1
|
Demuynck L, Moonen S, Thiessen F, Vrints I, Moortgat P, Meirte J, van Breda E, Van Daele U. Systematic Review on Working Mechanisms of Signaling Pathways in Fibrosis During Shockwave Therapy. Int J Mol Sci 2024; 25:11729. [PMID: 39519292 PMCID: PMC11546838 DOI: 10.3390/ijms252111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fibrosis is characterized by scarring and hardening of tissues and organs. It can affect every organ system, and so could result in organ failure due to the accumulation of extracellular matrix proteins. Previous studies suggest that mechanical forces (such as shockwave therapy, SWT) initiate a process of mechanotransduction and thus could regulate fibrosis. Nevertheless, it is largely unexamined which pathways are exactly involved in the application of SWT and can regulate fibrosis. The present article seeks to elucidate the underlying effect of SWT on fibrosis. Evidence shows that SWT activates macrophage activity, fibroblast activity, collagen amount and orientation and apoptosis, which ultimately lead to an adaptation of inflammation, proliferation, angiogenesis and apoptosis. The included articles reveal that other proteins and pathways can be activated depending on the energy levels and frequency of SWT. These findings demonstrate that SWT has beneficial effects on fibrosis by influencing the proteins and pathways. Based on these data, which highlights the underlying mechanisms, we can make preliminary conclusions about the treatment modalities of SWT in scar formation, such as the energy levels and frequencies that are necessary to prevent or treat fibrotic tissue.
Collapse
Affiliation(s)
- Lot Demuynck
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2610 Antwerp, Belgium
| | - Sarah Moonen
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2610 Antwerp, Belgium
| | - Filip Thiessen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Multidisciplinary Breast Clinic, Antwerp University Hospital, 2610 Antwerp, Belgium
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ziekenhuis Aan de Stroom, 2020 Antwerp, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Care Sciences, University of Antwerp, 2650 Edegem, Belgium
| | - Ina Vrints
- Department of Plastic, Reconstructive and Aesthetic Surgery, Multidisciplinary Breast Clinic, Antwerp University Hospital, 2610 Antwerp, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Care Sciences, University of Antwerp, 2650 Edegem, Belgium
- Department of Plastic, Reconstructive and Aesthetic Surgery, Heilig Hart Ziekenhuis, 2500 Lier, Belgium
| | - Peter Moortgat
- Organisation for Burns, Scar Aftercare and Research: OSCARE, 2170 Antwerp, Belgium
| | - Jill Meirte
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2610 Antwerp, Belgium
- Organisation for Burns, Scar Aftercare and Research: OSCARE, 2170 Antwerp, Belgium
| | - Eric van Breda
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2610 Antwerp, Belgium
| | - Ulrike Van Daele
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2610 Antwerp, Belgium
- Organisation for Burns, Scar Aftercare and Research: OSCARE, 2170 Antwerp, Belgium
| |
Collapse
|
2
|
Singh S, Kachhawaha K, Singh SK. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem Pharmacol 2024; 225:116303. [PMID: 38797272 DOI: 10.1016/j.bcp.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.
Collapse
Affiliation(s)
- Santanu Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kajal Kachhawaha
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sumit K Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
3
|
Thompson J, Saad MI. Patient-Derived Xenografts: Historical Evolution, Immunocompromised Host Models, and Translational Significance. Methods Mol Biol 2024; 2806:1-8. [PMID: 38676791 DOI: 10.1007/978-1-0716-3858-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Patient-derived xenografts (PDXs) represent a critical advancement in preclinical cancer research, wherein human tumor samples are implanted into animal models for evaluation of therapeutic responses. PDXs have emerged as indispensable tools in translational cancer research, facilitating investigation into tumor microenvironments and personalized medicine. This chapter elucidates the historical evolution of PDXs, from early attempts in the eighteenth century to contemporary immunocompromised host models that enhance engraftment success.
