1
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Khamrui E, Banerjee S, Mukherjee DD, Biswas K. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. Glycoconj J 2024; 41:343-360. [PMID: 39368037 DOI: 10.1007/s10719-024-10168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Elora Khamrui
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Dipanwita Das Mukherjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
3
|
Zhao C, Yang Z, Hu T, Liu J, Zhao Y, Leng D, Yang K, An G. CRISPR-Cas12a based target recognition initiated duplex-specific nuclease enhanced fluorescence and colorimetric analysis of cell-free DNA (cfDNA). Talanta 2024; 271:125717. [PMID: 38281430 DOI: 10.1016/j.talanta.2024.125717] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The significant role of cell-free DNA (cfDNA) for disease diagnosis, including cancer, has garnered a lot of attention. The challenges of creating target-specific primers and the possibility of false-positive signals make amplification-based detection methods problematic. Fluorescent biosensors based on CRISPR-Cas have been widely established, however they still require an amplification step before they can be used for detection. To detect cfDNA, researchers have created a CRISPR-Cas12a-based nucleic acid amplification-free fluorescent biosensor that uses a combination of fluorescence and colorimetric signaling improved by duplex-specific nuclease (DSN). DSN-assisted signal recycling is initiated in H1@MBs when the target cfDNA activates the CRISPR-Cas12a complex, leading to the degradation of single-strand DNA (ssDNA) sequences. This method has an extremely high detection limit for the BRCA-1 breast cancer gene. In addition to measuring viral DNA in a field-deployable and point-of-care testing (POCT) platform, this fast and highly selective sensor can be used to evaluate additional nucleic acid biomarkers.
Collapse
Affiliation(s)
- Chenglong Zhao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China
| | - Zhipeng Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China
| | - Tengfei Hu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China
| | - Jingwei Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China
| | - Yibo Zhao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China
| | - Dongming Leng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China
| | - Kun Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China; Sichuan Rehabilitation Hospital Affiliated of Chengdu University of Traditional Chinese Medicine Sichuan Bayi Rehabilitation Center, Chengdu, Sichuan province, 611100, China
| | - Gang An
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, Heilongjiang Province, 150000, China.
| |
Collapse
|
4
|
Paramasivam R, Gopal DR, Dhandapani R, Subbarayalu R, Elangovan MP, Prabhu B, Veerappan V, Nandheeswaran A, Paramasivam S, Muthupandian S. Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infect Drug Resist 2023; 16:155-178. [PMID: 36636377 PMCID: PMC9831082 DOI: 10.2147/idr.s384776] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Background Bovine mastitis is the most frequent and costly illness impacting dairy herds worldwide. The presence of subclinical mastitis in dairy cows has an impact on the decreased output of milk and milk quality, culling of affected cows, mortality rate, as well as mastitis-related treatment expenses, generating significant financial loss to the dairy industry. The pathogenic bacteria invade through the mammary gland, which then multiply in the milk-producing tissues causing infection, and the presence of pathogenic bacteria in milk is concerning, jeopardizes human health, and also has public health consequences. Intervention to promote herd health is essential to protect public health and the economy. Results This review attempts to provide an overview of subclinical mastitis, including mastitis in different species, the effect of mastitis on human health and its pathogenic mechanism, the prevalence and incidence of subclinical mastitis, and current preventive, diagnostic, and treatment methods for subclinical mastitis. It also elaborates on the management practices that should be followed by the farms to improve herd immunity and health. Conclusion This review brings the importance of the threat of antimicrobial resistance organisms to the dairy industry. Furthermore, this review gives a glimpse of the economic consequences faced by the farmers and a futuristic mastitis market analysis in the dairy industry.
Collapse
Affiliation(s)
- Ragul Paramasivam
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Dhinakar Raj Gopal
- Department of Animal Biotechnology, Madras Veterinary College, Tamilnadu Veterinary and Animal Science University (TANUVAS), Chennai, 600007, India
| | | | | | | | - Bhavadharani Prabhu
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Veeramani Veerappan
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | | | | | - Saravanan Muthupandian
- AMR and Nanotherapeutics Lab, Centre for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India,Division of Biomedical Science, College of Health Sciences, School of Medicine, Mekelle University, Mekelle, Ethiopia,Correspondence: Saravanan Muthupandian, Email
| |
Collapse
|
5
|
Almeida RS, Wisnieski F, Takao Real Karia B, Smith MAC. CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer. Genes (Basel) 2022; 13:2029. [PMID: 36360266 PMCID: PMC9690943 DOI: 10.3390/genes13112029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/09/2023] Open
Abstract
Gastric cancer is the subject of clinical and basic studies due to its high incidence and mortality rates worldwide. Due to the diagnosis occurring in advanced stages and the classic treatment methodologies such as gastrectomy and chemotherapy, they are extremely aggressive and limit the quality of life of these patients. CRISPR/Cas9 is a tool that allows gene editing and has been used to explore the functions of genes related to gastric cancer, in addition to being used in the treatment of this neoplasm, greatly increasing our understanding of cancer genomics. In this mini-review, we seek the current status of the CRISPR/Cas9 gene-editing technology in gastric cancer research and clinical research.
Collapse
Affiliation(s)
- Renata Sanches Almeida
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Fernanda Wisnieski
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
- Discipline of Gastroenterology, Department of Medicine, Federal University of São Paulo, Rua Loefgreen, 1726, São Paulo 04040002, Brazil
| | - Bruno Takao Real Karia
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Marilia Arruda Cardoso Smith
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| |
Collapse
|
6
|
Cao T, Liu S, Qiu Y, Gao M, Wu J, Wu G, Liang P, Huang J. Generation of C-to-G transversion in mouse embryos via CG editors. Transgenic Res 2022; 31:445-455. [PMID: 35704130 DOI: 10.1007/s11248-022-00313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Base editors (BEs) are efficient and precise tools for generating single base conversions in living organisms. While most BE systems are limited in mediating C-to-T or A-to-G conversions, recently developed C-to-G base editors (CGBEs) could produce C-to-G transversions. CGBEs convert cytosine within the editing window to abasic intermediates, which would be replaced with any base after base excision repair (BER). By far, though the efficiency and editing scope of CGBEs have been investigated in cultured cells via gRNA library and machine-learning, the viability of CGBEs in generating mouse models has not been adequately tested. In this study, we tested the C-to-G transversion efficiency of the CGBE1 and CGBE-XRCC1 systems in mouse embryos. Our results showed that both of the CGBE systems were able to mediate C-to-G transversion on 2 out of 3 targets tested, with up to 20% frequency within the editing window. Notably, most of the groups showed over 40% of other base conversions, predominantly C-to-T. Lastly, we successfully acquired the F1 mouse carrying a disease-causing mutation. In all, our study suggested that CGBEs systems held great potential in generating mouse models and indicated that XRCC1 based system is applicable in mouse embryos.
