1
|
Shilnikova N, Momoli F, Karyakina N, Krewski D. Review of non-invasive biomarkers as a tool for exposure characterization in human health risk assessments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:122-150. [PMID: 39607011 DOI: 10.1080/10937404.2024.2428206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Blood and urine are historically the most frequent matrices used for measuring chemical levels in human biomonitoring studies. As biomonitoring programs are refreshed, consideration of specific priority substances and specific population targets provide opportunities for inclusion of alternative non- or minimally invasive matrices. This review describes methods used in health risk assessment to characterize exposure and risk based upon biomarkers from noninvasive matrices other than urine or blood, including human milk, hair, fingernails, toenails, exhaled breath, deciduous teeth, sweat, semen, meconium, and feces. Illustrative examples of these methods relevant to chemical management are provided. This review suggests that, although these alternative noninvasive biomarkers are not frequently used in human health risk assessment at present, these biomarkers may prove useful in (1) characterizing exposure and health risk in vulnerable populations, (2) cumulative risk assessments, and (3) community-based risk assessments, depending upon the substance of concern. To incorporate alternative noninvasive biomarkers into human health risk assessments with confidence, more research is needed to improve our knowledge of the relationships between external dose, internal dose, and biologic consequent effects in matrices other than blood and urine.
Collapse
Affiliation(s)
- N Shilnikova
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - F Momoli
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - N Karyakina
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - D Krewski
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Martinho J, Simão AY, Barroso M, Gallardo E, Rosado T. Determination of Antiepileptics in Biological Samples-A Review. Molecules 2024; 29:4679. [PMID: 39407608 PMCID: PMC11477610 DOI: 10.3390/molecules29194679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Epilepsy remains a disease that affects many people around the world. With the development of new drugs to treat this condition, the importance of therapeutic drug monitoring continues to rise and remains a challenge for the medical community. This review article explores recent advances in the detection of antiepileptic drugs across various sample types commonly used for drug monitoring, with a focus on their applications and impact. Some of these new methods have proven to be simpler, greener, and faster, making them easier to apply in the context of therapeutic drug monitoring. Additionally, besides the classic use of blood and its derivatives, there has been significant research into the application of alternative matrices due to their ease of sample collection and capacity to reflect drug behavior in blood. These advances have contributed to increasing the efficacy of therapeutic drug monitoring while enhancing its accessibility to the population.
Collapse
Affiliation(s)
- João Martinho
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
| | - Ana Y. Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
| | - Mário Barroso
- AlphaBiolabs, 14 Webster Court, Carina Park, Warrington WA5 8WD, UK;
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
3
|
Sinapour H, Guterstam J, Grosse S, Astorga-Wells J, Stambeck P, Stambeck M, Winberg J, Hermansson S, Beck O. Validation and application of an automated multitarget LC-MS/MS method for drugs of abuse testing using exhaled breath as specimen. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124142. [PMID: 38718698 DOI: 10.1016/j.jchromb.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
Aerosol microparticles in exhaled breath carry non-volatile compounds from the deeper parts of the lung. When captured and analyzed, these aerosol microparticles constitute a non-invasive and readily available specimen for drugs of abuse testing. The present study aimed to evaluate a simple breath collection device in a clinical setting. The device divides a breath sample into three parallel "collectors" that can be individually analyzed. Urine was used as the reference specimen, and parallel specimens were collected from 99 patients undergoing methadone maintenance treatment. Methadone was used as the primary validation parameter. A sensitive multi-analyte method using tandem liquid chromatography - mass spectrometry was developed and validated as part of the project. The method was successfully validated for 36 analytes with a limit of detection of 1 pg/collector for most compounds. Based on the validation results tetrahydrocannabinol THC), cannabidiol (CBD), and lysergic acid diethylamide (LSD) are suitable for qualitative analysis, but all other analytes can be quantitively assessed by the method. Methadone was positive in urine in 97 cases and detected in exhaled breath in 98 cases. Median methadone concentration was 64 pg/collector. The methadone metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) was detected in 90 % of the cases but below 10 pg/collector in most. Amphetamine was also present in the urine in 17 cases and in exhaled breath in 16 cases. Several other substances were detected in the exhaled breath and urine samples, but at a lower frequency. This study concluded that the device provides a specimen from exhaled breath, that is useful for drugs of abuse testing. The results show that high analytical sensitivity is needed to achieve good detectability and detection time after intake.