Collapse
Affiliation(s)
- James Thompson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Colbourne JK, Shaw JR, Sostare E, Rivetti C, Derelle R, Barnett R, Campos B, LaLone C, Viant MR, Hodges G. Toxicity by descent: A comparative approach for chemical hazard assessment. ENVIRONMENTAL ADVANCES 2022; 9:100287. [PMID: 39228468 PMCID: PMC11370884 DOI: 10.1016/j.envadv.2022.100287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Toxicology is traditionally divided between human and eco-toxicology. In the shared pursuit of environmental health, this separation does not account for discoveries made in the comparative studies of animal genomes. Here, we provide evidence on the feasibility of understanding the health impact of chemicals on all animals, including ecological keystone species and humans, based on a significant number of conserved genes and their functional associations to health-related outcomes across much of animal diversity. We test four conditions to understand the value of comparative genomics data to inform mechanism-based human and environmental hazard assessment: (1) genes that are most fundamental for health evolved early during animal evolution; (2) the molecular functions of pathways are better conserved among distantly related species than the individual genes that are members of these pathways; (3) the most conserved pathways among animals are those that cause adverse health outcomes when disrupted; (4) gene sets that serve as molecular signatures of biological processes or disease-states are largely enriched by evolutionarily conserved genes across the animal phylogeny. The concept of homology is applied in a comparative analysis of gene families and pathways among invertebrate and vertebrate species compared with humans. Results show that over 70% of gene families associated with disease are shared among the greatest variety of animal species through evolution. Pathway conservation between invertebrates and humans is based on the degree of conservation within vertebrates and the number of interacting genes within the human network. Human gene sets that already serve as biomarkers are enriched by evolutionarily conserved genes across the animal phylogeny. By implementing a comparative method for chemical hazard assessment, human and eco-toxicology converge towards a more holistic and mechanistic understanding of toxicity disrupting biological processes that are important for health and shared among animals (including humans).
Collapse
Affiliation(s)
- John K. Colbourne
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington 47405, USA
| | | | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Carlie LaLone
- US Environmental Protection Agency, Duluth 55804, USA
| | - Mark R. Viant
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| |
Collapse
|
5
|
Straub L, Villamar‐Bouza L, Bruckner S, Chantawannakul P, Kolari E, Maitip J, Vidondo B, Neumann P, Williams GR. Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lars Straub
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Swiss Bee Research CentreAgroscope Bern Switzerland
| | | | - Selina Bruckner
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| | - Panuwan Chantawannakul
- Bee Protection Laboratory Department of Biology Faculty of Science Chiang Mai University Chiang Mai Thailand
- Environmental Science Research Center Faculty of Science Chiang Mai University Chiang Mai Thailand
| | - Eleonora Kolari
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Jakkrawut Maitip
- Bee Protection Laboratory Department of Biology Faculty of Science Chiang Mai University Chiang Mai Thailand
- Faculty of Science, Energy and Environment King Mongkut’s University of Technology North Bangkok Rayong Thailand
| | - Beatriz Vidondo
- Veterinary Public Health Institute Vetsuisse Faculty University of Bern Bern Switzerland
| | - Peter Neumann
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Swiss Bee Research CentreAgroscope Bern Switzerland
| | - Geoffrey R. Williams
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Swiss Bee Research CentreAgroscope Bern Switzerland
- Bee Protection Laboratory Department of Biology Faculty of Science Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
6
|
Chakraborty S, Gourain V, Benz M, Scheiger J, Levkin P, Popova A. Droplet microarrays for cell culture: effect of surface properties and nanoliter culture volume on global transcriptomic landscape. Mater Today Bio 2021; 11:100112. [PMID: 34124640 PMCID: PMC8175407 DOI: 10.1016/j.mtbio.2021.100112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
The development of novel chemically developed and physically defined surfaces and environments for cell culture and screening is important for various biological applications. The Droplet microarray (DMA) platform based on hydrophilic-superhydrophobic patterning enables high-throughput cellular screening in nanoliter volumes and on various biocompatible surfaces. Here we performed phenotypic and transcriptomic analysis of HeLa-CCL2 cells cultured on DMA, with a goal to analyze cellular response on different surfaces and culture volumes down to 3 nL, compared with conventional cell culture platforms. Our results indicate that cells cultured on four tested substrates: nanostructured nonpolymer, rough and smooth variants of poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) polymer and poly(thioether) dendrimer are compatible with cells grown in Petri dish. Cells cultured on nanostructured nonpolymer coating exhibited the closet transcriptomic resemblance to that of cells grown in Petri dish. Analysis of cells cultured in 100, 9, and 3 nL media droplets on DMA indicated that all but cells grown in 3 nL volumes had unperturbed viability with minimal alterations in the transcriptome compared with 96-well plate. Our findings demonstrate the applicability of DMA for cell-based assays and highlight the possibility of establishing regular cell culture on various biomaterial-coated substrates and in nanoliter volumes, along with routinely used cell culture platforms.