Collapse
Affiliation(s)
- Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Simiao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China
| | - Yanling Qiu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China
| | - Min Gao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China
| | - Jinni Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China
| | - Guifang Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Raza SHA, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA, Alotaibi MA, Al-Hazani TM, Abd El-Aziz AH, Cheng G, Zan L. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J Biol Sci 2022; 29:1928-1935. [PMID: 35531207 PMCID: PMC9072931 DOI: 10.1016/j.sjbs.2021.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, significant progress has been achieved in genome editing applications using new programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9). These genome editing tools are capable of nicking DNA precisely by targeting specific sequences, and enable the addition, removal or substitution of nucleotides via double-stranded breakage at specific genomic loci. CRISPR/Cas system, one of the most recent genome editing tools, affords the ability to efficiently generate multiple genomic nicks in single experiment. Moreover, CRISPR/Cas systems are relatively easy and cost effective when compared to other genome editing technologies. This is in part because CRISPR/Cas systems rely on RNA-DNA binding, unlike other genome editing tools that rely on protein-DNA interactions, which affords CRISPR/Cas systems higher flexibility and more fidelity. Genome editing tools have significantly contributed to different aspects of livestock production such as disease resistance, improved performance, alterations of milk composition, animal welfare and biomedicine. However, despite these contributions and future potential, genome editing technologies also have inherent risks, and therefore, ethics and social acceptance are crucial factors associated with implementation of these technologies. This review emphasizes the impact of genome editing technologies in development of livestock breeding and production in numerous species such as cattle, pigs, sheep and goats. This review also discusses the mechanisms behind genome editing technologies, their potential applications, risks and associated ethics that should be considered in the context of livestock.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameer D. Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650 Australia
| | - Sun Bing
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Tahani Mohamed Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box: 83, Al-Kharj 11940, Saudi Arabia
| | - Ayman H. Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Daman Hour University, Damanhour, Egypt
| | - Gong Cheng
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Linsen Zan
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| |
Collapse
|
8
|
Goullée H, Taylor RL, Forrest ARR, Laing NG, Ravenscroft G, Clayton JS. Improved CRISPR/Cas9 gene editing in primary human myoblasts using low confluency cultures on Matrigel. Skelet Muscle 2021; 11:23. [PMID: 34551826 PMCID: PMC8456651 DOI: 10.1186/s13395-021-00278-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background CRISPR/Cas9 is an invaluable tool for studying cell biology and the development of molecular therapies. However, delivery of CRISPR/Cas9 components into some cell types remains a major hurdle. Primary human myoblasts are a valuable cell model for muscle studies, but are notoriously difficult to transfect. There are currently no commercial lipofection protocols tailored for primary myoblasts, and most generic guidelines simply recommend transfecting healthy cells at high confluency. This study aimed to maximize CRISPR/Cas9 transfection and editing in primary human myoblasts. Methods Since increased cell proliferation is associated with increased transfection efficiency, we investigated two factors known to influence myoblast proliferation: cell confluency, and a basement membrane matrix, Matrigel. CRISPR/Cas9 editing was performed by delivering Cas9 ribonucleoprotein complexes via lipofection into primary human myoblasts, cultured in wells with or without a Matrigel coating, at low (~ 40%) or high (~ 80%) confluency. Results Cells transfected at low confluency on Matrigel-coated wells had the highest levels of transfection, and were most effectively edited across three different target loci, achieving a maximum editing efficiency of 93.8%. On average, editing under these conditions was >4-fold higher compared to commercial recommendations (high confluency, uncoated wells). Conclusion This study presents a simple, effective and economical method of maximizing CRISPR/Cas9-mediated gene editing in primary human myoblasts. This protocol could be a valuable tool for improving the genetic manipulation of cultured human skeletal muscle cells, and potentially be adapted for use in other cell types. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00278-1.
Collapse
Affiliation(s)
- Hayley Goullée
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Rhonda L Taylor
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Alistair R R Forrest
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Joshua S Clayton
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia. .,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
9
|
Rocha LFM, Braga LAM, Mota FB. Gene Editing for Treatment and Prevention of Human Diseases: A Global Survey of Gene Editing-Related Researchers. Hum Gene Ther 2021; 31:852-862. [PMID: 32718240 DOI: 10.1089/hum.2020.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the next decades, gene editing technologies are expected to be used in the treatment and prevention of human diseases. Yet, the future uses of gene editing in medicine are still unknown, including its applicability and effectiveness to the treatment and prevention of infectious diseases, cancer, and monogenic and polygenic hereditary diseases. This study aims to address this gap by analyzing the views of over 1,000 gene editing-related researchers from all over the world. Some of our survey results show that, in the next 10 years, DNA double-strand breaks are expected to be the main method for gene editing, and CRISPR-Cas systems to be the mainstream programmable nuclease. In the same period, gene editing is expected to have more applicability and effectiveness to treat and prevent infectious diseases and cancer. Off-targeting mutations, reaching therapeutic levels of editing efficiency, difficulties in targeting specific tissues in vivo, and regulatory and ethical challenges are among the most relevant factors that might hamper the use of gene editing in humans. In conclusion, our results suggest that gene editing might become a reality to the treatment and prevention of a variety of human diseases in the coming 10 years. If the future confirms these researchers' expectations, gene editing could change the way medicine, health systems, and public health deal with the treatment and prevention of human diseases.