Collapse
Affiliation(s)
| | - Joar Guterstam
- Karolinska Institute, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Susan Grosse
- Workplace Drugs Testing Laboratory, Eurofins Forensic Services, London, UK
| | | | - Peter Stambeck
- Workplace Drugs Testing Laboratory, Eurofins Forensic Services, London, UK
| | | | | | | | - Olof Beck
- Karolinska Institute, Department of Clinical Neuroscience, Stockholm, Sweden.
| |
Collapse
|
4
|
Khokhar M. Non-invasive detection of renal disease biomarkers through breath analysis. J Breath Res 2024; 18:024001. [PMID: 38099568 DOI: 10.1088/1752-7163/ad15fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Breath biomarkers are substances found in exhaled breath that can be used for non-invasive diagnosis and monitoring of medical conditions, including kidney disease. Detection techniques include mass spectrometry (MS), gas chromatography (GC), and electrochemical sensors. Biosensors, such as GC-MS or electronic nose (e-nose) devices, can be used to detect volatile organic compounds (VOCs) in exhaled breath associated with metabolic changes in the body, including the kidneys. E-nose devices could provide an early indication of potential kidney problems through the detection of VOCs associated with kidney dysfunction. This review discusses the sources of breath biomarkers for monitoring renal disease during dialysis and different biosensor approaches for detecting exhaled breath biomarkers. The future of using various types of biosensor-based real-time breathing diagnosis for renal failure is also discussed.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
5
|
Hwang CH, Lee S, Lee S, Kim H, Kang T, Lee D, Jeong KH. Highly Adsorptive Au-TiO 2 Nanocomposites for the SERS Face Mask Allow the Machine-Learning-Based Quantitative Assay of SARS-CoV-2 in Artificial Breath Aerosols. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54550-54557. [PMID: 36448483 PMCID: PMC9718102 DOI: 10.1021/acsami.2c16446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Human respiratory aerosols contain diverse potential biomarkers for early disease diagnosis. Here, we report the direct and label-free detection of SARS-CoV-2 in respiratory aerosols using a highly adsorptive Au-TiO2 nanocomposite SERS face mask and an ablation-assisted autoencoder. The Au-TiO2 SERS face mask continuously preconcentrates and efficiently captures the oronasal aerosols, which substantially enhances the SERS signal intensities by 47% compared to simple Au nanoislands. The ultrasensitive Au-TiO2 nanocomposites also demonstrate the successful detection of SARS-CoV-2 spike proteins in artificial respiratory aerosols at a 100 pM concentration level. The deep learning-based autoencoder, followed by the partial ablation of nondiscriminant SERS features of spike proteins, allows a quantitative assay of the 101-104 pfu/mL SARS-CoV-2 lysates (comparable to 19-29 PCR cyclic threshold from COVID-19 patients) in aerosols with an accuracy of over 98%. The Au-TiO2 SERS face mask provides a platform for breath biopsy for the detection of various biomarkers in respiratory aerosols.
