1
|
Moradi-Sardareh H, Esmaeili F, Momtahan S, Tehrani SS, Paknejad M. A double-edged sword effect of silver nanoparticles on angiogenesis in 4T1 breast cancer-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5321-5333. [PMID: 39549061 DOI: 10.1007/s00210-024-03516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are increasingly known to have anticancer effects, but few studies have examined their adverse effects, so the underlying mechanisms are not yet fully understood. The current study investigated the critical influence of AgNPs on angiogenesis in 4T1 breast cancer-bearing mice. METHODS The sub-lethal dose of AgNPs (0.25 mg/kg) was carried out. Female BALB/c mice (N = 35) were divided into 7 groups; normal control, cancer control, AgNPs control (one dose of (0.25 mg/kg) AgNPs), single dose AgNPs before cancer, single dose AgNPs after cancer, 5 doses AgNPs after cancer, and doxorubicin. 4T1 breast cancer cell induction was performed subcutaneously on the left flank. Intraperitoneal (IP) administration of AgNPs and doxorubicin was carried out for all studied groups. RESULTS Weight gain was normal in all study groups except the doxorubicin-treated group. Administering AgNPs before cancer induction promotes tumorigenesis, raises MMP-2 and MMP-9 activity, and increases CD31 and Ki67 expression. The cancer control group experienced the same outcomes. On the other hand, depending on the administered doses, the injection of AgNPs after tumor induction resulted in a notable decrease in tumor volume. In the doxorubicin-treated group, similar results were observed, while a dose of AgNPs before cancer induction lead to increasing tumor volume compared to the cancer control group. The differences of biochemical markers including LDH, ALP, AST, ALT, BUN, and Cr between different groups were not significant. Significant differences were seen among all studied groups except doxorubicin and single dose AgNPs before cancer groups for serum TAC levels. CONCLUSIONS It appears that AgNPs are considered a double-edged sword in the fight against cancer. AgNPs not only have anti-cancer effects on tumor size and angiogenesis, but they also might have cancer-stimulating roles. To confirm this conclusion, more detailed investigations are needed.
Collapse
Affiliation(s)
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Momtahan
- Department of Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mahato OP, Prajapati KP, Ansari M, Mittal S, Mishra N, Anand BG, Kar K. Fabricating Silver Nanoparticles with Antidiabetic d-Pinitol to Restrict Amyloid Formation of Insulin. ACS APPLIED BIO MATERIALS 2025; 8:1934-1945. [PMID: 39928478 DOI: 10.1021/acsabm.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
In this study, we synthesized silver nanoparticles functionalized with antidiabetic d-pinitol molecules and investigated their anti-amyloid effect on Insulin aggregation. Our results show that these functionalized nanoparticles effectively inhibit both spontaneous and seed-induced amyloid aggregation of Insulin in a dose-dependent manner. The d-pinitol-functionalized silver nanoparticles interact directly with the aggregation-prone regions of Insulin's partially unfolded structures, as demonstrated by quenching and computational experiments. Analysis of docking and simulation data suggests that antiamyloid activity of d-pinitol functionalized AgNPs is due to a strong Insulin-nanoparticle interaction, facilitated via hydrogen bonds. These interactions disrupt the Insulin monomer-dimer equilibrium and prevent the formation of toxic amyloid structures. The results could lead to the development of d-pinitol-based Insulin-stabilizing nanoformulations with potential antidiabetic properties.
Collapse
Affiliation(s)
- Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Yang X, Chen Q, Qin J, Chai X, Guo J, Lei B, Kang Y, Zhong M. Spd-CDs-driven respiratory burst oxidase homolog/polyamine oxidase-dependent H 2O 2 signaling molecule engineering for salt tolerance in tomato. Int J Biol Macromol 2025; 306:141680. [PMID: 40037457 DOI: 10.1016/j.ijbiomac.2025.141680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Carbon dots, are now considered safe, environment-friendly materials. Spermidine carbon dots (Spd-CDs) have been used as new agrochemicals for abiotic stress, but in-depth studies of salt stress remain scarce. Here, foliar application of Spd-CDs improved salt stress tolerance in tomatoes, and the beneficial effects were concentration-dependent. Tomato seedlings supplied with Spd-CDs (3.0 mg/L) had a greater height, a higher maximum quantum yield of PSII, and a higher net photosynthetic rate than controls after being exposed to 120 mM NaCl for 7 d. Molecular evidence showed that Spd-CDs promoted H2O2 molecule production by inducing the expression of respiratory burst oxidase homolog 1 (rboh1) and polyamine oxidase 5 (pao5), thus causing H2O2 molecule production and conferring resistance to salt stress. The role of RBOH1- and PAO5-dependent H2O2 molecule generation was evaluated by manipulating endogenous H2O2 levels and in rboh1 and pao5 mutants. Spd-CDs-meditated H2O2 regulation of salt tolerance could be articulated by reducing iron deficiency, maintaining ion homeostasis, and reducing root-to-shoot Na+ loading. Overall, the ROS signal molecule produced by RBOH1 and PAO5 protein was involved in the control of salt tolerance by Spd-CDs. These findings demonstrate that Spd-CDs are an effective and durable strategy to improve plant performance under salt stress, and to increase food security and quality.
Collapse
Affiliation(s)
- Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingqing Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinming Qin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Xirong Chai
- College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Juxian Guo
- Vegetable Research Institute, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
4
|
Soltani Toularoud AA, Nasrollahi S, Goli Kalanpa E, Rouhi Kelarlou T, Nematollahzadeh A. Toxicological impact of silver nanoparticles on soil microbial indicators in contaminated soil (pot experiment). Nanotoxicology 2025; 19:216-231. [PMID: 39835665 DOI: 10.1080/17435390.2025.2454967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Silver nanoparticles (AgNPs), recognized for their unique properties, are widely applied in fields such as agriculture, biotechnology, food security, and medicine. However, concerns persist regarding their interactions with living organisms and potential environmental impacts. This study investigates the effects of AgNPs on key soil microbial indicators that are essential for ecological functioning. A pot experiment was conducted with varying concentrations of AgNPs (0, 30, 60, 120, 240 mg kg-1) and incubation periods (0, 15, 30, and 45 days). The results demonstrated a substantial reduction in microbial indicators, including bacterial and fungal colony-forming units (B.CFUs and F.CFUs), total microbial population (MPN), microbial basal respiration (BR), substrate-induced respiration (SIR), and microbial biomass carbon and nitrogen (MBC and MBN). These declines were more pronounced with increasing AgNP concentrations and prolonged incubation times, particularly within the first 15 days. Notably, even at lower concentrations, AgNPs exhibited significant toxicity to microbial indicators. The most severe impact was observed at 240 mg kg-1 of AgNPs after 45 days, where B.CFUs, F.CFUs, MPN, MBC, and MBN showed substantial declines, with the greatest reduction at the highest concentration. Additionally, the microbial quotient (qmic) decreased by 66%, and variations in the respiratory quotient (qCO2) were observed. Strong positive correlations were found among the microbial indicators, highlighting their interconnected responses to AgNP exposure. Overall, the study emphasizes the significant toxicity of AgNPs, raising concerns about their potential to disrupt soil ecosystems.
Collapse
Affiliation(s)
- Ali Ashraf Soltani Toularoud
- Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Samira Nasrollahi
- Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Esmaiel Goli Kalanpa
- Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Tohid Rouhi Kelarlou
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ali Nematollahzadeh
- Chemical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
5
|
Heikal YM, Shweqa NS, Abdelmigid HM, Alyamani AA, Soliman HM, El-Naggar NEA. Assessment of the Biocontrol Efficacy of Silver Nanoparticles Synthesized by Trichoderma asperellum Against Infected Hordeum vulgare L. Germination. Life (Basel) 2024; 14:1560. [PMID: 39768268 PMCID: PMC11676777 DOI: 10.3390/life14121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the biosynthesis, statistical optimization, characterization, and biocontrol activity of silver nanoparticles (AgNPs) produced by newly isolated Trichoderma sp. The Trichoderma asperellum strain TA-3N was identified based on the ITS gene sequence, together with its phenotypic characteristics (GenBank accession number: OM321439). The color change from light yellow to brown after the incubation period indicates AgNPs biosynthesis. The UV spectrum revealed a single peak with the maximum absorption at 453 nm, indicating that T. asperellum produces AgNPs effectively. A Rotatable Central Composite Design (RCCD) was used to optimize the biosynthesis of AgNPs using the aqueous mycelial-free filtrate of T. asperellum. The optimal conditions for maximum AgNPs biosynthesis (156.02 µg/mL) were predicted theoretically using the desirability function tool and verified experimentally. The highest biosynthetic produced AgNPs by T. asperellum reached 160.3 µg/mL using AgNO3 concentration of 2 mM/mL, initial pH level of 6, incubation time of 60 h, and biomass weight of 6 g/100 mL water. SEM and TEM imaging revealed uniform spherical shape particles that varied in size between 8.17 and 17.74 nm. The synthesized AgNPs have a Zeta potential value of -9.51 mV. FTIR analysis provided insights into the surface composition of AgNPs, identifying various functional groups such as N-H, -OH, C-H, C=O, and the amide I bond in proteins. Cytotoxicity and genotoxicity assays demonstrated that AgNPs in combination with T. asperellum can mitigate the toxic effects of Fusarium oxysporum on barley. This intervention markedly enhanced cell division rates and decreased chromosomal irregularities. The results indicate that AgNPs synthesized by T. asperellum show the potential as an eco-friendly and efficient method for controlling plant diseases. Further studies are necessary to investigate their possible use in the agricultural sector.