Collapse
Affiliation(s)
| | | | - Fabio Batista Mota
- Center for Strategic Studies, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão FJL, Parrott W, Vianna GR. Two efficient CRISPR/Cas9 systems for gene editing in soybean. Transgenic Res 2021; 30:239-249. [PMID: 33797713 DOI: 10.1007/s11248-021-00246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Genome editing using CRISPR/Cas9 has been highlighted as a powerful tool for crop improvement. Nevertheless, its efficiency can be improved, especially for crops with a complex genome, such as soybean. In this work, using the CRISPR/Cas9 technology we evaluated two CRISPR systems, a one-component vs. a two-component strategy. In a simplified system, the single transcriptional unit (STU), SpCas9 and sgRNA are driven by only one promoter, and in the conventional system, the two-component transcriptional unit (TCTU), SpCas9, is under the control of a pol II promoter and the sgRNAs are under the control of a pol III promoter. A multiplex system with three targets was designed targeting two different genes, GmIPK1 and GmIPK2, coding for enzymes from the phytic acid synthesis pathway. Both systems were tested using the hairy root soybean methodology. Results showed gene-specific edition. For the GmIPK1 gene, edition was observed in both configurations, with a deletion of 1 to 749 base pairs; however, the TCTU showed higher indel frequencies. For GmIPK2 major exclusions were observed in both systems, but the editing efficiency was low for STU. Both systems (STU or TCTU) have been shown to be capable of promoting effective gene editing in soybean. The TCTU configuration proved to be preferable, since it was more efficient. The STU system was less efficient, but the size of the CRISPR/Cas cassette was smaller.
Collapse
Affiliation(s)
- Jéssica Carrijo
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Eudald Illa-Berenguer
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Peter LaFayette
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Nathalia Torres
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Wayne Parrott
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Giovanni R Vianna
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil.
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
11
|
Karapurkar JK, Antao AM, Kim KS, Ramakrishna S. CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:185-229. [PMID: 34127194 DOI: 10.1016/bs.pmbts.2021.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR/Cas9), derived from bacterial and archean immune systems, has received much attention from the scientific community as a powerful, targeted gene editing tool. The CRISPR/Cas9 system enables a simple, relatively effortless and highly specific gene targeting strategy through temporary or permanent genome regulation or editing. This endonuclease has enabled gene correction by taking advantage of the endogenous homology directed repair (HDR) pathway to successfully target and correct disease-causing gene mutations. Numerous studies using CRISPR support the promise of efficient and simple genome manipulation, and the technique has been validated in in vivo and in vitro experiments, indicating its potential for efficient gene correction at any genomic loci. In this chapter, we detailed various strategies related to gene editing using the CRISPR/Cas9 system. We also outlined strategies to improve the efficiency of gene correction via the HDR pathway and to improve viral and non-viral mediated gene delivery methods, with an emphasis on their therapeutic potential for correcting genetic disorder in humans and other mammals.
Collapse
Affiliation(s)
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
12
|
Li X, Yang Y, Chen S, Zhou J, Li J, Cheng Y. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci 2021; 271:119186. [PMID: 33577852 DOI: 10.1016/j.lfs.2021.119186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is a reactive remodeling process in response to myocardial injury. It is mainly manifested by the proliferation of cardiac muscle fibroblasts and secreting extracellular matrix (ECM) proteins to replace damaged tissue. However, the excessive production and deposition of extracellular matrix, and the rising proportion of type I and type III collagen lead to pathological fibrotic remodeling, thereby facilitating the development of cardiac dysfunction and eventually causing heart failure with heightened mortality. Currently, the molecular mechanisms of MF are still not fully understood. With the development of epigenetics, it is found that epigenetics controls the transcription of pro-fibrotic genes in MF by DNA methylation, histone modification and noncoding RNAs. In this review, we summarize and discuss the research progress of the mechanisms underlying MF from the perspective of epigenetics, including the newest m6A modification and crosstalk between different epigenetics in MF. We also offer a succinct overview of promising molecules targeting epigenetic regulators, which may provide novel therapeutic strategies against MF.
Collapse
Affiliation(s)
- Xuping Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sixuan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jingyan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
13
|
Islam MA, Rony SA, Rahman MB, Cinar MU, Villena J, Uddin MJ, Kitazawa H. Improvement of Disease Resistance in Livestock: Application of Immunogenomics and CRISPR/Cas9 Technology. Animals (Basel) 2020; 10:E2236. [PMID: 33260762 PMCID: PMC7761152 DOI: 10.3390/ani10122236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
Disease occurrence adversely affects livestock production and animal welfare, and have an impact on both human health and public perception of food-animals production. Combined efforts from farmers, animal scientists, and veterinarians have been continuing to explore the effective disease control approaches for the production of safe animal-originated food. Implementing the immunogenomics, along with genome editing technology, has been considering as the key approach for safe food-animal production through the improvement of the host genetic resistance. Next-generation sequencing, as a cutting-edge technique, enables the production of high throughput transcriptomic and genomic profiles resulted from host-pathogen interactions. Immunogenomics combine the transcriptomic and genomic data that links to host resistance to disease, and predict the potential candidate genes and their genomic locations. Genome editing, which involves insertion, deletion, or modification of one or more genes in the DNA sequence, is advancing rapidly and may be poised to become a commercial reality faster than it has thought. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) [CRISPR/Cas9] system has recently emerged as a powerful tool for genome editing in agricultural food production including livestock disease management. CRISPR/Cas9 mediated insertion of NRAMP1 gene for producing tuberculosis resistant cattle, and deletion of CD163 gene for producing porcine reproductive and respiratory syndrome (PRRS) resistant pigs are two groundbreaking applications of genome editing in livestock. In this review, we have highlighted the technological advances of livestock immunogenomics and the principles and scopes of application of CRISPR/Cas9-mediated targeted genome editing in animal breeding for disease resistance.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sharmin Aqter Rony
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mohammad Bozlur Rahman
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka 1215, Bangladesh;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey;
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA), Tucuman 4000, Argentina
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Science, Gatton Campus, The University of Queensland, Brisbane 4072, Australia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
14
|
High rate of HDR in gene editing of p.(Thr158Met) MECP2 mutational hotspot. Eur J Hum Genet 2020; 28:1231-1242. [PMID: 32332872 PMCID: PMC7609331 DOI: 10.1038/s41431-020-0624-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome is a progressive neurodevelopmental disorder which affects almost exclusively girls, caused by variants in MECP2 gene. Effective therapies for this devastating disorder are not yet available and the need for tight regulation of MECP2 expression for brain to properly function makes gene replacement therapy risky. For this reason, gene editing with CRISPR/Cas9 technology appears as a preferable option for the development of new therapies. To study the disease, we developed and characterized a human neuronal model obtained by genetic reprogramming of patient-derived primary fibroblasts into induced Pluripotent Stem Cells. This cellular model represents an important source for our studies, aiming to correct MECP2 variants in neurons which represent the primarily affected cell type. We engineered a gene editing toolkit composed by a two-plasmid system to correct a hotspot missense variant in MECP2, c.473 C > T (p.(Thr158Met)). The first construct expresses the variant-specific sgRNA and the Donor DNA along with a fluorescent reporter system. The second construct brings Cas9 and targets for auto-cleaving, to avoid long-term Cas9 expression. NGS analysis on sorted cells from four independent patients demonstrated an exceptionally high editing efficiency, with up to 80% of HDR and less than 1% of indels in all patients, outlining the relevant potentiality of the approach for Rett syndrome therapy.