Collapse
Affiliation(s)
- Charles
S. H. Hwang
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| | - Sangyeon Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Sejin Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| | - Hanjin Kim
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Taejoon Kang
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Doheon Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Ki-Hun Jeong
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
6
|
Biagini D, Fusi J, Vezzosi A, Oliveri P, Ghimenti S, Lenzi A, Salvo P, Daniele S, Scarfò G, Vivaldi FM, Bonini A, Martini C, Franzoni F, Di Francesco F, Lomonaco T. Effects of long-term vegan diet on breath composition. J Breath Res 2022; 16. [PMID: 35051905 DOI: 10.1088/1752-7163/ac4d41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a "normal" breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications. We thus compared, for the first time, the breath composition of age-matched volunteers following a vegan and a Mediterranean omnivorous diet in order to evaluate the impact of diet on breath composition. Mixed breath was collected from 38 nominally healthy volunteers who were asked to breathe into a two-liter handmade Nalophan bag. Exhalation flow rate and carbon dioxide values were monitored during breath sampling. An aliquot (100 mL) of breath was loaded into a sorbent tube (250 mg of Tenax GR, 60/80 mesh) before being analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Breath profiling using TD-GC-MS analysis identified five compounds (methanol, 1-propanol, pentane, hexane, and hexanal), thus enabling differentiation between samples collected from the different group members . Principal component analysis showed a clear separation between groups, suggesting that breath analysis could be used to study the influence of dietary habits in the fields of nutrition and metabolism. Surprisingly, one Italian woman and her brother showed extremely low breath isoprene levels (about 5 ppbv), despite their normal lipidic profile and respiratory data, such as flow rate and pCO2. Further investigations to reveal the reasons behind low isoprene levels in breath would help reveal the origin of isoprene in breath.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Jonathan Fusi
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Annasilvia Vezzosi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Paolo Oliveri
- Department of Drug and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno, 13, Genoa, 16100, ITALY
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, Pisa, Tuscany, 56124, ITALY
| | - Pietro Salvo
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, Pisa, 56124, ITALY
| | - Simona Daniele
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Giorgia Scarfò
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Claudia Martini
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Ferdinando Franzoni
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| |
Collapse
|
7
|
Pham YL, Beauchamp J. Breath Biomarkers in Diagnostic Applications. Molecules 2021; 26:molecules26185514. [PMID: 34576985 PMCID: PMC8468811 DOI: 10.3390/molecules26185514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
The detection of chemical compounds in exhaled human breath presents an opportunity to determine physiological state, diagnose disease or assess environmental exposure. Recent advancements in metabolomics research have led to improved capabilities to explore human metabolic profiles in breath. Despite some notable challenges in sampling and analysis, exhaled breath represents a desirable medium for metabolomics applications, foremost due to its non-invasive, convenient and practically limitless availability. Several breath-based tests that target either endogenous or exogenous gas-phase compounds are currently established and are in practical and/or clinical use. This review outlines the concept of breath analysis in the context of these unique tests and their applications. The respective breath biomarkers targeted in each test are discussed in relation to their physiological production in the human body and the development and implementation of the associated tests. The paper concludes with a brief insight into prospective tests and an outlook of the future direction of breath research.
Collapse
Affiliation(s)
- Y Lan Pham
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany;
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany;
- Correspondence:
| |
Collapse
|
8
|
Abstract
Breathing air is a fundamental human need, yet its safety, when challenged by various harmful or lethal substances, is often not properly guarded. For example, air toxicity is currently monitored only for a single or a limited number of known toxicants, thus failing to warn against possible hazardous air fully. Here, we discovered that, within minutes, living rats emitted distinctive profiles of volatile organic compounds (VOCs) via breath when exposed to various airborne toxicants such as endotoxin, O3, ricin, and CO2. Compared to background indoor air, when exposed to ricin or endotoxin aerosols, breath-borne VOC levels, especially that of carbon disulfide, were shown to decrease, while their elevated levels were observed for exposure to O3 and CO2. A clear contrast in breath-borne VOC profiles of rats exposed to different toxicants was observed with a statistical significance. Differences in microRNA regulations such as miR-33, miR-146a, and miR-155 from rats' blood samples revealed different mechanisms used by rats in combating different air toxicant challenges. Similar to dogs, rats were found here to be able to sniff off toxic air by releasing a specific breath-borne VOC profile. The discovered science opens a new arena for online monitoring of air toxicity and health effects of pollutants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Brinkman P, Ahmed WM, Gómez C, Knobel HH, Weda H, Vink TJ, Nijsen TM, Wheelock CE, Dahlen SE, Montuschi P, Knowles RG, Vijverberg SJ, Maitland-van der Zee AH, Sterk PJ, Fowler SJ. Exhaled volatile organic compounds as markers for medication use in asthma. Eur Respir J 2020; 55:13993003.00544-2019. [PMID: 31515400 DOI: 10.1183/13993003.00544-2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/27/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous condition, characterised by chronic inflammation of the airways, typically managed with inhaled bronchodilators and corticosteroids. In the case of uncontrolled asthma, oral corticosteroids (OCSs) are often prescribed. Good adherence and inhalation technique are associated with improved outcomes; however, it is difficult to monitor appropriate drug intake and effectiveness in individual patients. Exhaled breath contains thousands of volatile organic compounds (VOCs) that reflect changes in the body's chemistry and may be useful for monitoring drug pharmacokinetics/pharmacodynamics. We aimed to investigate the association of exhaled VOCs in severe asthma patients from the U-BIOPRED cohort (by gas chromatography coupled with time-of-flight mass spectrometry) with urinary levels of salbutamol and OCSs (by liquid chromatography coupled with high-resolution mass spectrometry). METHODS Samples were collected at baseline and after 12-18 months of follow-up. Statistical analysis was based on univariate and multivariate modelling, followed by area under the receiver operating characteristic curve (AUC) calculation. Results were verified through longitudinal replication and independent validation. RESULTS Data were available for 78 patients (baseline n=48, replication n=30 and validation n=30). Baseline AUC values were 82.1% (95% CI 70.4-93.9%) for salbutamol and 78.8% (95% CI 65.8-91.8%) for OCS. These outcomes could be adequately replicated and validated. Additional regression analysis between qualified exhaled VOCs and urinary concentrations of salbutamol and prednisone showed statistically significant correlations (p<0.01). CONCLUSION We have linked exhaled VOCs to urinary detection of salbutamol and OCSs. This merits further development of breathomics into a point-of-care tool for therapeutic drug monitoring.
