utilization in various formats, it is impossible for risk assessment to be conducted on an individual NF basis. Alternative methods, such as grouping are needed for streamlining hazard assessment. The GRACIOUS Framework provides a logical and science evidenced approach to group similar NFs, allowing read-across of hazard information from source NFs (or non-NFs) with adequate hazard data to target NFs that lack such data. Here, we propose a simple three-tiered testing strategy to gather evidence to determine whether different NFs are sufficiently similar with respect to their potential to induce genotoxicity, in order to be grouped. The tiered testing strategy includes simple in vitro models as well as a number of alternative more complex multi-cellular in vitro models to allow for a better understanding of secondary NM-induced DNA damage, something that has been more appropriate in vivo until recently.
Collapse
Affiliation(s)
- Rachel Verdon
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Vicki Stone
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Fiona Murphy
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | | - Helinor Johnston
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Shareen Doak
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Andrea Haase
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ali Kermanizadeh
- Human Sciences Research Centre, University of Derby, Derby, DE22 1GB, UK.
| |
Collapse
|
3
|
Xu X, Feng H, Dai C, Lu W, Zhang J, Guo X, Yin Q, Wang J, Cui X, Jiang F. Therapeutic efficacy of the novel selective RNA polymerase I inhibitor CX-5461 on pulmonary arterial hypertension and associated vascular remodelling. Br J Pharmacol 2021; 178:1605-1619. [PMID: 33486761 PMCID: PMC9328314 DOI: 10.1111/bph.15385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose CX‐5461 is a novel selective RNA polymerase I (Pol I) inhibitor. Previously, we found that CX‐5461 could inhibit pathological arterial remodelling caused by angioplasty and transplantation. In the present study, we explored the pharmacological effects of CX‐5461 on experimental pulmonary arterial hypertension (PAH) and PAH‐associated vascular remodelling. Experimental Approach PAH was induced in Sprague–Dawley rats by monocrotaline or Sugen/hypoxia. Key Results We demonstrated that CX‐5461 was well tolerated for in vivo treatments. CX‐5461 prevented the development of pulmonary arterial remodelling, perivascular inflammation, pulmonary hypertension, and improved survival. More importantly, CX‐5461 partly reversed established pulmonary hypertension. In vitro, CX‐5461 induced cell cycle arrest in human pulmonary arterial smooth muscle cells. The beneficial effects of CX‐5461 in vivo and in vitro were associated with increased activation (phosphorylation) of p53. Conclusion and Implications Our results suggest that pharmacological inhibition of Pol I may be a novel therapeutic strategy to treat otherwise drug‐resistant PAH.
Collapse
Affiliation(s)
- Xia Xu
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hua Feng
- Department of gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Chaochao Dai
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weida Lu
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Zhang
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong, China
| | - Qihui Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong, China
| | - Jianli Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaopei Cui
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Jiang
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Kermanizadeh A, Jantzen K, Ward MB, Durhuus JA, Juel Rasmussen L, Loft S, Møller P. Nanomaterial-induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials: The role of autophagy and apoptosis. Nanotoxicology 2017; 11:184-200. [DOI: 10.1080/17435390.2017.1279359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Michael B. Ward
- Leeds Electron Microscopy and Spectroscopy (LEMAS) Centre, University of Leeds, Leeds, UK
| | - Jon Ambæk Durhuus
- Department of Cellular and Molecular Medicine, University of Copenhagen, Center for Healthy Aging, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Center for Healthy Aging, Copenhagen, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Abstract
Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials. Given that several toxic effects of TiO2 nanofibres appear comparable to those observed with crocidolite, the possibility that they exert length dependent toxicity in vivo seems worthy of further investigation.
Collapse
|