Collapse
|
15
|
Madariaga-Perpiñan I, Duque-Restrepo JC, Ayala-Ramirez P, García-Robles R. La edición del ADN. IATREIA 2020. [DOI: 10.17533/udea.iatreia.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dentro del mundo de las ciencias biológicas la terapia génica ha sido un tema llamativo desde su aparición. El desarrollo de nuevas tecnologías y avances en el campo de la bioingeniería como las nucleasas de dedos de zinc (ZFN), las nucleasas tipo activadores de transcripción (TALEN) y las repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR/Cas9), abrieron las puertas a un sinnúmero de posibilidades en biología, entre ellas, la edición del genoma. Esta última consiste en la modificación directa del genoma a través de la introducción o escisión de secuencias nucleotídicas dentro de la hebra de ADN. Hoy en día su aplicación es extensa, desde el campo de la agroindustria y el control de plagas hasta el ámbito clínico con la “corrección” de enfermedades mendelianas, modulación de receptores inmunológicos en enfermedades infecciosas, modificaciones genéticas en líneas germinales, entre muchos otros empleos. Sin embargo, desde su descubrimiento en 1987, el sistema CRISPR/Cas9 no ha estado exento de polémica en aspectos bioéticos, la adquisición de su patente e, incluso, en cuanto a su eficacia. A pesar de las dificultades e incertidumbre que han surgido, el futuro del sistema es prometedor dada su sencillez y versatilidad de uso.
Collapse
|
16
|
Liu Y, Xu Z, Zhang Y, Yu M, Wang S, Gao Y, Liu C, Zhang Y, Gao L, Qi X, Cui H, Pan Q, Li K, Wang X. Marek's disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Vet Microbiol 2020; 242:108589. [PMID: 32122593 DOI: 10.1016/j.vetmic.2020.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
The CRISPR/CRISPR-associated protein 9 (Cas9) system is a powerful gene-editing tool originally discovered as an integral mediator of bacterial adaptive immunity. Recently, this technology has been explored for its potential utility in providing new and unique treatments for viral infection. Marek's disease virus (MDV) and avian leukosis virus subgroup J (ALV-J), major immunosuppressive viruses, cause significant economic losses to the chicken industry. Here, we evaluated the efficacy of using MDV as a CRISPR/Cas9-delivery system to directly target and disrupt the reverse-transcribed products of the ALV-J RNA genome during its infection cycle in vitro and in vivo. We first screened multiple potential guide RNA (gRNA) target sites in the ALV-J genome and identified several optimized targets capable of effectively disrupting the latently integrated viral genome and providing efficient defense against new infection by ALV-J in cells. The optimal single-gRNAs and Cas9-expression cassettes were inserted into the genome of an MDV vaccine strain. The results indicated that engineered MDV stably expressing ALV-J-targeting CRISPR/Cas9 efficiently resisted ALV-J challenge in host cells. These findings demonstrated the CRISPR/Cas9 system as an effective treatment strategy against ALV-J infection. Furthermore, the results highlighted the potential of MDV as an effective delivery system for CRISPR/Cas9 in chickens.
Collapse
Affiliation(s)
- Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zengkun Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| |
Collapse
|
17
|
Toropov V, Demyanova E, Shalaeva O, Sitkin S, Vakhitov T. Whole-Genome Sequencing of Lactobacillus helveticus D75 and D76 Confirms Safety and Probiotic Potential. Microorganisms 2020; 8:329. [PMID: 32111071 PMCID: PMC7142726 DOI: 10.3390/microorganisms8030329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/03/2023] Open
Abstract
Whole-genome DNA sequencing of Lactobacillus D75 and D76 strains (Vitaflor, Russia) was determined using the PacBio RS II platform, which was followed by de novo assembly with SMRT Portal 2.3.0. The average nucleotide identity (ANI) test showed that both strains belong to the Lactobacillus helveticus, but not to the L. acidophilus, as previously assumed. In addition, 31 exopolysaccharide (EPS) production genes (nine of which form a single genetic cluster), 13 adhesion genes, 38 milk protein and 11 milk sugar utilization genes, 13 genes for and against specific antagonistic activity, eight antibiotic resistance genes, and also three CRISPR blocks and eight Cas I-B system genes were identified in the genomes of both strains. The expression of bacteriocin helveticin J genes was confirmed. In fact, the presence of identified genes suggests that L. helveticus D75 and D76 are able to form biofilms on the outer mucin layer, inhibit the growth of pathogens and pathobionts, utilize milk substrates with the formation of digestible milk sugars and bioactive peptides, resist bacteriophages, show some genome-determined resistance to antibiotics, and stimulate the host's immune system. Pathogenicity genes have not been identified. The study results confirm the safety and high probiotic potential of the strains.