Collapse
Affiliation(s)
- Paul Brinkman
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Waqar M Ahmed
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Cristina Gómez
- Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Hans Weda
- Philips Research, Eindhoven, The Netherlands
| | | | | | - Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Dept of Pharmacology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Susanne J Vijverberg
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
10
|
Pleil JD, Wallace MAG, McCord J, Madden MC, Sobus J, Ferguson G. How do cancer-sniffing dogs sort biological samples? Exploring case-control samples with non-targeted LC-Orbitrap, GC-MS, and immunochemistry methods. J Breath Res 2019; 14:016006. [PMID: 31505485 PMCID: PMC8649743 DOI: 10.1088/1752-7163/ab433a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early identification of disease onset is regarded as an important factor for successful medical intervention. However, cancer and other long-term latency diseases are rare and may take years to manifest clinically. As such, there are no gold standards with which to immediately validate proposed preclinical screening methodologies. There is evidence that dogs can sort samples reproducibly into yes/no categories based on case-control training, but the basis of their decisions is unknown. Because dogs are sniffing air, the distinguishing chemicals must be either in the gas-phase or attached to aerosols and/or airborne particles. Recent biomonitoring research has shown how to extract and analyze semi- and non-volatile compounds from human breath in exhaled condensates and aerosols. Further research has shown that exhaled aerosols can be directly collected on standard hospital-style olefin polypropylene masks and that these masks can be used as a simple sampling scheme for canine screening. In this article, detailed liquid chromatography-high resolution mass spectrometry (LC-HR-MS) with Orbitrap instrumentation and gas chromatography-mass spectrometry (GC-MS) analyses were performed on two sets of masks sorted by consensus of a four-dog cohort as either cancer or control. Specifically, after sorting by the dogs, sample masks were cut into multiple sections and extracted for LC-MS and GC-MS non-targeted analyses. Extracts were also analyzed for human cytokines, confirming the presence of human aerosol content above levels in blank masks. In preliminary evaluations, 345 and 44 high quality chemical features were detected by LC-MS and GC-MS analyses, respectively. These features were used to develop provisional orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models to determine if the samples classified as cancer (case) or non-cancer (control) by the dogs could be separated into the same groups using analytical instrumentation. While the OPLS-DA model for the LC-HR-MS data was able to separate the two groups with statistical significance, although weak explanatory power, the GC-MS model was not found to be significant. These results suggest that the dogs may rely on the less volatile compounds from breath aerosol that were analyzed by LC-HR-MS than the more volatile compounds observed by GC-MS to sort mask samples into groups. These results provide justification for more expansive studies in the future that aim to characterize specific chemical features, and the role(s) of these features in maintaining homeostatic biological processes.