Collapse
Affiliation(s)
- Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Nada S. Shweqa
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Hala M. Abdelmigid
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Amal A. Alyamani
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Hoda M. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| |
Collapse
|
6
|
da Silva JRR, de Andrade CO, Ribeiro AC, Macruz PD, da Costa Neves FernandesAlmeida Duarte E, Bergamasco R, de Brito Portela-Castro AL, Fernandes CA. In Vivo Test to Evaluate the Cytotoxicity and Genotoxicity of Natural Zeolite (NZ) Functionalized with Silver Nanoparticles (NZ-AgNPs) on Erythrocytes of Yellowtail Tetra Fish Astyanax lacustris. Biol Trace Elem Res 2024:10.1007/s12011-024-04451-7. [PMID: 39585541 DOI: 10.1007/s12011-024-04451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Silver nanoparticles (AgNPs) have unique properties such as chemical stability, malleability, flexibility, high electrical and thermal conductivity, and catalytic activity, making them suitable for various applications. However, they also pose potential toxicity and environmental contamination risks. Natural zeolites (NZs) are considered excellent inorganic support for reducing the toxicity of AgNPs. The scope of this study was to carry out a comparative assessment of the cytotoxic and genotoxic effects of NZ, NZ functionalized with silver nanoparticles (NZ-AgNPs), and commercial AgNPs on fish Astyanax lacustris. Micronucleus (MN) test, cellular morphological change (CMC) test, and the comet assay were used to assess the effects of the nanoparticles. A. lacustris specimens were exposed to a concentrations of 0.1 mg l-1 in the NZs, NZ-AgNPs, and commercial AgNPs for 96 h during the experiment. The results showed no significant difference between the negative control and NZ. Moreover, NZ-AgNPs exhibited reduced toxicities compared to commercial AgNPs, which caused higher levels of alterations and cellular damage. The study concluded that NZs effectively reduced cytotoxicity/genotoxicity in A. lacustris specimens when used to support AgNPs.
Collapse
Affiliation(s)
- Josiane Rodrigues Rocha da Silva
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil.
| | - Camila Oliveira de Andrade
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Anna Carla Ribeiro
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Linking Landscape, Environment, Agriculture and Food, School of Agriculture - University of Lisbon, Lisbon, Portugal
| | - Paula Derksen Macruz
- Department of Chemical, Biomolecules and Mass Spectrometry Laboratory, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Luiza de Brito Portela-Castro
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| | - Carlos Alexandre Fernandes
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
7
|
Singha ER, Das I, Patar A, Paul S, Giri S, Giri A. Effects of changed water regime on the toxicity of silver nanoparticles (AgNPs) in tadpoles of Fejervarya limnocharis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54873-54886. [PMID: 39215917 DOI: 10.1007/s11356-024-34832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Climate change is viewed as one of the important causes of the amphibian population decline. Aspects of climate change like increase in water temperature and drying up of habitats have been underrepresented. The expanding production and usage of metal nanoparticles like silver nanoparticles (AgNPs) make them likely to end up in aquatic ecosystems. To arrive at a realistic assessment of the impact of AgNPs in a warming world, we have investigated the effects of temperature on the acute toxicity of AgNPs in tadpoles of Fejervarya limnocharis at 24, 48, 72 and 96 h of exposure. The various aspects of sub-lethal toxicities of AgNPs with increase in temperature were also investigated. Besides, the effects of habitat desiccation on the sub-lethal toxicities of AgNPs in the tadpoles were analysed. The LC50 values of AgNPs at four different time points were found to be significantly different between the two different temperatures. Alterations in survival pattern, life history traits, amplifications in genotoxic potential and oxidative stress were observed with increased water temperature following AgNP exposure. The phenomenon of habitat desiccation was also found to significantly affect the toxicity of AgNPs with respect to alterations in mortality rate, time to metamorphosis and morphometric parameters of metamorphosed tadpoles. The findings suggest that changed water regime such as increased water temperature as well as reduction in water level accelerated the toxic effects of AgNPs in F. limnocharis tadpoles which is likely to affect their natural populations.
Collapse
Affiliation(s)
- Erom Romi Singha
- Environment and Human Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Indranil Das
- Environment and Human Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Arabinda Patar
- Environment and Human Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Sagorika Paul
- Environment and Human Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Sarbani Giri
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Anirudha Giri
- Environment and Human Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India.
| |
Collapse
|
8
|
Osak P, Skwarek S, Łukowiec D, Przeliorz G, Łosiewicz B. Preparation and Characterization of Oxide Nanotubes on Titanium Surface for Use in Controlled Drug Release Systems. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3753. [PMID: 39124417 PMCID: PMC11313194 DOI: 10.3390/ma17153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Preventing or treating infections at implantation sites where the risk of bacterial contamination is high requires the development of intelligent drug delivery systems. The objective of this work was to develop a production method and characterization of fourth-generation oxide nanotubes on titanium grade 4 surface as a potential drug carrier. This study focused on the anodizing process; physico-chemical characterization using FE-SEM, EDS, and FTIR; in vitro corrosion resistance in an artificial saliva solution; and determining the drug release kinetics of gentamicin sulfate using UV-VIS. The anodizing process was optimized to produce fourth-generation oxide nanotubes in a fluoride-free electrolyte, ensuring rapid growth and lack of order. Results showed that the length of the oxide nanotubes was inversely proportional to the anodizing voltage, with longer nanotubes formed at lower voltages. The nanotubes were shown to have a honeycomb structure with silver particles co-deposited on the surface for antibacterial properties and were capable of carrying and releasing the antibiotic gentamicin sulfate in a controlled manner, following Fick's first law of diffusion. The corrosion resistance study demonstrates that the oxide nanotubes enhance the corrosion resistance of the titanium surface. The oxide nanotubes show promise in enhancing osseointegration and reducing post-implantation complications.
Collapse
Affiliation(s)
- Patrycja Osak
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Sandra Skwarek
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
| | | | - Bożena Łosiewicz
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
9
|
Encinas-Gimenez M, Martin-Duque P, Martín-Pardillos A. Cellular Alterations Due to Direct and Indirect Interaction of Nanomaterials with Nucleic Acids. Int J Mol Sci 2024; 25:1983. [PMID: 38396662 PMCID: PMC10889090 DOI: 10.3390/ijms25041983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxyribonucleic acid (DNA) represents the main reservoir of genetic information in the cells, which is why it is protected in the nucleus. Entry into the nucleus is, in general, difficult, as the nuclear membrane is a selective barrier to molecules longer than 40 kDa. However, in some cases, the size of certain nanoparticles (NPs) allows their internalization into the nucleus, thus causing a direct effect on the DNA structure. NPs can also induce indirect effects on DNA through reactive oxygen species (ROS) generation. In this context, nanomaterials are emerging as a disruptive tool for the development of novel therapies in a broad range of biomedical fields; although their effect on cell viability is commonly studied, further interactions with DNA or indirect alterations triggered by the internalization of these materials are not always clarified, since the small size of these materials makes them perfectly suitable for interaction with subcellular structures, such as the nucleus. In this context, and using as a reference the predicted interactions presented in a computational model, we describe and discuss the observed direct and indirect effects of the implicated nanomaterials on DNA.
Collapse
Affiliation(s)
- Miguel Encinas-Gimenez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Martin-Duque
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Centro de Terapias Avanzadas, Instituto de Salud Carlos lll, 28222 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
11
|
Asif K, Adeel M, Rahman MM, Sfriso AA, Bartoletti M, Canzonieri V, Rizzolio F, Caligiuri I. Silver nitroprusside as an efficient chemodynamic therapeutic agent and a peroxynitrite nanogenerator for targeted cancer therapies. J Adv Res 2024; 56:43-56. [PMID: 36958586 PMCID: PMC10834793 DOI: 10.1016/j.jare.2023.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
INTRODUCTION Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. OBJECTIVES To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. METHODS A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. RESULTS AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•-) including peroxynitrite (ONOO-) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). CONCLUSION This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| | | | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
12
|
Żyro D, Sikora J, Szynkowska-Jóźwik MI, Ochocki J. Silver, Its Salts and Application in Medicine and Pharmacy. Int J Mol Sci 2023; 24:15723. [PMID: 37958707 PMCID: PMC10650883 DOI: 10.3390/ijms242115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The healing properties of silver have been used since ancient times. The main aim of the study was to collect and review the literature on the clinical potential of silver, its salts and complex compounds. The second goal was to present an outline of the historical use of silver in medicine and pharmacy, taking into account the possibility of producing pharmaceutical drug forms on the premises of pharmacies. In the context of the growing resistance of microorganisms to available, widely used antibiotics, silver plays a key role. There is only one known case of bacterial resistance to silver-the Pseudomonas stutzeri strain, which naturally occurs in silver mines. The development of research in the field of coordination chemistry offers great opportunities in the design of new substances in which silver ions can be incorporated. These substances exhibit increased potency and often an extended antimicrobial spectrum. Silver-based compounds are, however, only limited to external applications, as opposed to their historic oral administration. Advanced studies of their physicochemical, microbiological, cytotoxic and genotoxic properties are ongoing and full of challenges. The improvement of the methods of synthesis gives the possibility of applying the newly synthesized compounds ex tempore, as was the case with the complex of metronidazole with silver (I) nitrate. Some of these experimental efforts performed in vitro are followed with clinical trials. The third and final goal of this study was to present the possibility of obtaining an ointment under the conditions of an actual pharmacy using silver (I) salts and a ligand, both of which are active substances with antimicrobial properties.