Collapse
Affiliation(s)
- Vyacheslav Toropov
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (V.T.); (E.D.); (O.S.); (S.S.)
| | - Elena Demyanova
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (V.T.); (E.D.); (O.S.); (S.S.)
| | - Olga Shalaeva
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (V.T.); (E.D.); (O.S.); (S.S.)
| | - Stanislav Sitkin
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (V.T.); (E.D.); (O.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, 195067 St. Petersburg, Russia
| | - Timur Vakhitov
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (V.T.); (E.D.); (O.S.); (S.S.)
| |
Collapse
|
18
|
Kaushik I, Ramachandran S, Srivastava SK. CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment. Semin Cell Dev Biol 2019; 96:4-12. [PMID: 31054324 PMCID: PMC6829064 DOI: 10.1016/j.semcdb.2019.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas9 is an RNA guided endonuclease that has revolutionized the ability to edit genome and introduce desired manipulations in the target genomic sequence. It is a flexible methodology and is capable of targeting multiple loci simultaneously. Owing to the fact that cancer is an amalgamation of several genetic mutations, application of CRISPR-Cas9 technology is considered as a novel strategy to combat cancer. Genetic and epigenetic modulations in cancer leads to development of resistance to conventional therapy options. Given the abundance of transcriptomic and genomic alterations in cancer, developing a strategy to decipher these alterations is critical. CRISPR-Cas9 system has proven to be a promising tool in generating cellular and animal models to mimic the mutations and understand their role in tumorigenesis. CRISPR-Cas9 is an upheaval in the field of cancer immunotherapy. Furthermore, CRISPR-Cas9 plays an important role in the development of whole genome libraries for cancer patients. This approach will help understand the diversity in genome variation among the patients and also, will provide multiple variables to scientists to investigate and improvise cancer therapy. This review will focus on the discovery of CRISPR-Cas9 system, mechanisms behind CRISPR technique and its current status as a potential tool for investigating the genomic mutations associated with all cancer types.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
19
|
Lin WV, Stout JT, Weng CY. CRISPR-Cas9 and Its Therapeutic Applications for Retinal Diseases. Int Ophthalmol Clin 2019; 59:3-13. [PMID: 30585915 DOI: 10.1097/iio.0000000000000252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Dong Z, Qin Q, Hu Z, Chen P, Huang L, Zhang X, Tian T, Lu C, Pan M. Construction of a One-Vector Multiplex CRISPR/Cas9 Editing System to Inhibit Nucleopolyhedrovirus Replication in Silkworms. Virol Sin 2019; 34:444-453. [PMID: 31218589 DOI: 10.1007/s12250-019-00121-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Recently the developed single guide (sg)RNA-guided clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology has opened a new avenue for antiviral therapy. The CRISPR/Cas9 system uniquely allows targeting of multiple genome sites simultaneously. However, there are relatively few applications of CRISPR/Cas9 multigene editing to target insect viruses. To address the need for sustained delivery of a multiplex CRISPR/Cas9-based genome-editing vehicle against insect viruses, we developed a one-vector (pSL1180-Cas9-U6-sgRNA) system that expresses multiple sgRNA and Cas9 protein to excise Bombyx mori nucleopolyhedrovirus (BmNPV) in insect cells. We screened the immediate-early-1 gene (ie-1), the major envelope glycoprotein gene (gp64), and the late expression factor gene (lef-11), and identified multiple sgRNA editing sites through flow cytometry and viral DNA replication analysis. In addition, we constructed a multiplex editing vector (PSL1180-Cas9-sgIE1-sgLEF11-sgGP64, sgMultiple) to efficiently regulate multiplex gene-editing and inhibit BmNPV replication after viral infection. This is the first report of the application of a multiplex CRISPR/Cas9 system to inhibit insect virus replication. This multiplex system can significantly enhance the potential of CRISPR/Cas9-based multiplex genome engineering in insect virus.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qi Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ting Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
21
|
Zarei A, Razban V, Hosseini SE, Tabei SMB. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. J Gene Med 2019; 21:e3082. [PMID: 30786106 DOI: 10.1002/jgm.3082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ali Zarei
- Department of Molecular Genetics, Marvdasht BranchIslamic Azad University Marvdasht Iran
- Department of Molecular Genetics, Science and Research BranchIslamic Azad University Fars Iran
| | - Vahid Razban
- Department of Molecular medicine, School of Advanced Medical Sciences and Technologies Shiraz Iran
- Stem Cell and Transgenic Technology Research CenterShiraz University of Medical Sciences Shiraz Iran
| | | | | |
Collapse
|
22
|
Kaushik A, Yndart A, Atluri V, Tiwari S, Tomitaka A, Gupta P, Jayant RD, Alvarez-Carbonell D, Khalili K, Nair M. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep 2019; 9:3928. [PMID: 30850620 PMCID: PMC6408460 DOI: 10.1038/s41598-019-40222-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
CRISPR-Cas9/gRNA exhibits therapeutic efficacy against latent human immunodeficiency virus (HIV) genome but the delivery of this therapeutic cargo to the brain remains as a challenge. In this research, for the first time, we demonstrated magnetically guided non-invasive delivery of a nano-formulation (NF), composed of Cas9/gRNA bound with magneto-electric nanoparticles (MENPs), across the blood-brain barrier (BBB) to inhibit latent HIV-1 infection in microglial (hμglia)/HIV (HC69) cells. An optimized ac-magnetic field of 60 Oe was applied on NF to release Cas9/gRNA from MENPs surface and to facilitate NF cell uptake resulting in intracellular release and inhibition of HIV. The outcomes suggested that developed NF reduced HIV-LTR expression significantly in comparison to unbound Cas9/gRNA in HIV latent hμglia/HIV (HC69) cells. These findings were also validated qualitatively using fluorescence microscopy to assess NF efficacy against latent HIV in the microglia cells. We believe that CNS delivery of NF (CRISPR/Cas9-gRNA-MENPs) across the BBB certainly will have clinical utility as future personalized nanomedicine to manage neuroHIV/AIDS.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Adriana Yndart
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Venkata Atluri
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sneham Tiwari
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Asahi Tomitaka
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Purnima Gupta
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul Dev Jayant
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
23
|
Kanbar M, de Michele F, Wyns C. Cryostorage of testicular tissue and retransplantation of spermatogonial stem cells in the infertile male. Best Pract Res Clin Endocrinol Metab 2019; 33:103-115. [PMID: 30448111 DOI: 10.1016/j.beem.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transplantation of own cryostored spermatogonial stem cells (SSCs) is a promising technique for fertility restoration when the SSC pool has been depleted. In this regard, cryopreservation of pre-pubertal testicular tissue or SSCs suspensions before gonadotoxic therapies is ethically accepted and increasingly proposed. SSC transplantation has also been considered to treat other causes of infertility relying on the possibility of propagating SSCs retrieved in the testes of infertile men before autologous re-transplantation. Although encouraging results were achieved in animals and in preclinical experiments, clinical perspectives are still limited by a number of unresolved technical and safety issues, such as the risk of cancer cell contamination of cells intended for transplantation and the genetic and epigenetic stability of SCCs when cultured before re-transplantation. Moreover, while genome editing techniques raise the hope of modifying the SSCs genome before re-transplantation, their application for reproductive purposes might be a step too far for the moment.