Collapse
Affiliation(s)
- Joachim D Pleil
- US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109T. W. Alexander Drive, Research Triangle Park, NC, 27709, United States of America
| | | | | | | | | | | |
Collapse
|
11
|
Geer Wallace MA, Pleil JD, Madden MC. Identifying organic compounds in exhaled breath aerosol: Non-invasive sampling from respirator surfaces and disposable hospital masks. JOURNAL OF AEROSOL SCIENCE 2019; 137:10.1016/j.jaerosci.2019.105444. [PMID: 34121762 PMCID: PMC8193830 DOI: 10.1016/j.jaerosci.2019.105444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Exhaled breath aerosol (EBA) is an important non-invasive biological medium for detecting exogenous environmental contaminants and endogenous metabolites present in the pulmonary tract. Currently, EBA is typically captured as a constituent of the mainstream clinical tool referred to as exhaled breath condensate (EBC). This article describes a simpler, completely non-invasive method for collecting EBA directly from different forms of hard-surface plastic respirator masks and disposable hospital paper breathing masks without first collecting EBC. The new EBA methodology bypasses the complex EBC procedures that require specialized collection gear, dry ice or other coolant, in-field sample processing, and refrigerated transport to the laboratory. Herein, mask samples collected from different types of plastic respirators and paper hospital masks worn by volunteers in the laboratory were analyzed using high resolution-liquid chromatography-mass spectrometry (HR-LC-MS) and immunochemistry. The results of immunochemistry analysis revealed that cytokines were collected above background on both plastic respirator surfaces and paper hospital masks, confirming the presence of human biological constituents. Non-targeted HR-LC-MS analyses demonstrated that larger exogenous molecules such as plasticizers, pesticides, and consumer product chemicals as well as endogenous biochemicals, including cytokines and fatty acids were also detected on mask surfaces. These results suggest that mask sampling is a viable technique for EBA collection to assess potential inhalation exposures and endogenous indicators of health state.
Collapse
Affiliation(s)
- M. Ariel Geer Wallace
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Joachim D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Michael C. Madden
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
He J, Sun X, Yang X. Human respiratory system as sink for volatile organic compounds: Evidence from field measurements. INDOOR AIR 2019; 29:968-978. [PMID: 31466121 DOI: 10.1111/ina.12602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 08/25/2019] [Indexed: 05/15/2023]
Abstract
Human exposure to volatile organic compounds (VOCs) via inhalation might increase the risk of specific diseases. Human breath has been widely investigated as a source of VOCs. However, the role of the human respiratory system as a sink for VOCs is much less studied. In this observational study, the VOC concentrations in inhaled and exhaled air in different environmental conditions were investigated. A total of 98 healthy non-smoking subjects who were exposed to a wide variation in levels of VOCs participated in this study. Individual and statistical results show that human breath could serve as a source for some VOCs and a sink for others, and even when human breath serves as a sink, not all VOCs were 100% absorbed. Interestingly, an increase in inhaled concentrations of toluene was observed to convert human breath from being a source to being a sink. Attention could be given to those VOCs for which humans act as a strong sink.
Collapse
Affiliation(s)
- Junzhou He
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiao Sun
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Bocato MZ, Bianchi Ximenez JP, Hoffmann C, Barbosa F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:131-156. [PMID: 31543064 DOI: 10.1080/10937404.2019.1661588] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual's lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
Collapse
Affiliation(s)
- Mariana Zuccherato Bocato
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - João Paulo Bianchi Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Christian Hoffmann
- Departmento de Alimentos e Nutrição Experimental Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
14
|
Gaude E, Nakhleh MK, Patassini S, Boschmans J, Allsworth M, Boyle B, van der Schee MP. Targeted breath analysis: exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probes. J Breath Res 2019; 13:032001. [DOI: 10.1088/1752-7163/ab1789] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Giannoukos S, Agapiou A, Brkić B, Taylor S. Volatolomics: A broad area of experimentation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1105:136-147. [PMID: 30584978 DOI: 10.1016/j.jchromb.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Chemical analysis (detection and monitoring) of compounds associated with the metabolic activities of an organism is at the cutting edge of science. Volatile metabolomics (volatolomics) are applied in a broad range of applications including: biomedical research (e.g. disease diagnostic tools, personalized healthcare and nutrition, etc.), toxicological analysis (e.g. exposure tool to environmental pollutants, toxic and hazardous chemical environments, industrial accidents, etc.), molecular communications, forensics, safety and security (e.g. search and rescue operations). In the present review paper, an overview of recent advances and applications of volatolomics will be given. The main focus will be on volatile organic compounds (VOCs) originating from biological secretions of various organisms (e.g. microorganisms, insects, plants, humans) and resulting fusion of chemical information. Bench-top and portable or field-deployable technologies-systems will also be presented and discussed.