Collapse
Affiliation(s)
- Dominik Żyro
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Małgorzata Iwona Szynkowska-Jóźwik
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland;
| | - Justyn Ochocki
- Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
13
|
Nie L, Chang P, Okoro OV, Ayran M, Gunduz O, Hu K, Wang T, Shavandi A. Synthesis, physicochemical characteristics, cytocompatibility, and antibacterial properties of iron-doped biphasic calcium phosphate nanoparticles with incorporation of silver. Biomed Phys Eng Express 2023; 9:065016. [PMID: 37748457 DOI: 10.1088/2057-1976/acfcbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
The application of biphasic calcium phosphate (BCP) in tissue engineering and regenerative medicine has been widely explored due to its extensively documented multi-functionality. The present study attempts to synthesize a new type of BCP nanoparticles, characterised with favourable cytocompatibility and antibacterial properties via modifications in their structure, functionality and assemblage, using dopants. In this regard, this study initially synthesized iron-doped BCP (FB) nanoparticles with silver subsequently incorporated into FB nanoparticles to create a nanostructured composite (FBAg). The FB and FBAgnanoparticles were then characterized using Fourier transform infrared spectroscopy, x-ray diffraction, ultraviolet-visible spectroscopy, and x-ray photoelectron spectroscopy. The results showed that silver was present in the FBAgnanoparticles, with a positive correlation observed between increasing AgNO3concentrations and increasing shape irregularity and reduced particle size distribution. Additionally, cell culture tests revealed that both FB and FBAgnanoparticles were compatible with bone marrow-derived mesenchymal stem cells (hBMSCs). The antibacterial activity of the FBAgnanoparticles was also tested using Gram-negativeE. coliand Gram-positiveS. aureus, and was found to be effective against both bacteria. The inhibition rates of FBAgnanoparticles againstE. coliandS. aureuswere 33.78 ± 1.69-59.03 ± 2.95%, and 68.48 ± 4.11-89.09 ± 5.35%, respectively. These findings suggest that the FBAgnanoparticles have potential use in future biomedical applications.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, People's Republic of China
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Pengbo Chang
- Department of Materials Engineering, Zhengzhou Technical College, Zhengzhou 450121, People's Republic of China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Musa Ayran
- Center for Nanotechnology and Biomaterials Application & Research (NBUAM), Marmara University, Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application & Research (NBUAM), Marmara University, Istanbul, Turkey
| | - Kehui Hu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tianwen Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, People's Republic of China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Zhang P, Gong J, Jiang Y, Long Y, Lei W, Gao X, Guo D. Application of Silver Nanoparticles in Parasite Treatment. Pharmaceutics 2023; 15:1783. [PMID: 37513969 PMCID: PMC10384186 DOI: 10.3390/pharmaceutics15071783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Weiqiang Lei
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
15
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Qi M, Wang X, Chen J, Liu Y, Liu Y, Jia J, Li L, Yue T, Gao L, Yan B, Zhao B, Xu M. Transformation, Absorption and Toxicological Mechanisms of Silver Nanoparticles in the Gastrointestinal Tract Following Oral Exposure. ACS NANO 2023; 17:8851-8865. [PMID: 37145866 DOI: 10.1021/acsnano.3c00024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".
Collapse
Affiliation(s)
- Mengying Qi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang Z, Ma Z, Cheng X, Li X, Wang N, Zhang F, Wei B, Li Q, An Z, Wu W, Liu S. Effects of silver nanoparticles on maternal mammary glands and offspring development under lactation exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114869. [PMID: 37037110 DOI: 10.1016/j.ecoenv.2023.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The widespread applications of silver nanoparticles (AgNPs) throughout our daily lives have raised concerns regarding their environmental health and safety (EHS). Despite an increasing number of studies focused on the EHS impacts of AgNPs, there remain significant knowledge gaps with respect to their potential health impacts on susceptible populations, such as lactating mothers and infants. Herein, we aimed to investigate the deleterious effects of AgNPs with different sizes (20 and 40 nm) and surface coatings (PVP and BPEI) on maternal mice and their offspring following lactation exposure at doses of 20, 100 and 400 μg/kg body weight. We discovered that AgNPs could accumulate in the maternal mammary glands and disrupt the epithelial barrier in a dose-dependent manner. Notably, BPEI-coated AgNPs caused more damage to the mammary glands than PVP-coated particles. Importantly, we observed that, while AgNPs were distributed throughout the blood and main tissues, they were particularly enriched in the brains of breastfed offspring after maternal exposure during lactation, exhibiting exposure dosage- and particle coating-dependent patterns. Compared to PVP-coated nanoparticles, BPEI-coated AgNPs were more readily transferred to the offspring, possibly due to their enhanced deposition in maternal mammary glands. Moreover, we observed reduced body weight, blood cell toxicity, and tissue injuries in breastfed offspring whose dams received AgNPs. As a whole, these results reveal that maternal exposure to AgNPs results in the translocation of AgNPs into offspring via breastfeeding, inducing developmental impairments in these breastfed offspring. This study provides important new insights into the EHS impacts of AgNP consumption during lactation.
Collapse
Affiliation(s)
- Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Zhenzhu Ma
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaodie Cheng
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaoya Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ning Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bing Wei
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qingqing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Nie P, Zhao Y, Xu H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114636. [PMID: 36806822 DOI: 10.1016/j.ecoenv.2023.114636] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles (AgNPs) have become one of the most popular objects of study for the past few decades. The ability to design AgNPs through different synthetic methods according to the application area and desired features is their advantage in many applications. Green synthesis of silver nanoparticles has become one of the most potential synthesis methods. Because of their strong antibacterial activity, AgNPs have been used in a wide range of applications, such as food packaging and medical products and devices. With the increasing application of AgNPs, it is becoming necessary for a better understanding of the toxicity of AgNPs and their potential mechanism of toxicity. In the review, we first describe the synthetic methods of AgNPs. The application of AgNPs in the field is then briefly described. The toxicity of AgNPs and their potential toxicity mechanisms are discussed.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
19
|
Piñera-Avellaneda D, Buxadera-Palomero J, Ginebra MP, Calero JA, Manero JM, Rupérez E. Surface competition between osteoblasts and bacteria on silver-doped bioactive titanium implant. BIOMATERIALS ADVANCES 2023; 146:213311. [PMID: 36709627 DOI: 10.1016/j.bioadv.2023.213311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The rapid integration in the bone tissue and the prevention of bacterial infection are key for the success of the implant. In this regard, a silver (Ag)-doped thermochemical treatment that generate an Ag-doped calcium titanate layer on titanium (Ti) implants was previously developed by our group to improve the bone-bonding ability and provide antibacterial activity. In the present study, the biological and antibacterial potential of this coating has been further studied. In order to prove that the Ag-doped layer has an antibacterial effect with no detrimental effect on the bone cells, the behavior of osteoblast-like cells in terms of cell adhesion, morphology, proliferation and differentiation was evaluated, and the biofilm inhibition capacity was assessed. Moreover, the competition by the surface between cell and bacteria was carried out in two different co-culture methods. Finally, the treatment was applied to porous Ti implants to study in vivo osteointegration. The results show that the incorporation of Ag inhibits the biofilm formation and has no effect on the performance of osteoblast-like cells. Therefore, it can be concluded that the Ag-doped surface is capable of preventing bone bacterial infection and providing suitable osseointegration.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain.
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| | - José A Calero
- AMES GROUP, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| |
Collapse
|
20
|
Park HY, Chung C, Eiken MK, Baumgartner KV, Fahy KM, Leung KQ, Bouzos E, Asuri P, Wheeler KE, Riley KR. Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. FRONTIERS IN TOXICOLOGY 2023; 5:1081753. [PMID: 36926649 PMCID: PMC10011623 DOI: 10.3389/ftox.2023.1081753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Biomolecules bind to and transform nanoparticles, mediating their fate in biological systems. Despite over a decade of research into the protein corona, the role of protein modifications in mediating their interaction with nanomaterials remains poorly understood. In this study, we evaluated how glycation of the most abundant blood protein, human serum albumin (HSA), influences the formation of the protein corona on 40 nm silver nanoparticles (AgNPs) and the toxicity of AgNPs to the HepG2 human liver cell line. Methods: The effects of glycation on AgNP-HSA interactions were quantified using circular dichroism spectroscopy to monitor protein structural changes, dynamic light scattering to assess AgNP colloidal stability, zeta potential measurements to measure AgNP surface charge, and UV-vis spectroscopy and capillary electrophoresis (CE) to evaluate protein binding affinity and kinetics. The effect of the protein corona and HSA glycation on the toxicity of AgNPs to HepG2 cells was measured using the WST cell viability assay and AgNP dissolution was measured using linear sweep stripping voltammetry. Results and Discussion: Results from UV-vis and CE analyses suggest that glycation of HSA had little impact on the formation of the AgNP protein corona with protein-AgNP association constants of ≈2x107 M-1 for both HSA and glycated HSA (gHSA). The formation of the protein corona itself (regardless of whether it was formed from HSA or glycated HSA) caused an approximate 2-fold decrease in cell viability compared to the no protein AgNP control. While the toxicity of AgNPs to cells is often attributed to dissolved Ag(I), dissolution studies showed that the protein coated AgNPs underwent less dissolution than the no protein control, suggesting that the protein corona facilitated a nanoparticle-specific mechanism of toxicity. Overall, this study highlights the importance of protein coronas in mediating AgNP interactions with HepG2 cells and the need for future work to discern how protein coronas and protein modifications (like glycation) may alter AgNP reactivity to cellular organisms.