Collapse
Affiliation(s)
- Marc Kanbar
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Francesca de Michele
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium
| | - Christine Wyns
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium.
| |
Collapse
|
24
|
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D. Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9. FRONTIERS IN PLANT SCIENCE 2019; 10:376. [PMID: 31001300 PMCID: PMC6454193 DOI: 10.3389/fpls.2019.00376] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/12/2019] [Indexed: 05/19/2023]
Abstract
Potato breeding can be redirected to a diploid inbred/F1 hybrid variety breeding strategy if self-compatibility can be introduced into diploid germplasm. However, the majority of diploid potato clones (Solanum spp.) possess gametophytic self-incompatibility that is primarily controlled by a single multiallelic locus called the S-locus which is composed of tightly linked genes, S-RNase (S-locus RNase) and multiple SLFs (S-locus F-box proteins), which are expressed in the style and pollen, respectively. Using S-RNase genes known to function in the Solanaceae gametophytic SI mechanism, we identified S-RNase alleles with flower-specific expression in two diploid self-incompatible potato lines using genome resequencing data. Consistent with the location of the S-locus in potato, we genetically mapped the S-RNase gene using a segregating population to a region of low recombination within the pericentromere of chromosome 1. To generate self-compatible diploid potato lines, a dual single-guide RNA (sgRNA) strategy was used to target conserved exonic regions of the S-RNase gene and generate targeted knockouts (KOs) using a Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (Cas9) approach. Self-compatibility was achieved in nine S-RNase KO T0 lines which contained bi-allelic and homozygous deletions/insertions in both genotypes, transmitting self compatibility to T1 progeny. This study demonstrates an efficient approach to achieve stable, consistent self-compatibility through S-RNase KO for use in diploid potato breeding approaches.
Collapse
Affiliation(s)
- Felix Enciso-Rodriguez
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
- *Correspondence: David Douches,
| |
Collapse
|
25
|
Majeed M, Soliman H, Kumar G, El-Matbouli M, Saleh M. Editing the genome of Aphanomyces invadans using CRISPR/Cas9. Parasit Vectors 2018; 11:554. [PMID: 30352624 PMCID: PMC6199749 DOI: 10.1186/s13071-018-3134-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is increasingly being used for genome editing experiments. It is a system to add, delete and/or replace parts of a gene in situ in a time- and cost-efficient manner. The genome of many organisms has been edited using this system. We tested the CRISPR/Cas9 system in Aphanomyces invadans, an oomycete, which is the causative agent of epizootic ulcerative syndrome (EUS) in many fish species. Extracellular proteases produced by this oomycete are believed to play a role in EUS virulence. METHODS We designed three single guide-RNAs (gRNA) to target A. invadans serine protease gene. These gRNAs were individually combined with the Cas9 to form ribo-nucleo-protein (RNP) complex. A. invadans protoplasts were then transfected with RNP complexes. After the transfection, the target gene was amplified and subjected to sequencing. Zoospores of A. invadans were also transfected with the RNP complex. Three groups of dwarf gourami (Trichogaster lalius) were then experimentally inoculated with (i) non-treated A. invadans zoospores; (ii) RNP-treated A. invadans zoospores; and (iii) autoclaved pond water as negative control, to investigate the effect of edited serine protease gene on the virulence of A. invadans in vivo. RESULTS Fluorescence microscopy showed sub-cellular localization of RNP complex in A. invadans protoplasts and zoospores. Sequencing results from the protoplast DNA revealed a point mutation in the target gene. A matching mutation was also detected in zoospores after similar treatment with the same RNP complex. In vivo results showed that the CRISPR/Cas9-treated A. invadans zoospores did not produce EUS clinical signs in the fish. These results were then confirmed by histopathological staining of the muscle sections using Gomori's methenamine silver nitrate and hematoxylin and eosin stains. CONCLUSIONS Results obtained in this study indicate that the RNP complex caused effective mutation in the target gene. This hindered the production of serine protease, which ultimately impeded the manifestation of EUS in the fish. Our methods thus establish a promising approach for functional genomics studies in A. invadans and provide novel avenues to develop effective strategies to control this pathogen.