Collapse
Affiliation(s)
- S. Chakraborty
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| | - V. Gourain
- Institute of Biological and Chemical Systems–Biological Information Processing (IBCS–BIP), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| | - M. Benz
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| | - J.M. Scheiger
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
- Institute of Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
| | - P.A. Levkin
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131 Karlsruhe, Germany
| | - A.A. Popova
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| |
Collapse
|
7
|
Savill R, Baues H, Voigt E, Zierau O, Thieme D, Keiler AM. Cell culture as a toolbox to generate phase I metabolites for antidoping screening. Drug Test Anal 2021; 13:1169-1177. [PMID: 33527655 DOI: 10.1002/dta.3009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
The knowledge of the biotransformation of compounds prohibited by the World Anti Doping Agency is of high concern as doping analyses are mostly based on the detection of metabolites instead of the parent compounds abused by athletes. While the self-administration of doping-relevant compounds is from an ethical point of view a rather problematic method to investigate metabolism, the usage of cell culture systems allows for studies on biotransformation in vitro. Five cell culture models with different tissue origin (liver, ovary, skin, kidney, and testis) were comparatively incubated with testosterone and epitestosterone as well as with the synthetic testosterone derivatives 17α-methyltestosterone and 4-chlorotestosterone to investigate the impact of synthetic modifications on phase I metabolic pathways. Cell culture supernatants were analyzed by high-performance liquid chromatography-tandem mass spectrometry. All cell lines possessed the default steroid phase I biotransformation reactions. The highest conversion rate was observed in ovarian (BG-1) and liver cells (HepG2). For BG-1 and skin cells (HaCaT), the 5α-reductase products 5α-dihydrotestosterone (for both) and 5α-androstane-3α/β,17β-diol (for BG-1 solely) were found to be prevailing after testosterone incubation. In kidney (COS-1) and HepG2 cells, the 17β-hydroxysteroid dehydrogenase activity was predominant as supported by the observation that the 17α-OH (epitestosterone) and the methyl group (17α-methyltestosterone) impeded the conversion rate in these cell lines. In conclusion, future work should extend the characterization of the BG-1 and HepG2 cells on phase II metabolic pathways to examine whether they are suitable models for the generation of metabolite reference collections comparable to those obtained by human excretion studies.
Collapse
Affiliation(s)
- Ryan Savill
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Helge Baues
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Emmely Voigt
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Annekathrin Martina Keiler
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany.,Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| |
Collapse
|
8
|
Juan-García A, Bind MA, Engert F. Larval zebrafish as an in vitro model for evaluating toxicological effects of mycotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110909. [PMID: 32800244 PMCID: PMC7431674 DOI: 10.1016/j.ecoenv.2020.110909] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
The presence of mycotoxins in food has created concern. Mycotoxin prevalence in our environment has changed in the last few years maybe due to climatic and other environmental changes. Evidence has emerged from in vitro and in vivo models: some mycotoxins have been found to be potentially carcinogenic, embryogenically harmful, teratogenic, and to generate nephrotoxicity. The risk assessment of exposures to mycotoxins at early life stages became mandatory. In this regard, the effects of toxic compounds on zebrafish have been widely studied, and more recently, mycotoxins have been tested with respect to their effects on developmental and teratogenic effects in this model system, which offers several advantages as it is an inexpensive and an accessible vertebrate model to study developmental toxicity. External post-fertilization and quick maturation make it sensitive to environmental effects and facilitate the detection of endpoints such as morphological deformities, time of hatching, and behavioral responses. Therefore, there is a potential for larval zebrafish to provide new insights into the toxicological effects of mycotoxins. We provide an overview of recent mycotoxin toxicological research in zebrafish embryos and larvae, highlighting its usefulness to toxicology and discuss the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA.
| | - Marie-Abèle Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA
| |
Collapse
|
9
|
Annabi E, Ben Salem I, Abid-Essefi S. Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells. Toxicol Mech Methods 2019; 29:580-586. [DOI: 10.1080/15376516.2019.1624907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emna Annabi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Intidhar Ben Salem
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia
- Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Salwa Abid-Essefi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds (LRSBC), University of Monastir, Monastir, Tunisia
| |
Collapse
|
10
|
Hassan R. Possibilities and limitations of intravital imaging. EXCLI JOURNAL 2017; 15:872-874. [PMID: 28275323 PMCID: PMC5341010 DOI: 10.17179/excli2016-863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Reham Hassan
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
11
|
Hammad S, Sobor I, Abdallah MF, Abdel-Wareth AAA, Al-Aboody MS, Omar MA. Recent developments in animal sciences. EXCLI JOURNAL 2015; 14:611-2. [PMID: 26600748 PMCID: PMC4652631 DOI: 10.17179/excli2015-325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena-Egypt
| | - Isabelle Sobor
- Department of Environmental Toxicology, Faculty of Biology, University Essen-Duisburg, Essen-Germany
| | - Mohammed F Abdallah
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Sihyyie/Ankara-Türkiye
| | | | - Mohammad S Al-Aboody
- Department of Medical Laboratories, College of Science, Majmaah University, AlZulfi-KSA
| | - Mosaab A Omar
- Department of Medical Laboratories, College of Science, Majmaah University, AlZulfi-KSA
| |
Collapse
|
12
|
Current research on experimental and applied animal sciences. Arch Toxicol 2015; 89:1149-50. [PMID: 26003615 DOI: 10.1007/s00204-015-1534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|