Collapse
Affiliation(s)
- Hee-Yon Park
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| | - Christopher Chung
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| | - Madeline K. Eiken
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Karl V. Baumgartner
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kira M. Fahy
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kaitlyn Q. Leung
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Evangelia Bouzos
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Korin E. Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kathryn R. Riley
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| |
Collapse
|
21
|
Lomphithak T, Fadeel B. Die hard: cell death mechanisms and their implications in nanotoxicology. Toxicol Sci 2023; 192:kfad008. [PMID: 36752525 PMCID: PMC10109533 DOI: 10.1093/toxsci/kfad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cell death is a fundamental biological process, and its fine-tuned regulation is required for life. However, the complexity of regulated cell death is often reduced to a matter of live-dead discrimination. Here, we provide a perspective on programmed or regulated cell death, focusing on apoptosis, pyroptosis, necroptosis, and ferroptosis (the latter three cell death modalities are examples of regulated necrosis). We also touch on other, recently described manifestations of (pathological) cell death including cuproptosis. Furthermore, we address how engineered nanomaterials impact on regulated cell death. We posit that an improved understanding of nanomaterial-induced perturbations of cell death may allow for a better prediction of the consequences of human exposure and could also yield novel approaches by which to mitigate these effects. Finally, we provide examples of the harnessing of nanomaterials to achieve cancer cell killing through the induction of regulated cell death.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
22
|
Fahy KM, Eiken MK, Baumgartner KV, Leung KQ, Anderson SE, Berggren E, Bouzos E, Schmitt LR, Asuri P, Wheeler KE. Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS OMEGA 2023; 8:3310-3318. [PMID: 36713725 PMCID: PMC9878656 DOI: 10.1021/acsomega.2c06882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Engineered nanomaterials (ENMs) are synthesized with a diversity of surface chemistries that mediate biochemical interactions and physiological response to the particles. In this work, silver engineered nanomaterials (AgENMs) are used to evaluate the role of surface charge in protein interactions and cellular cytotoxicity. The most abundant protein in blood, human serum albumin (HSA), was interacted with 40 nm AgENMs with a range of surface-charged coatings: positively charged branched polyethyleneimine (bPEI), negatively charged citrate (CIT), and circumneutral poly(ethylene glycol) (PEG). HSA adsorption to AgENMs was monitored by UV-vis spectroscopy and dynamic light scattering, while changes to the protein structure were evaluated with circular dichroism spectroscopy. Binding affinity for citrate-coated AgENMs and HSA is largest among the three AgENM coatings; yet, HSA lost the most secondary structure upon interaction with bPEI-coated AgENMs compared to the other two coatings. HSA increased AgENM oxidative dissolution across all particle types, with the greatest dissolution for citrate-coated AgENMs. Results indicate that surface coating is an important consideration in transformation of both the particle and protein upon interaction. To connect results to cellular outcomes, we also performed cytotoxicity experiments with HepG2 cells across all three AgENM types with and without HSA. Results show that bPEI-coated AgENMs cause the greatest loss of cell viability, both with and without inclusion of HSA with the AgENMs. Thus, surface coatings on AgENMs alter both biophysical interactions with proteins and particle cytotoxicity. Within this study set, positively charged bPEI-coated AgENMs cause the greatest disruption to HSA structure and cell viability.
Collapse
Affiliation(s)
- Kira M. Fahy
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Madeline K. Eiken
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Karl V. Baumgartner
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Kaitlyn Q. Leung
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Sarah E. Anderson
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Erik Berggren
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Evangelia Bouzos
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Lauren R. Schmitt
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Prashanth Asuri
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Korin E. Wheeler
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| |
Collapse
|
23
|
Zhang X, Wei P, Yang Z, Liu Y, Yang K, Cheng Y, Yao H, Zhang Z. Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing. Pharmaceutics 2022; 15:pharmaceutics15010068. [PMID: 36678696 PMCID: PMC9864871 DOI: 10.3390/pharmaceutics15010068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Wound dressing is an important tool for wound management. Designing wound dressings by combining various novel materials and drugs to optimize the peri-wound environment and promote wound healing is a novel concept. Hydrogels feature good ductility, high water content, and favorable oxygen transport, which makes them become some of the most promising materials for wound dressings. In addition, nanomaterials exhibit superior biodegradability, biocompatibility, and colloidal stability in wound healing and can play a role in promoting healing through their nanoscale properties or as carriers of other drugs. By combining the advantages of both technologies, several outstanding and efficient wound dressings have been developed. In this paper, we classify nano-based hydrogel dressings into four categories: hydrogel dressings loaded with a nanoantibacterial drug; hydrogel dressings loaded with oxygen-delivering nanomedicines; hydrogel dressings loaded with nanonucleic acid drugs; and hydrogel dressings loaded with other nanodelivered drugs. The design ideas, advantages, and challenges of these nano-based hydrogel wound dressings are reviewed and analyzed. Finally, we envisaged possible future directions for wound dressings in the context of relevant scientific and technological advances, which we hope will inform further research in wound management.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Pengyu Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kairui Yang
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhao Cheng
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.C.); (H.Y.)
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Correspondence: (Y.C.); (H.Y.)
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
24
|
Sengani M, V B, Banerjee M, Choudhury AA, Chakraborty S, Ramasubbu K, Rajeswari V D, Al Obaid S, Alharbi SA, Subramani B, Brindhadevi K. Evaluation of the anti-diabetic effect of biogenic silver nanoparticles and intervention in PPARγ gene regulation. ENVIRONMENTAL RESEARCH 2022; 215:114408. [PMID: 36154863 DOI: 10.1016/j.envres.2022.114408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The current study demonstrated a green, friendly, low-cost biosynthesis of silver nanoparticles (AgNPs) from Kigelia africana leaves (Lam.) Benth. extract (KAE) as both a major capping and reducing agent. The produced AgNPs were characterized using a variety of analytical methods, like the X-ray powder diffraction (XRD), HRTEM, Fourier transforms infrared (FTIR), and UV-Vis spectrophotometer. The formation of AgNPs with maximum absorbance at max = 435 nm was endorsed by surface plasmon resonance. FTIR analysis revealed that biological macromolecules of KAE were involved in the stabilization and synthesis of AgNPs. At the same time, HRTEM images revealed that the average particle size of the spherical AgNPs ranged from about 25 nm to 35 nm. Further, cytotoxicity assessment of AgNPs was done using the RINm5F insulinoma cell line with an MTT assay. Followed by, the RINm5F insulinoma cells treated with AgNPs and KAE, the expression of the Peroxisome proliferator-activated receptor gamma (PPARγ) gene was accessed. The results showed gene expression was upregulated in the RINm5F insulinoma cell line thus confirming AgNPs and KAE anti-diabetic efficacy. Furthermore, the findings show that nanotechnology has enhanced the effectiveness of current methodologies in gene expression and regulation which has contributed to the emergence of different forms of advanced regulatory systems.
Collapse
Affiliation(s)
- Manimegalai Sengani
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, 600087, India
| | - Bavithra V
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Manosi Banerjee
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Abbas Alam Choudhury
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Shreya Chakraborty
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kanagavalli Ramasubbu
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Devi Rajeswari V
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health, San Antonio, TX, USA
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
25
|
Assar DH, Mokhbatly AAA, Ghazy EW, Elbialy ZI, Gaber AA, Hassan AA, Nabil A, Asa SA. Silver nanoparticles induced hepatoxicity via the apoptotic/antiapoptotic pathway with activation of TGFβ-1 and α-SMA triggered liver fibrosis in Sprague Dawley rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80448-80465. [PMID: 35716303 PMCID: PMC9596550 DOI: 10.1007/s11356-022-21388-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Despite the extraordinary use of silver nanoparticles (AgNPs) in medicinal purposes and the food industry, there is rising worry about potential hazards to human health and the environment. The existing study aims to assess the hepatotoxic effects of different dosages of AgNPs by evaluating hematobiochemical parameters, oxidative stress, liver morphological alterations, immunohistochemical staining, and gene expression to clarify the mechanism of AgNPs' hepatic toxic potential. Forty male Sprague Dawley rats were randomly assigned into control and three AgNPs intraperitoneally treated groups 0.25, 0.5, and 1 mg/kg b.w. daily for 15 and 30 days. AgNP exposure reduced body weight, caused haematological abnormalities, and enhanced hepatic oxidative and nitrosative stress with depletion of the hepatic GSH level. Serum hepatic injury biomarkers with pathological hepatic lesions where cholangiopathy emerges as the main hepatic alteration in a dosage- and duration-dependent manner were also elevated. Furthermore, immunohistochemical labelling of apoptotic markers demonstrated that Bcl-2 was significantly downregulated while caspase-3 was significantly upregulated. In conclusion, the hepatotoxic impact of AgNPs may be regulated by two mechanisms, implying the apoptotic/antiapoptotic pathway via raising BAX and inhibiting Bcl-2 expression levels in a dose-dependent manner. The TGF-β1 and α-SMA pathway which triggered fibrosis with incorporation of iNOS which consequently activates the inflammatory process were also elevated. To our knowledge, there has been no prior report on the experimental administration of AgNPs in three different dosages for short and long durations in rats with the assessment of Bcl-2, BAX, iNOS, TGF-β1, and α-SMA gene expressions.