Collapse
Affiliation(s)
- Muhammad Majeed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
26
|
Riboregulator elements as tools to engineer gene expression in cyanobacteria. Appl Microbiol Biotechnol 2018; 102:7717-7723. [DOI: 10.1007/s00253-018-9221-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
|
27
|
Liao Y, Chen L, Feng Y, Shen J, Gao Y, Cote G, Choy E, Harmon D, Mankin H, Hornicek F, Duan Z. Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget 2018; 8:30276-30287. [PMID: 28415820 PMCID: PMC5444742 DOI: 10.18632/oncotarget.16326] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death ligand 1 (PD-L1) is a transmembrane protein that is expressed on tumor cells that suppresses the T cell-mediated immune response. Therapies targeting the PD-L1 pathway promote anti-tumor immunity and have shown promising results in some types of cancers. However, the functional and therapeutic roles of PD-L1 in osteosarcoma remain largely unknown. In this study, we found that PD-L1 protein was expressed in osteosarcoma cell lines and tissue microarray of patient tumors. Tissue microarray immunohistochemistry analysis showed that the overall and five-year survival rates of patients with high levels of PD-L1 expression were significantly shorter than patients with low levels. High levels of PD-L1 expression were also associated with metastasis in osteosarcoma patients. Furthermore, we applied the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system to target PD-L1 gene at the DNA level in osteosarcoma cell lines. We found that the expression of PD-L1 could be efficiently disrupted by CRISPR/Cas9 system and PD-L1 knockdown increased drug sensitivities for doxorubicin and paclitaxel. These results suggest that PD-L1 is an independent prognostic factor in osteosarcoma and that PD-L1 knockout by CRISPR/Cas9 may be a therapeutic approach for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - Lulu Chen
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA.,Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - Gregory Cote
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - Edwin Choy
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - David Harmon
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - Henry Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA
| |
Collapse
|
28
|
Wang H, Guo R, Du Z, Bai L, Li L, Cui J, Li W, Hoffman AR, Hu JF. Epigenetic Targeting of Granulin in Hepatoma Cells by Synthetic CRISPR dCas9 Epi-suppressors. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:23-33. [PMID: 29858058 PMCID: PMC5849805 DOI: 10.1016/j.omtn.2018.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
Abstract
The CRISPR-associated Cas9 system can modulate disease-causing alleles both in vivo and ex vivo, raising the possibility of therapeutic genome editing. In addition to gene targeting, epigenetic modulation by the catalytically inactive dCas9 may also be a potential form of cancer therapy. Granulin (GRN), a potent pluripotent mitogen and growth factor that promotes cancer progression by maintaining self-renewal of hepatic stem cancer cells, is upregulated in hepatoma tissues and is associated with decreased tumor survival in patients with hepatoma. We synthesized a group of dCas9 epi-suppressors to target GRN by tethering the C terminus of dCas9 with three epigenetic suppressor genes: DNMT3a (DNA methyltransferase), EZH2 (histone 3 lysine 27 methyltransferase), and KRAB (the Krüppel-associated box transcriptional repression domain). In conjunction with guide RNAs (gRNAs), the dCas9 epi-suppressors caused significant decreases in GRN mRNA abundance in Hep3B hepatoma cells. These dCas9 epi-suppressors initiated de novo CpG DNA methylation in the GRN promoter, and they produced histone codes that favor gene suppression, including decreased H3K4 methylation, increased H3K9 methylation, and enhanced HP1a binding. Epigenetic knockdown of GRN led to the inhibition of cell proliferation, decreased tumor sphere formation, and reduced cell invasion. These changes were achieved at least partially through the MMP/TIMP pathway. This study thus demonstrates the potential utility of using dCas9 epi-suppressors in the development of epigenetic targeting against tumors.
Collapse
Affiliation(s)
- Hong Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, China; VA Palo Alto Health Care System and Stanford University Medical School, Palo Alto, CA 94304, USA
| | - Rui Guo
- Clinical Laboratory, First Affiliated Hospital, Jilin University, Changchun, China; VA Palo Alto Health Care System and Stanford University Medical School, Palo Alto, CA 94304, USA
| | - Zhonghua Du
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, China
| | - Ling Bai
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, China
| | - Lingyu Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, China
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, China.
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, China.
| | - Andrew R Hoffman
- VA Palo Alto Health Care System and Stanford University Medical School, Palo Alto, CA 94304, USA.
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, China; VA Palo Alto Health Care System and Stanford University Medical School, Palo Alto, CA 94304, USA.
| |
Collapse
|
29
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
30
|
Stem cell transplantation for Huntington's diseases. Methods 2017; 133:104-112. [PMID: 28867501 DOI: 10.1016/j.ymeth.2017.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Therapeutic approaches based on stem cells have received considerable attention as potential treatments for Huntington's disease (HD), which is a fatal, inherited neurodegenerative disorder, caused by progressive loss of GABAergic medium spiny neurons (MSNs) in the striatum of the forebrain. Transplantation of stem cells or their derivatives in animal models of HD, efficiently improved functions by replacing the damaged or lost neurons. In particular, neural stem cells (NSCs) for HD treatments have been developed from various sources, such as the brain itself, the pluripotent stem cells (PSCs), and the somatic cells of the HD patients. However, the brain-derived NSCs are difficult to obtain, and the PSCs have to be differentiated into a population of the desired neuronal cells that may cause a risk of tumor formation after transplantation. In contrast, induced NSCs, derived from somatic cells as a new stem cell source for transplantation, are less likely to form tumors. Given that the stem cell transplantation strategy for treatment of HD, as a genetic disease, is to replace the dysfunctional or lost neurons, the correction of mutant genes containing the expanded CAG repeats is essential. In this review, we will describe the methods for obtaining the optimal NSCs for transplantation-based HD treatment and the differentiation conditions for the functional GABAergic MSNs as therapeutic cells. Also, we will discuss the valuable gene correction of the disease stem cells by the CRISPR/Cas9 system for HD treatment.
Collapse
|
31
|
Comparison of Pathogenicity-Related Genes in the Current Pseudorabies Virus Outbreak in China. Sci Rep 2017; 7:7783. [PMID: 28798304 PMCID: PMC5552686 DOI: 10.1038/s41598-017-08269-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
There is currently a pandemic of pseudorabies virus (PRV) variant strains in China. Despite extensive research on PRV variant strains in the past two years, few studies have investigated PRV pathogenicity-related genes. To determine which gene(s) is/are linked to PRV virulence, ten putative virulence genes were knocked out using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 technology. The pathogenicity of these mutants was evaluated in a mouse model. Our results demonstrated that of the ten tested genes, the thymidine kinase (TK) and glycoprotein M (gM) knockout mutants displayed significantly reduced virulence. However, mutants of other putative virulence genes, such as glycoprotein E (gE), glycoprotein I (gI), Us2, Us9, Us3, glycoprotein G (gG), glycoprotein N (gN) and early protein 0 (EP0), did not exhibit significantly reduced virulence compared to that of the wild-type PRV. To our knowledge, this study is the first to compare virulence genes from the current pandemic PRV variant strain. This study will provide a valuable reference for scientists to design effective live attenuated vaccines in the future.