Collapse
Affiliation(s)
- S Giannoukos
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland; University of Liverpool, Department of Electrical Engineering and Electronics, Liverpool L69 3GJ, UK
| | - A Agapiou
- University of Cyprus, Department of Chemistry, P.O. Box 20357, 1678 Nicosia, Cyprus.
| | - B Brkić
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, 21 101 Novi Sad, Serbia
| | - S Taylor
- University of Liverpool, Department of Electrical Engineering and Electronics, Liverpool L69 3GJ, UK; Q Technologies Ltd, 100 Childwall Road, Liverpool L15 6UX, UK.
| |
Collapse
|
16
|
Peterová E, Chládek J, Kohoutová D, Knoblochová V, Morávková P, Vávrová J, Řezáčová M, Bureš J. Exhaled Breath Condensate: Pilot Study of the Method and Initial Experience in Healthy Subjects. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018; 61:8-16. [PMID: 30012244 DOI: 10.14712/18059694.2018.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Analysis of Exhaled breath condensate (EBC) is a re-discovered approach to monitoring the course of the disease and reduce invasive methods of patient investigation. However, the major disadvantage and shortcoming of the EBC is lack of reliable and reproducible standardization of the method. Despite many articles published on EBC, until now there is no clear consensus on whether the analysis of EBC can provide a clue to diagnosis of the diseases. The purpose of this paper is to investigate our own method, to search for possible standardization and to obtain our own initial experience. Thirty healthy volunteers provided the EBC, in which we monitored the density, pH, protein, chloride and urea concentration. Our results show that EBC pH is influenced by smoking, and urea concentrations are affected by the gender of subjects. Age of subjects does not play a role. The smallest coefficient of variation between individual volunteers is for density determination. Current limitations of EBC measurements are the low concentration of many biomarkers. Standardization needs to be specific for each individual biomarker, with focusing on optimal condensate collection. EBC analysis has a potential become diagnostic test, not only for lung diseases.
Collapse
Affiliation(s)
- Eva Peterová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic. .,Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| | - Jaroslav Chládek
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Veronika Knoblochová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Paula Morávková
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Jaroslava Vávrová
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018; 1024:18-38. [PMID: 29776545 PMCID: PMC6082128 DOI: 10.1016/j.aca.2018.01.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Human breath, along with urine and blood, has long been one of the three major biological media for assessing human health and environmental exposure. In fact, the detection of odor on human breath, as described by Hippocrates in 400 BC, is considered the first analytical health assessment tool. Although less common in comparison to contemporary bio-fluids analyses, breath has become an attractive diagnostic medium as sampling is non-invasive, unlimited in timing and volume, and does not require clinical personnel. Exhaled breath, exhaled breath condensate (EBC), and exhaled breath aerosol (EBA) are different types of breath matrices used to assess human health and disease state. Over the past 20 years, breath research has made many advances in assessing health state, overcoming many of its initial challenges related to sampling and analysis. The wide variety of sampling techniques and collection devices that have been developed for these media are discussed herein. The different types of sensors and mass spectrometry instruments currently available for breath analysis are evaluated as well as emerging breath research topics, such as cytokines, security and airport surveillance, cellular respiration, and canine olfaction.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| | - Joachim D Pleil
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
18
|
Chen H, Li J, Zhang X, Li X, Yao M, Zheng G. Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers. NANO LETTERS 2018; 18:4716-4726. [PMID: 29995423 DOI: 10.1021/acs.nanolett.8b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Toxicology and bedside medical condition monitoring is often desired to be both ultrasensitive and noninvasive. However, current biomarker analyses for these purposes are mostly offline and fail to detect low marker quantities. Here, we report a system called dLABer (detection of living animal's exhaled breath biomarker) that integrates living rats, breath sampling, microfluidics, and biosensors for the automated tracking of breath-borne biomarkers. Our data show that dLABer could selectively detect (online) and report differences (of up to 103-fold) in the levels of inflammation agent