Collapse
Affiliation(s)
- Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Abd-Allah A. Mokhbatly
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Emad W. Ghazy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ahmed A. Gaber
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ayman A. Hassan
- High Technological Institute of Applied Health Sciences, Egypt Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansora Egypt
| | - Ahmed Nabil
- Beni-Suef University, Beni-Suef, Egypt
- Egypt Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansora Egypt
| | - Samah Abou Asa
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
26
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
27
|
Ahmed AAA, Aldeen TS, Al-Aqil SA, Alaizeri ZM, Megahed S. Synthesis of Trimetallic (Ni-Cu)@Ag Core@Shell Nanoparticles without Stabilizing Materials for Antibacterial Applications. ACS OMEGA 2022; 7:37340-37350. [PMID: 36312413 PMCID: PMC9607666 DOI: 10.1021/acsomega.2c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We report a simple method to prepare colloidal trimetallic (Ni-Cu)@Ag core@shell nanoparticles (NPs) without stabilizing materials. Experimental evidence was found for the successful synthesis of these NPs using X-ray diffraction (XRD), optical spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The presence of core metals (Ni and Cu) was confirmed by elemental analysis using a total reflection X-ray fluorescence (TXRF) analysis. In addition, the absorption spectra of the prepared samples exhibited broad bands compared to the bands of the monometallic NPs, indicating the formation of a core-shell nanostructure. The antibacterial activity of the trimetallic NPs was evaluated against three Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Salmonella) and two Gram-positive (Streptococcus and Staphylococcus aureus) bacteria on Mueller-Hinton agar. These NPs showed high inhibition of bacterial growth at the low sample concentrations used in this study compared to other nanomaterials. One of the interesting results of the current study is that the inhibition zone of Pseudomonas aeruginosa as a resistant bacterium was high for most NPs. These results make the prepared samples promising candidates for antibiotic material applications.
Collapse
Affiliation(s)
- Abdullah A. A. Ahmed
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar87246, Yemen
| | - Thana S. Aldeen
- Department
of Physics, Faculty of Science, Sana’a
University, Sanaa12544, Yemen
| | - Samar A. Al-Aqil
- Department
of Physics, Faculty of Education & Sciences, Al-Baydha University, Al-Baydha, Yemen
| | - ZabnAllah M. Alaizeri
- Department
of Physics, Faculty of Education & Sciences, Al-Baydha University, Al-Baydha, Yemen
| | - Saad Megahed
- Department
of Physics, Faculty of Science, Al-Azhar
University, Cairo, Egypt
| |
Collapse
|
28
|
Zhao L, Bai T, Wei H, Gardea-Torresdey JL, Keller A, White JC. Nanobiotechnology-based strategies for enhanced crop stress resilience. NATURE FOOD 2022; 3:829-836. [PMID: 37117882 DOI: 10.1038/s43016-022-00596-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/16/2022] [Indexed: 04/30/2023]
Abstract
Nanobiotechnology approaches to engineering crops with enhanced stress tolerance may be a safe and sustainable strategy to increase crop yield. Under stress conditions, cellular redox homeostasis is disturbed, resulting in the over-accumulation of reactive oxygen species (ROS) that damage biomolecules (lipids, proteins and DNA) and inhibit crop growth and yield. Delivering ROS-scavenging nanomaterials to plants has been shown to alleviate abiotic stress. Here we review the current state of knowledge of using ROS-scavenging nanomaterials to enhance plant stress tolerance. When present below a threshold level, ROS can mediate redox signalling and defence pathways that foster plant acclimatization against stress. We find that ROS-triggering nanomaterials, such as nanoparticulate silver and copper oxide, have the potential to be judiciously applied to crop species to stimulate the defence system, prime stress responses and subsequently increase the stress resistance of crops.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China.
| | - Tonghao Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China
| | | | - Arturo Keller
- Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, CT, USA.
| |
Collapse
|
29
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
30
|
Bellingeri A, Scattoni M, Venditti I, Battocchio C, Protano G, Corsi I. Ecologically based methods for promoting safer nanosilver for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129523. [PMID: 35820334 DOI: 10.1016/j.jhazmat.2022.129523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Nanosilver, widely employed in consumer products as biocide, has been recently proposed as sensor, adsorbent and photocatalyst for water pollution monitoring and remediation. Since nanosilver ecotoxicity still pose limitations to its environmental application, a more ecological exposure testing strategy should be coupled to the development of safer formulations. Here, we tested the environmental safety of novel bifunctionalized nanosilver capped with citrate and L-cysteine (AgNPcitLcys) as sensor/sorbent of Hg2+ in terms of behaviour and ecotoxicity on microalgae (1-1000 µg/L) and microcrustaceans (0.001-100 mg/L), from the freshwater and marine environment, in acute and chronic scenarios. Acute toxicity resulted poorly descriptive of nanosilver safety while chronic exposure revealed stronger effects up to lethality. Low dissolution of silver ions from AgNPcitLcys was observed, however a nano-related ecotoxicity is hypothesized. Double coating of AgNPcitLcys succeeded in mitigating ecotoxicity to tested organisms, hence encouraging further research on safer nanosilver formulations. Environmentally safe applications of nanosilver should focus on ecologically relevant exposure scenarios rather than relying only on acute exposure data.
Collapse
Affiliation(s)
- Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Mattia Scattoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
31
|
Liu L, An X, Schaefer M, Yan B, de la Torre C, Hillmer S, Gladkich J, Herr I. Nanosilver inhibits the progression of pancreatic cancer by inducing a paraptosis-like mixed type of cell death. Biomed Pharmacother 2022; 153:113511. [PMID: 36076598 DOI: 10.1016/j.biopha.2022.113511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022] Open
Abstract
Silver has been in clinical use since ancient times and silver nanoparticles (AgNPs) have attracted attention in cancer therapy. We investigated the mechanisms by which AgNPs inhibit pancreatic ductal adenocarcinoma (PDAC). AgNPs were synthesized and 3 human PDAC and 2 nonmalignant primary cell lines were treated with AgNPs. MTT, MAPK, colony, spheroid and scratch assays, Western blotting, TEM, annexin V, 7-AAD, and H2DCFDA staining, FACS analysis, mRNA array and bioinformatics analyses, tumor xenograft transplantation, and immunohistochemistry of the treated cells were performed. We found that minimal AgNPs amounts selectively eradicated PDAC cells within a few hours. AgNPs inhibited cell migration and spheroid and colony formation, damaged mitochondria, and induced paraptosis-like cell death with the presence of cytoplasmic vacuoles, dilation of the ER and mitochondria, ROS formation, MAPK activity, and p62 and LC3b expression, whereas effects on the nucleus, DNA fragmentation, or caspases were not detectable. AgNPs strongly decreased tumor xenograft growth without side effects and reduced the expression of markers for proliferation and DNA repair, but upregulated paraptosis markers. The results highlight nanosilver as complementary agent to improve the therapeutic efficacy in pancreatic cancer.
Collapse
Affiliation(s)
- Li Liu
- Section Surgical Research, Molecular OncoSurgery, Department of General, Visceral and Transplantation Surgery, Ruprecht Karls University of Heidelberg, Medical Faculty Heidelberg, Germany.
| | - XueFeng An
- Section Surgical Research, Molecular OncoSurgery, Department of General, Visceral and Transplantation Surgery, Ruprecht Karls University of Heidelberg, Medical Faculty Heidelberg, Germany.
| | - Michael Schaefer
- Section Surgical Research, Molecular OncoSurgery, Department of General, Visceral and Transplantation Surgery, Ruprecht Karls University of Heidelberg, Medical Faculty Heidelberg, Germany.
| | - Bin Yan
- Section Surgical Research, Molecular OncoSurgery, Department of General, Visceral and Transplantation Surgery, Ruprecht Karls University of Heidelberg, Medical Faculty Heidelberg, Germany.
| | - Carolina de la Torre
- Microarray Analytics - NPGS Core Facility, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Heidelberg, Germany.
| | - Stefan Hillmer
- Electron Microscopy Core Facility, University of Heidelberg, Heidelberg, Germany.
| | - Jury Gladkich
- Section Surgical Research, Molecular OncoSurgery, Department of General, Visceral and Transplantation Surgery, Ruprecht Karls University of Heidelberg, Medical Faculty Heidelberg, Germany.