Collapse
|
32
|
Lehmann J, Seebode C, Emmert S. Forschung zu Genodermatosen durch neue Genom-Editing-Methoden. J Dtsch Dermatol Ges 2017; 15:783-790. [PMID: 28763594 DOI: 10.1111/ddg.13270_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Janin Lehmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock.,Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| | - Christina Seebode
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
| | - Steffen Emmert
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock.,Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
33
|
Lehmann J, Seebode C, Emmert S. Research on genodermatoses using novel genome-editing tools. J Dtsch Dermatol Ges 2017. [PMID: 28622433 DOI: 10.1111/ddg.13270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genodermatoses comprise a clinically heterogeneous group of mostly devastating disorders affecting the skin. To date, treatment options have in general been limited to symptom relief. However, the recent technical evolution in genome editing has ushered in a new era in the development of causal therapies for rare monogenetic diseases such as genodermatoses. The present review revisits the advantages and drawbacks of engineered nuclease tools currently available: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases, and - the most innovative - clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease 9 (CRISPR/Cas9) system. A mechanistic overview of the different modes of action of these programmable nucleases as well as their significance for causal therapy of genodermatoses is presented. Remaining limitations and challenges such as efficient delivery and off-target activity are critically discussed, highlighting both the past and future of gene therapy in dermatology.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany.,Clinic for Dermatology, Venereology, and Allergology, University Medical Center Goettingen, Germany
| | - Christina Seebode
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany.,Clinic for Dermatology, Venereology, and Allergology, University Medical Center Goettingen, Germany
| |
Collapse
|
34
|
Lv Q, Yuan L, Song Y, Sui T, Li Z, Lai L. D-repeat in the XIST gene is required for X chromosome inactivation. RNA Biol 2016; 13:172-6. [PMID: 26786668 DOI: 10.1080/15476286.2015.1137420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
XIST is a long non-coding RNA, which expressed exclusively from the inactive X chromosome. Although it has been revealed that the A-repeat contributes to the X chromosome inactivation (X-inactivation), the role of the longest D-repeat has not yet been investigated. Here, a sgRNA directed CRISPR/Cas9 system which have multiple target sites within repeat D of XIST, were used to generate D-repeat deletion and studied its roles on X-inactivation. The results showed that the deletion of D-repeat caused a significantly decreased expression of XIST, and up regulated expression of X-linked genes, suggesting that the D-repeat may play an important role in the regulation of XIST expression and silencing of the X-linked genes, which could provide a new idea in the molecular mechanisms of X-inactivation.
Collapse
Affiliation(s)
- Qingyan Lv
- a Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University , Changchun , 130062 , China
| | - Lin Yuan
- a Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University , Changchun , 130062 , China
| | - Yuning Song
- a Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University , Changchun , 130062 , China
| | - Tingting Sui
- a Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University , Changchun , 130062 , China
| | - Zhanjun Li
- a Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University , Changchun , 130062 , China
| | - Liangxue Lai
- a Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University , Changchun , 130062 , China
| |
Collapse
|
35
|
Valletta S, Dolatshad H, Bartenstein M, Yip BH, Bello E, Gordon S, Yu Y, Shaw J, Roy S, Scifo L, Schuh A, Pellagatti A, Fulga TA, Verma A, Boultwood J. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 2016; 6:44061-71. [PMID: 26623729 PMCID: PMC4792541 DOI: 10.18632/oncotarget.6392] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/08/2015] [Indexed: 12/03/2022] Open
Abstract
Recurrent somatic mutations of the epigenetic modifier and tumor suppressor ASXL1 are common in myeloid malignancies, including chronic myeloid leukemia (CML), and are associated with poor clinical outcome. CRISPR/Cas9 has recently emerged as a powerful and versatile genome editing tool for genome engineering in various species. We have used the CRISPR/Cas9 system to correct the ASXL1 homozygous nonsense mutation present in the CML cell line KBM5, which lacks ASXL1 protein expression. CRISPR/Cas9-mediated ASXL1 homozygous correction resulted in protein re-expression with restored normal function, including down-regulation of Polycomb repressive complex 2 target genes. Significantly reduced cell growth and increased myeloid differentiation were observed in ASXL1 mutation-corrected cells, providing new insights into the role of ASXL1 in human myeloid cell differentiation. Mice xenografted with mutation-corrected KBM5 cells showed significantly longer survival than uncorrected xenografts. These results show that the sole correction of a driver mutation in leukemia cells increases survival in vivo in mice. This study provides proof-of-concept for driver gene mutation correction via CRISPR/Cas9 technology in human leukemia cells and presents a strategy to illuminate the impact of oncogenic mutations on cellular function and survival.
Collapse
Affiliation(s)
- Simona Valletta
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | | | - Bon Ham Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Erica Bello
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | | | - Yiting Yu
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline Shaw
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Swagata Roy
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Laura Scifo
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Anna Schuh
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| |
Collapse
|
36
|
Shabbir MAB, Hao H, Shabbir MZ, Hussain HI, Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J, Yuan Z. Survival and Evolution of CRISPR-Cas System in Prokaryotes and Its Applications. Front Immunol 2016; 7:375. [PMID: 27725818 PMCID: PMC5035730 DOI: 10.3389/fimmu.2016.00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo–gDNA system in genome editing of human cells.
Collapse
Affiliation(s)
- Muhammad Abu Bakr Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory at University of Veterinary and Animal Sciences Lahore , Pakistan
| | - Hafiz Iftikhar Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Mujahid Iqbal
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Dong ZQ, Chen TT, Zhang J, Hu N, Cao MY, Dong FF, Jiang YM, Chen P, Lu C, Pan MH. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Res 2016; 130:50-7. [PMID: 26979473 DOI: 10.1016/j.antiviral.2016.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/24/2022]
Abstract
Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future.
Collapse
Affiliation(s)
- Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ting-Ting Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Jun Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ming-Ya Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Fei-Fan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ya-Ming Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
38
|
Pellagatti A, Dolatshad H, Yip BH, Valletta S, Boultwood J. Application of genome editing technologies to the study and treatment of hematological disease. Adv Biol Regul 2015; 60:122-134. [PMID: 26433620 DOI: 10.1016/j.jbior.2015.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
Genome editing technologies have advanced significantly over the past few years, providing a fast and effective tool to precisely manipulate the genome at specific locations. The three commonly used genome editing technologies are Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas9 (CRISPR/Cas9) system. ZFNs and TALENs consist of endonucleases fused to a DNA-binding domain, while the CRISPR/Cas9 system uses guide RNAs to target the bacterial Cas9 endonuclease to the desired genomic location. The double-strand breaks made by these endonucleases are repaired in the cells either by non-homologous end joining, resulting in the introduction of insertions/deletions, or, if a repair template is provided, by homology directed repair. The ZFNs, TALENs and CRISPR/Cas9 systems take advantage of these repair mechanisms for targeted genome modification and have been successfully used to manipulate the genome in human cells. These genome editing tools can be used to investigate gene function, to discover new therapeutic targets, and to develop disease models. Moreover, these genome editing technologies have great potential in gene therapy. Here, we review the latest advances in the application of genome editing technology to the study and treatment of hematological disorders.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Bon Ham Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Simona Valletta
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
39
|
|