interleukin-6 (IL-6) exhaled by rats injected with different ambient particulate matter (PM). The dLABer system was further shown to have an up to 104 higher signal-to-noise ratio than that of the enzyme-linked immunosorbent assay (ELISA) when analyzing the same breath samples. In addition, both blood-borne IL-6 levels analyzed via ELISA in rats injected with different PM extracts and PM toxicity determined by a dithiothreitol (DTT) assay agreed well with those determined by the dLABer system. Video recordings further verified that rats exposed to PM with higher toxicity (according to a DTT assay and as revealed by dLABer) appeared to be less physically active. All the data presented here suggest that the dLABer system is capable of real-time, noninvasive monitoring of breath-borne biomarkers with ultrasensitivity. The dLABer system is expected to revolutionize pollutant health effect studies and bedside disease diagnosis as well as physiological condition monitoring at the single-protein level.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Jing Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xiangyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 200438 , China
| |
Collapse
|
19
|
Winters BR, Pleil JD, Boyer JC, Nylander-French LA, Wallace MAG, Madden MC. Review: Endogenously Produced Volatiles for In Vitro Toxicity Testing Using Cell Lines. APPLIED IN VITRO TOXICOLOGY 2018; 4:129-138. [PMID: 31037250 PMCID: PMC5994904 DOI: 10.1089/aivt.2017.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the ∼86,000 chemicals registered under the Toxic Substances Control Act and increasing ethical concerns regarding animal testing, it is not economically or technically feasible to screen every registered chemical for toxicity using animal-based toxicity assays. To address this challenge, regulatory agencies are investigating high-throughput screening in vitro methods to increase speed of toxicity testing, while reducing the overall cost. One approach for rapid toxicity testing currently being investigated is monitoring of volatile emissions produced by cell lines in culture. Such a metabolomics approach would measure gaseous emissions from a cell line and determine if such gaseous metabolites are altered upon exposure to a xenobiotic. Herein, we describe the history and rationale of monitoring endogenously produced volatiles for identification of pathologic conditions, as well as emerging applications in toxicity testing for such an approach.
Collapse
Affiliation(s)
- Brett R. Winters
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Joachim D. Pleil
- Exposure Methods and Measurements Division, NERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - M. Ariel Geer Wallace
- Exposure Methods and Measurements Division, NERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Michael C. Madden
- Environmental Public Health Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
20
|
Seferaj S, Ullah S, Tinglev Å, Carlsson S, Winberg J, Stambeck P, Beck O. Evaluation of a new simple collection device for sampling of microparticles in exhaled breath. J Breath Res 2018; 12:036005. [PMID: 29440627 DOI: 10.1088/1752-7163/aaaf24] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The microparticle fraction of exhaled breath is of interest for developing clinical biomarkers. Exhaled particles may contain non-volatile components from all parts of the airway system, formed during normal breathing. This study aimed to evaluate a new, simple sampling device, based on impaction, for collecting microparticles from exhaled breath. Performance of the new device was compared with that of the existing SensAbues membrane filter device. The analytical work used liquid chromatography-tandem mass spectrometry methods. The new device collected three subsamples and these were separately analysed from eight individuals. No difference was observed between the centre position (0.91 ng/sample) and the side positions (1.01 ng/sample) using major phosphatidylcholine (PC) 16:0/16:0 as the analyte. Exhaled breath was collected from eight patients on methadone maintenance treatment. The intra-individual variability in measured methadone concentration between the three collectors was 8.7%. In another experiment using patients on methadone maintenance treatment, the sampling efficiency was compared with an established filter device. Compared to the existing device, the efficiency of the new device was 121% greater for methadone and 1450% greater for DPPC. The data from lipid analysis also indicated that a larger fraction of the collected material was from the distal parts. Finally, a study using an optical particle counter indicated that the device preferentially collects the larger particle fraction. In conclusion, this study demonstrates the usefulness of the new device for collecting non-volatile components from exhaled breath. The performance of the device was superior to the filter device in several aspects.