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery, Department of General, Visceral and Transplantation Surgery, Ruprecht Karls University of Heidelberg, Medical Faculty Heidelberg, Germany.
| |
Collapse
|
32
|
Genotoxic effects of silver nanoparticles on a tropical marine amphipod via feeding exposure. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503527. [DOI: 10.1016/j.mrgentox.2022.503527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
|
33
|
Multi-Biofunctional Silver-Containing Metallosupramolecular Nanogels for Efficient Antibacterial Treatment and Selective Anticancer Therapy. Acta Biomater 2022; 151:576-587. [PMID: 35933102 DOI: 10.1016/j.actbio.2022.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
We develop a simple and efficient route for the fabrication of water-soluble metallosupramolecular polymers. We demonstrate that the introduction of environment-responsive metal-organic complexes within supramolecular polymers endows the resulting self-assembled nano-objects with outstanding antibacterial activity and may significantly improve the efficacy and safety of selective cancer therapy. Herein, we successfully developed a silver-containing supramolecular polymer (Ag-Cy-J) possessing a hydrophilic Jeffamine backbone and highly sensitive pH-responsive cytosine-silver-cytosine (Cy-Ag-Cy) linkages, which spontaneously self-assemble to produce sterically stabilized spherical nanogels in water. The resulting nanogels exhibit several attractive features such as unique fluorescence behavior in water, highly stable self-assembled structures in biological media, significant antihemolytic capability, highly sensitive pH-responsiveness and broad-spectrum antibacterial activity against various bacteria strains. Importantly, in vitro cellular assays clearly demonstrated Ag-Cy-J nanogels highly selectively target and induce cytotoxicity in cancer cells, without affecting normal cells. The selective cytotoxic activity in cancer cells is attributed to rapid dissociation of the Cy-Ag-Cy complexes within the nanogels in the cancer cell microenvironment, followed by the intracellular release of silver ions and induction of rapid, massive apoptosis. Overall, the pH-sensitive Cy-Ag-Cy complexes within this supramolecular nanogel system may provide a route to remarkably improve the efficacy of both antibacterial and cancer drug therapies. STATEMENT OF SIGNIFICANCE: : We present a significant breakthrough in the development of a water-soluble silver-containing metallosupramolecular polymer (Ag-Cy-J) that spontaneously self-assembles in water into a spherical nanogel with unique physical characteristics due to the existence of highly sensitive pH-responsive cytosine-silver-cytosine (Cy-Ag-Cy) linkages within the nanogels. Importantly, a series of in vitro antibacterial and anticancer assays demonstrated the Ag-Cy-J nanogels not only exert strong antibacterial activity against various bacterial strains, but also exhibit a high degree of selective uptake and rapidly induce massive apoptosis in cancer cells without harming normal cells. Thus, this newly discovered supramolecular system may potentially provide a multi-biofunctional soft nanomaterial for efficient and safe antibacterial and cancer therapies.
Collapse
|
34
|
Assessment of the Potential Health Risk of Gold Nanoparticles Used in Nanomedicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4685642. [PMID: 35936220 PMCID: PMC9355778 DOI: 10.1155/2022/4685642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Due to unique properties, nanoparticles (NPs) have become a preferred material in biomedicine. The benefits of their use are indisputable, but their safety and potential toxicity are becoming more and more important. Especially, excessive production of reactive oxygen species (ROS) induced by the strong oxidation potential of metal NPs could evoke adverse effects associated with damage to nucleic acids, proteins and lipids. Our study gives a view on the potential cytotoxicity of gold NPs (Au NPs) of different size from the perspective of the redox state of healthy (HEK 293 T) and cancer (A375 and A594) cell lines. These cells were incubated in the presence of two concentrations of Au NPs for 24 h or 72 h and total antioxidant capacity, 8-isoprostane, and protein carbonyl levels were determined. Furthermore, the activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase was detected in cell lysates. Our results compared to the results of other laboratories are very contradictory. The outcomes also differ between healthy and cancer cell lines. However, there are certainly changes in the activities of antioxidant enzymes, as well as the damage to biological molecules due to increased NP-induced oxidative stress. But the final decision of the effect of Au NPs on the oxidative state of selected cell lines requires further research.
Collapse
|
35
|
Naguib M, Mekkawy IA, Mahmoud UM, Sayed AEDH. Genotoxic evaluation of silver nanoparticles in catfish Clarias gariepinus erythrocytes; DNA strand breakage using comet assay. SCIENTIFIC AFRICAN 2022; 16:e01260. [DOI: 10.1016/j.sciaf.2022.e01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Zhang X, Zhang J, Wang Q, Ghimire S, Mei L, Wu C. Effects of Particle Size and Surface Charge on Mutagenicity and Chicken Embryonic Toxicity of New Silver Nanoclusters. ACS OMEGA 2022; 7:17703-17712. [PMID: 35664612 PMCID: PMC9161408 DOI: 10.1021/acsomega.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Though there are many toxicological studies on metal nanoparticles (NPs), it remains difficult to explain discrepancies observed between studies, largely due to the lack of positive controls and disconnection between physicochemical properties of nanomaterials with their toxicities at feasible exposures in a specified test system. In this study, we investigated effects of particle size and surface charge on in vitro mutagenic response and in vivo embryonic toxicity for newly synthesized silver nanoclusters (AgNCs) at human or environmental relevant exposure and compared the new findings with one of the most common nanoscale particles, titanium dioxide NPs (TiO2 NPs as a positive control). We hypothesized that the interaction of the test system and physicochemical properties of nanomaterials are critical in determining their toxicities at concentrations relevant with human or environmental exposures. We assessed the mutagenicity of the AgNCs (around 2 nm) and two sizes of TiO2 NPs (i.e., small: 5-15 nm, big: 30-50 nm) using a Salmonella reverse mutation assay (Ames test). The smallest size of AgNCs showed the highest mutagenic activity with the Salmonella strain TA100 in the absence and presence of the S9 mixture, because the AgNCs maintained the nano-size scale in the Ames test, compared with two other NPs. For TiO2 NPs, the size effect was interfered by the agglomeration of TiO2 NPs in media and the generation of oxidative stress from the NPs. The embryonic toxicity and the liver oxidative stress were evaluated using a chicken embryo model at three doses (0.03, 0.33, and 3.3 μg/g egg), with adverse effects on chicken embryonic development in both sizes of TiO2 NPs. The non-monotonic response was determined for developmental toxicity for the tested NPs. Our data on AgNCs was different from previous findings on AgNPs. The chicken embryo results showed some size dependency of nanomaterials, but they were more well correlated with lipid peroxidation (malondialdehyde) in chicken fetal livers. A different level of agglomeration of TiO2 NPs and AgNCs was observed in the assay media of Ames and chicken embryo tests. These results suggest that the test nanotoxicities are greatly impacted by the experimental conditions and the nanoparticle's size and surface charge.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Jinglin Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Qin Wang
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Shweta Ghimire
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Lei Mei
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Changqing Wu
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
37
|
Alp O, Engin AB, Ertas N. Size Dependent Dissolution of Silver Nanoparticles in Human Monocytic/Macrophage-Like U937 Cells and Speciation by Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2078344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Orkun Alp
- Faculty of Pharmacy, Analytical Chemistry Department, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Faculty of Pharmacy, Toxicology Department, Gazi University, Ankara, Turkey
| | - Nusret Ertas
- Faculty of Pharmacy, Analytical Chemistry Department, Gazi University, Ankara, Turkey
| |
Collapse
|
38
|
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3602. [PMID: 35629629 PMCID: PMC9147160 DOI: 10.3390/ma15103602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The increasing appearance of new strains of microorganisms resistant to the action of existing antibiotics is a modern problem that requires urgent decision. A promising potential solution is the use of nanoparticles of bioactive metals and their oxides as new antibacterial agents, since they are capable of affecting pathogenic microorganisms by mechanisms different from the mechanisms of action of antibiotics. Inorganic nanoparticles possess a wide spectrum of antibacterial activity. These particles can be easily conjugated with drug molecules and become carriers in targeted drug-delivery systems. This paper discusses the benefits and prospects of the application of nanoparticles from metals and metal oxides and their nanocomposites with antibacterial drugs.
Collapse
Affiliation(s)
- Tatyana Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Natural Sciences, N.E. Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Olga Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Aleksei Shumilkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Alexander Semenov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| |
Collapse
|
39
|
Liu Q, Wu Y, Li J, Liu E, Tian F, Zhao H, Chen R. Construction of Ag-decorated ZnO with oxygen vacancies for enhanced antibacterial activity via increased H2O2 production. J Inorg Biochem 2022; 231:111778. [DOI: 10.1016/j.jinorgbio.2022.111778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/19/2023]
|
40
|
Li L, Mai Y, Wang Y, Chen S. Stretchable unidirectional liquid-transporting membrane with antibacterial and biocompatible features based on chitosan derivative and composite nanofibers. Carbohydr Polym 2022; 276:118703. [PMID: 34823760 DOI: 10.1016/j.carbpol.2021.118703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022]
Abstract
Unidirectional liquid transport is critical in achieving high-performance moisture-management fabrics for medical care. However, realizing unidirectional liquid transport while simultaneously satisfying other requirements, such as antibacterial function, adhesiveness, low cytotoxicity, and adequate mechanical strength remains a challenge. In this study, Janus nanofibrous membranes exhibiting both unidirectional liquid transport and antibacterial activity were fabricated via electrospinning and a mild crosslinking procedure. This membrane provides continuous and spontaneous unidirectional water transport with a high one-way transport value (R) of 1483%. The membrane achieved antibacterial rates of 99.2% and 98.7% against E. coli and S. aureus, respectively, without leaching antibacterial agents. In addition, it has high elasticity and self-adhesive properties, which facilitates its use in a range of applications. The design of this versatile Janus nanofibrous membrane provides a new strategy for developing novel moisture-wicking systems, particularly in the field of medical dressings.