Collapse
Affiliation(s)
- Sabina Seferaj
- Karolinska University Laboratory, Department of Clinical Pharmacology, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
Pleil JD, Wallace MAG, Stiegel MA, Funk WE. Human biomarker interpretation: the importance of intra-class correlation coefficients (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:161-180. [PMID: 30067478 PMCID: PMC6704467 DOI: 10.1080/10937404.2018.1490128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Human biomonitoring is the foundation of environmental toxicology, community public health evaluation, preclinical health effects assessments, pharmacological drug development and testing, and medical diagnostics. Within this framework, the intra-class correlation coefficient (ICC) serves as an important tool for gaining insight into human variability and responses and for developing risk-based assessments in the face of sparse or highly complex measurement data. The analytical procedures that provide data for clinical and public health efforts are continually evolving to expand our knowledge base of the many thousands of environmental and biomarker chemicals that define human systems biology. These chemicals range from the smallest molecules from energy metabolism (i.e., the metabolome), through larger molecules including enzymes, proteins, RNA, DNA, and adducts. In additiona, the human body contains exogenous environmental chemicals and contributions from the microbiome from gastrointestinal, pulmonary, urogenital, naso-pharyngeal, and skin sources. This complex mixture of biomarker chemicals from environmental, human, and microbiotic sources comprise the human exposome and generally accessed through sampling of blood, breath, and urine. One of the most difficult problems in biomarker assessment is assigning probative value to any given set of measurements as there are generally insufficient data to distinguish among sources of chemicals such as environmental, microbiotic, or human metabolism and also deciding which measurements are remarkable from those that are within normal human variability. The implementation of longitudinal (repeat) measurement strategies has provided new statistical approaches for interpreting such complexities, and use of descriptive statistics based upon intra-class correlation coefficients (ICC) has become a powerful tool in these efforts. This review has two parts; the first focuses on the history of repeat measures of human biomarkers starting with occupational toxicology of the early 1950s through modern applications in interpretation of the human exposome and metabolic adverse outcome pathways (AOPs). The second part reviews different methods for calculating the ICC and explores the strategies and applications in light of different data structures.
Collapse
Affiliation(s)
- Joachim D. Pleil
- Office of Research and Development, US Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - M. Ariel Geer Wallace
- Office of Research and Development, US Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Matthew A. Stiegel
- Department of Occupational and Environmental Safety, Duke University Medical Center, Durham, NC, USA
| | - William E. Funk
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Pleil J, Beauchamp J, Miekisch W. Cellular respiration, metabolomics and the search for illicit drug biomarkers in breath: report from PittCon 2017. J Breath Res 2017; 11:039001. [PMID: 28776507 PMCID: PMC6146967 DOI: 10.1088/1752-7163/aa7174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Joachim Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA,
| | - Jonathan Beauchamp
- Department of Sensory Analytics, Fraunhofer IVV, Giggenhauser Str. 35, 85354 Freising, Germany.
| | - Wolfram Miekisch
- Department of Anaesthesia and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
23
|
Stiegel MA, Pleil JD, Sobus JR, Stevens T, Madden MC. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:485-501. [PMID: 28696913 PMCID: PMC6089069 DOI: 10.1080/15287394.2017.1330578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human biomonitoring is an indispensable tool for evaluating the systemic effects derived from external stressors including environmental pollutants, chemicals from consumer products, and pharmaceuticals. The aim of this study was to explore consequences of environmental exposures to diesel exhaust (DE) and ozone (O3) and ultimately to interpret these parameters from the perspective of in vitro to in vivo extrapolation. In particular, the objective was to use cytokine expression at the cellular level as a biomarker for physiological systemic responses such as blood pressure and lung function at the systemic level. The values obtained could ultimately link in vivo behavior to simpler in vitro experiments where cytokines are a measured parameter. Human exposures to combinations of DE and O3 and the response correlations between forced exhaled volume in 1 second (FEV1), forced vital capacity (FVC), systolic and diastolic blood pressure (SBP and DBP, respectively), and 10 inflammatory cytokines in blood (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) were determined in 15 healthy human volunteers. Results across all exposures revealed that certain individuals displayed greater inflammatory responses compared to the group and, generally, there was more between-person variation in the responses. Evidence indicates that individuals are more stable within themselves and are more likely to exhibit responses independent of one another. Data suggest that in vitro findings may ultimately be implemented to elucidate underlying adverse outcome pathways (AOP) for linking high-throughput toxicity tests to physiological in vivo responses. Further, this investigation supports assessing subjects based upon individual responses as a complement to standard longitudinal (pre vs. post) intervention grouping strategies. Ultimately, it may become possible to predict a physiological (systemic) response based upon cellular-level (in vitro) observations.
Collapse
Affiliation(s)
- Matthew A Stiegel
- a Duke University Medical Center , Department of Occupational and Environmental Safety , Durham , NC , US
| | - Joachim D Pleil
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Jon R Sobus
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Tina Stevens
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| | - Michael C Madden
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| |
Collapse
|