Collapse
Affiliation(s)
- Liling Li
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yongling Mai
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanfeng Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
41
|
Reactive Oxygen Species-Mediated Cytotoxicity in Liver Carcinoma Cells Induced by Silver Nanoparticles Biosynthesized Using Schinus molle Extract. NANOMATERIALS 2022; 12:nano12010161. [PMID: 35010111 PMCID: PMC8746381 DOI: 10.3390/nano12010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is ranked as the third most common cause of cancer-related mortality worldwide. Schinus molle (S. mole) L. is an important medicinal plant that contains many bioactive compounds with pharmacological properties. The role of S. molle leaf extract in the biosynthesis of silver nanoparticles (AgNPs) was determined. The biosynthesized AgNPs were thoroughly characterized by UV-vis spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. Furthermore, the cytotoxic effect of the biosynthesized AgNPs using S. molle (SMAgNPs) against HepG2 liver cancer cells was investigated. Reactive oxygen species generation, apoptosis induction, DNA damage, and autophagy activity were analyzed. The results clearly showed that the biosynthesized silver nanoparticles inhibited the proliferation of HepG2 by significantly (p < 0.05) inducing oxidative stress, cytotoxicity, DNA damage, apoptosis, and autophagy in a dose- and time-dependent manner. These findings may encourage integrating the potential of natural products and the efficiency of silver nanoparticles for the fabrication of safe, environmentally friendly, and effective anticancer agents.
Collapse
|
42
|
Mohammapdour R, Ghandehari H. Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv Drug Deliv Rev 2022; 180:114022. [PMID: 34740764 PMCID: PMC8898339 DOI: 10.1016/j.addr.2021.114022] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Careful assessment of the biological fate and immune response of inorganic nanoparticles is crucial for use of such carriers in drug delivery and other biomedical applications. Many studies have elucidated the cellular and molecular mechanisms of the interaction of inorganic nanoparticles with the components of the immune system. The biodegradation and dissolution of inorganic nanoparticles can influence their ensuing immune response. While the immunological properties of inorganic nanoparticles as a function of their physicochemical properties have been investigated in detail, little attention has been paid to the immune adverse effects towards the degradation products of these nanoparticles. To fill this gap, we herein summarize the cellular mechanisms of immune response to inorganic nanoparticles and their degradation products with specific focus on immune cells. We also accentuate the importance of designing new methods and instruments for the in situ characterization of inorganic nanoparticles in order to assess their safety as a result of degradation. This review further sheds light on factors that need to be considered in the design of safe and effective inorganic nanoparticles for use in delivery of bioactive and imaging agents.
Collapse
Affiliation(s)
- Raziye Mohammapdour
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
43
|
Kannaujia R, Singh P, Prasad V, Pandey V. Evaluating impacts of biogenic silver nanoparticles and ethylenediurea on wheat (Triticum aestivum L.) against ozone-induced damages. ENVIRONMENTAL RESEARCH 2022; 203:111857. [PMID: 34400164 DOI: 10.1016/j.envres.2021.111857] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 05/11/2023]
Abstract
Tropospheric ozone (O3) is a phytotoxic pollutant that leads to a reduction in crop yield. Nanotechnology offers promising solutions to stem such yield losses against abiotic stresses. Silver nanoparticles are major nanomaterials used in consumer products however, their impact on crops under abiotic stress is limited. In this study, we evaluated the anti-ozonant efficacy of biogenic silver nanoparticles (B-AgNPs) and compared them with a model anti-ozonant ethylenediurea (EDU) against ozone phyto-toxicity. Growth, physiology, antioxidant defense, and yield parameters in two wheat cultivars (HD-2967 & DBW-17), treated with B-AgNPs (25 mg/L and 50 mg/L) and EDU (150 mg/L and 300 mg/L), were studied at both vegetative and reproductive stages. During the experimental period, the average ambient ozone concentration and accumulated dose of ozone over a threshold of 40 ppb (AOT40) (8 h day-1) were found to be 60 ppb and 6 ppm h, respectively, which were sufficient to cause ozone-induced phyto-toxicity in wheat. Growth and yield for B-AgNPs as well as EDU-treated plants were significantly higher in both the tested cultivars over control ones. However, 25 mg/L B-AgNPs treatment showed a more pronounced effect in terms of yield attributes and its lower accumulation in grains for both cultivars. DBW-17 cultivar responded better with B-AgNPs and EDU treatments as compared to HD-2967. Meanwhile, foliar exposure of B-AgNPs (dose; 25 mg/L) significantly enhanced grain weight plant-1, thousand-grain weight, and harvest index by 54.22 %, 29.46 %, and 14.21 %, respectively in DBW-17, when compared to control. B-AgNPs could enhance ozone tolerance in wheat by increasing biochemical and physiological responses. It is concluded that B-AgNPs at optimum concentrations were as effective as EDU, hence could be a promising ozone protectant for wheat.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India; Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Pratiksha Singh
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India.
| |
Collapse
|
44
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallanat B, Fisher AA, Kitchin KT. Effects of Silver Nanoparticles and Silver Nitrate on mRNA and microRNA Expression in Human Hepatocellular Carcinoma Cells (HepG2). JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5414-5428. [PMID: 33980351 PMCID: PMC10563035 DOI: 10.1166/jnn.2021.19481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to understand toxicity of nano silver, human hepatocellular carcinoma (HepG2) cells were treated either with silver nitrate (AgNO₃) or with nano silver capped with glutathione (Ag-S) at various concentration. Differentially expressed genelists for mRNA and microRNA were obtained through Illumina RNA sequencing and DEseq data analyses. Both treatments showed non-linear dose response relationships for mRNA and microRNA. Gene expression analysis showed signaling pathways common to both nano Ag-S and AgNO₃, such as cell cycle regulation, DNA damage response and cancer related pathways. But, nano Ag-S caused signaling pathway changes that were not altered by AgNO₃ such as NRF2-mediated oxidative stress response inflammation, cell membrane signaling, and cell proliferation. Nano Ag-S also affected p53 signaling, survival, apoptosis, tissue repair, lipid synthesis, angiogenesis, liver fibrosis and tumor development. Several of the pathways affected by nano Ag-S are hypothesized as major contributors to nanotoxicity. MicroRNA target filter analysis revealed additional affected pathways that were not reflected in the mRNA expression response alone, including DNA damage signaling, genomic stability, ROS, cell cycle, ubiquitination, DNA methylation, cell proliferation and fibrosis for AgNO₃; and cell cycle regulation, P53 signaling, cell proliferation, survival, apoptosis, tissue repair and so on for nano Ag-S. These pathways may be mediated by microRNA repression of protein translation.Our study clearly showed that the addition of microRNA profiling increased the numbers of signaling pathways discovered that affected by the treatments on HepG2 cells and gave US a better picture of the effects of these reagents in the cells.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | | - Anna A Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Kirk T Kitchin
- US Environmental Protection Agency, Retired from EPA, Durham NC 27709, USA
| |
Collapse
|
45
|
Bibi M, Zhu X, Munir M, Angelidaki I. Bioavailability and effect of α-Fe 2O 3 nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris. CHEMOSPHERE 2021; 282:131044. [PMID: 34470146 DOI: 10.1016/j.chemosphere.2021.131044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The wide application of α-Fe2O3 nanoparticles (NPs) in different fields has resulted in release and accumulation of these materials into the aquatic ecosystem. Therefore, it is important to understand the potential impact of these NPs on aquatic organisms especially primary producers i.e., microalgae. Present study aimed to investigate the bioavailability and the effect of α-Fe2O3 NPs on growth of iron deprived cells of Chlorella vulgaris. Results showed that α-Fe2O3 NPs are not available as iron source to support the growth of C. vulgaris. Moreover,α-Fe2O3 NPs induced stress condition to C. vulgaris, which were reflected in its growth rates, total lipid contents, fatty acid profile and cell morphology. Specifically, low concentrations of α-Fe2O3 NPs (0.1, 0.5, 2.5, 5, 10 mg/L) showed similar growth profile and total lipid contents at both exponential and stationary growth phases. At 50 and 100 mg/L α-Fe2O3 NPs concentrations biomass reduced by 41.2% and 83.7% whereas total lipid contents increased by 39.7% and 25.5% respectively at exponential growth phase along with reduction in fatty acids. The results illustrated novel insights into the microalgal interaction with nanoparticles, providing fundamental knowledge for the development of future microalgae ecology and cultivation technology.
Collapse
Affiliation(s)
- Muhammadi Bibi
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark; Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
46
|
Rohde MM, Snyder CM, Sloop J, Solst SR, Donati GL, Spitz DR, Furdui CM, Singh R. The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Part Fibre Toxicol 2021; 18:37. [PMID: 34649580 PMCID: PMC8515661 DOI: 10.1186/s12989-021-00430-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background Precisely how silver nanoparticles (AgNPs) kill mammalian cells still is not fully understood. It is not clear if AgNP-induced damage differs from silver cation (Ag+), nor is it known how AgNP damage is transmitted from cell membranes, including endosomes, to other organelles. Cells can differ in relative sensitivity to AgNPs or Ag+, which adds another layer of complexity to identifying specific mechanisms of action. Therefore, we determined if there were specific effects of AgNPs that differed from Ag+ in cells with high or low sensitivity to either toxicant. Methods Cells were exposed to intact AgNPs, Ag+, or defined mixtures of AgNPs with Ag+, and viability was assessed. The level of dissolved Ag+ in AgNP suspensions was determined using inductively coupled plasma mass spectrometry. Changes in reactive oxygen species following AgNP or Ag+ exposure were quantified, and treatment with catalase, an enzyme that catalyzes the decomposition of H2O2 to water and oxygen, was used to determine selectively the contribution of H2O2 to AgNP and Ag+ induced cell death. Lipid peroxides, formation of 4-hydroxynonenol protein adducts, protein thiol oxidation, protein aggregation, and activation of the integrated stress response after AgNP or Ag+ exposure were quantified. Lastly, cell membrane integrity and indications of apoptosis or necrosis in AgNP and Ag+ treated cells were examined by flow cytometry. Results We identified AgNPs with negligible Ag+ contamination. We found that SUM159 cells, which are a triple-negative breast cancer cell line, were more sensitive to AgNP exposure less sensitive to Ag+ compared to iMECs, an immortalized, breast epithelial cell line. This indicates that high sensitivity to AgNPs was not predictive of similar sensitivity to Ag+. Exposure to AgNPs increased protein thiol oxidation, misfolded proteins, and activation of the integrated stress response in AgNP sensitive SUM159 cells but not in iMEC cells. In contrast, Ag+ cause similar damage in Ag+ sensitive iMEC cells but not in SUM159 cells. Both Ag+ and AgNP exposure increased H2O2 levels; however, treatment with catalase rescued cells from Ag+ cytotoxicity but not from AgNPs. Instead, our data support a mechanism by which damage from AgNP exposure propagates through cells by generation of lipid peroxides, subsequent lipid peroxide mediated oxidation of proteins, and via generation of 4-hydroxynonenal (4-HNE) protein adducts. Conclusions There are distinct differences in the responses of cells to AgNPs and Ag+. Specifically, AgNPs drive cell death through lipid peroxidation leading to proteotoxicity and necrotic cell death, whereas Ag+ increases H2O2, which drives oxidative stress and apoptotic cell death. This work identifies a previously unknown mechanism by which AgNPs kill mammalian cells that is not dependent upon the contribution of Ag+ released in extracellular media. Understanding precisely which factors drive the toxicity of AgNPs is essential for biomedical applications such as cancer therapy, and of importance to identifying consequences of unintended exposures. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00430-1.
Collapse
Affiliation(s)
- Monica M Rohde
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - Christina M Snyder
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - John Sloop
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
47
|
An X, Liu L, Schaefer M, Yan B, Scholz C, Hillmer S, Wang K, Luo Y, Ji H, Gladkich J, Herr I. Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer. Cancers (Basel) 2021; 13:4770. [PMID: 34638256 PMCID: PMC8507678 DOI: 10.3390/cancers13194770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted attention in cancer therapy and might support the treatment of pancreatic ductal adenocarcinoma (PDAC). Silver is in clinical use in wound dressings, catheters, stents and implants. However, the side effects of systemic AgNP treatment due to silver accumulation limit its therapeutic application. We evaluated whether the antioxidant and natural agent α-lipoic acid might prevent these side effects. We synthesized AgNPs using an Ionic-Pulser® Pro silver generator and determined the concentration by inductively coupled plasma-optical emission spectrometry. The effect of α-lipoic acid was examined in four PDAC and two nonmalignant cell lines by MTT, FACS analysis, TEM, xenotransplantation and immunohistochemistry. The viability of PDAC cells was nearly totally abolished by AgNP treatment, whereas nonmalignant cells largely resisted. α-Lipoic acid prevented AgNP-induced cytotoxicity in nonmalignant cells but not in PDAC cells, which might be due to the higher sensitivity of malignant cells to silver-induced cytotoxicity. α-Lipoic acid protected mitochondria from AgNP-induced damage and led to precipitation of AgNPs. AgNPs reduced the growth of tumor xenografts, and cotreatment with α-lipoic acid protected chick embryos from AgNP-induced liver damage. Together, α-lipoic acid strongly reduced AgNP-induced side effects without weakening the therapeutic efficacy.
Collapse
Affiliation(s)
- Xuefeng An
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Li Liu
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Michael Schaefer
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Bin Yan
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Christian Scholz
- Institute of Earth Sciences, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Stefan Hillmer
- Electron Microscopy Core Facility, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Kangtao Wang
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Yiqiao Luo
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Huihui Ji
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Jury Gladkich
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Ingrid Herr
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| |
Collapse
|
48
|
Environmental Hazards of Boron and Vanadium Nanoparticles in the Terrestrial Ecosystem-A Case Study with Enchytraeus crypticus. NANOMATERIALS 2021; 11:nano11081937. [PMID: 34443769 PMCID: PMC8399937 DOI: 10.3390/nano11081937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022]
Abstract
From the start of the 21st century, nanoecotoxicological research has been growing in fast steps due to the need to evaluate the safety of the increasing use of engineered nanomaterials. Boron (B) and vanadium (V) nanoparticles (NPs) generated by anthropogenic activities are subsequently released in the environment; therefore, organisms can be continuously exposed to these NPs for short or long periods. However, the short and long-term effects of BNPs and VNPs on soil organisms are unknown. This work aimed to recognize and describe their potential toxicological effects on the model species Enchytraeus crypticus, assessing survival and reproduction, through a longer-term exposure (56 days (d)-OECD test extension of 28 d), and avoidance behavior, through a short-term exposure (48 hours (h)). After 28 d, BNPs did not induce a significant effect on E. crypticus survival, whereas they decreased the organisms' reproduction at 500 mg/kg. From 10 to 500 mg/kg, VNPs decreased the E. crypticus survival and/or reproduction. After 56 d, 100 to 500 mg/kg BNPs and 50 to 500 mg/kg VNPs, decreased the reproduction output of E. crypticus. The estimated Effect Concentrations (ECx) based on reproduction, for BNPs, were lower at 56 d compared with 28 d; for VNPs, an opposite pattern was found: ECx 28 d < ECx 56 d. BNPs did not induce an avoidance behavior, but organisms avoided the soil contaminated with 10 mg VNPs/kg. The tested NPs showed different E. crypticus apical effects at 28 d from the ones detected at 56 d, dependent on the type of NPs (B vs. V). In general, VNPs showed to be more toxic than BNPs. However, the effects of VNPs were alleviated during the time of exposure, contrarily to BNPs (which became more toxic with extended duration). The present study adds important information about NPs toxicity with ecological significance (at the population level). Including long-term effects, the obtained results contributes to the improvement of NPs risk assessment.
Collapse
|
49
|
Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102433. [PMID: 34171467 DOI: 10.1016/j.nano.2021.102433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. A search for more effective treatments of CVD is increasingly needed. Major advances in nanotechnology opened new avenues in CVD therapeutics. Owing to their special properties, iron oxide, gold and silver nanoparticles (NPs) could exert various effects in the management and treatment of CVD. The role of iron oxide NPs in the detection and identification of atherosclerotic plaques is receiving increased attention. Moreover, these NPs enhance targeted stem cell delivery, thereby potentiating the regenerative capacity at the injured sites. In addition to their antioxidative and antihypertrophic capacities, gold NPs have also been shown to be useful in the identification of plaques and recognition of inflammatory markers. Contrary to first reports suggestive of their cardio-vasculoprotective role, silver NPs now appear to exert negative effects on the cardiovascular system. Indeed, these NPs appear to negatively modulate inflammation and cholesterol uptake, both of which exacerbate atherosclerosis. Moreover, silver NPs may precipitate bradycardia, conduction block and sudden cardiac death. In this review, we dissect the cellular responses and toxicity profiles of these NPs from various perspectives including cellular and molecular ones.
Collapse
|
50
|
Luna-Vázquez-Gómez R, Arellano-García ME, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Bogdanchikova N, Pestryakov A. Hemolysis of Human Erythrocytes by Argovit™ AgNPs from Healthy and Diabetic Donors: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2792. [PMID: 34073953 PMCID: PMC8197390 DOI: 10.3390/ma14112792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
The use of nanomaterials is becoming increasingly widespread, leading to substantial research focused on nanomedicine. Nevertheless, the lack of complete toxicity profiles limits nanomaterials' uses, despite their remarkable diagnostic and therapeutic results on in vitro and in vivo models. Silver nanoparticles (AgNPs), particularly Argovit™, have shown microbicidal, virucidal, and antitumoral effects. Among the first-line toxicity tests is the hemolysis assay. Here, the hemolytic effect of Argovit™ AgNPs on erythrocytes from one healthy donor (HDE) and one diabetic donor (DDE) is evaluated by the hemolysis assay against AgNO3. The results showed that Argovit™, in concentrations ≤24 µg/mL of metallic silver, did not show a hemolytic effect on the HDE or DDE. On the contrary, AgNO3 at the same concentration of silver ions produces more than 10% hemolysis in both the erythrocyte types. In all the experimental conditions assessed, the DDE was shown to be more prone to hemolysis than the HDE elicited by Ag+ ions or AgNPs, but much more evident with Ag+ ions. The results show that Argovit™ is the least hemolytic compared with the other twenty-two AgNP formulations previously reported, probably due to the polymer mass used to stabilize the Argovit™ formulation. The results obtained provide relevant information that contributes to obtaining a comprehensive toxicological profile to design safe and effective AgNP formulations.
Collapse
Affiliation(s)
- Roberto Luna-Vázquez-Gómez
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - David Sergio Salas-Vargas
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Francisco Casillas-Figueroa
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Balam Ruiz-Ruiz
- Departamento de Ciencias de la Salud, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis 81223, Sinaloa, Mexico;
| | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), National Autonomous University of Mexico (UNAM), Mexico City 58089, Distrito Federal, Mexico;
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|