1
|
Yoo J, Lee Y, Park Y, Lee J, Choi JY, Lee H, Lim JU. Update in Association between Lung Cancer and Air Pollution. Tuberc Respir Dis (Seoul) 2025; 88:228-236. [PMID: 39659117 PMCID: PMC12010724 DOI: 10.4046/trd.2024.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024] Open
Abstract
A significant portion of newly diagnosed lung cancer cases occurs in populations exposed to air pollution. The World Health Organization has identified air pollution as a human carcinogen, prompting many countries to implement monitoring systems for ambient particulate matter (PM). PM is composed of a complex mixture of organic and inorganic particles, both solid and liquid, that are found in the air. Given the carcinogenic properties of PM and the high prevalence of lung cancer among exposed populations, exploring their connection and clinical implications is critical for effectively preventing lung cancer in this group. This review explores the relationship between ambient PM and lung cancer. Epidemiological studies have demonstrated a dose-response relationship between PM exposure and lung cancer risk. PM exposure induces oxidative stress, disrupts the body's redox balance, and causes DNA damage, which is a crucial factor in cancer development. Recent findings on the strong correlation between ambient PM and adenocarcinoma highlight the importance of understanding the specific molecular and pathological mechanisms underlying pollution-related lung cancer. In addition to efforts to control emission sources at the international level, a more individualized approach is essential for preventing PM-related lung cancer.
Collapse
Affiliation(s)
- Jiye Yoo
- Institute for Environmental Convergence Technology, Department of Environmental Engineering, Incheon National University, Incheon, Republic of Korea
| | - Yongchan Lee
- Institute for Environmental Convergence Technology, Department of Environmental Engineering, Incheon National University, Incheon, Republic of Korea
| | - Youngil Park
- Institute for Environmental Convergence Technology, Department of Environmental Engineering, Incheon National University, Incheon, Republic of Korea
| | - Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Heekwan Lee
- Institute for Environmental Convergence Technology, Department of Environmental Engineering, Incheon National University, Incheon, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Liu X, Chen Q, Jiang S, Shan H, Yu T. MicroRNA-26a in respiratory diseases: mechanisms and therapeutic potential. Mol Biol Rep 2024; 51:627. [PMID: 38717532 DOI: 10.1007/s11033-024-09576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/30/2024]
Abstract
MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.
Collapse
Affiliation(s)
- Xiaoshan Liu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Qian Chen
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Shuxia Jiang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China.
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
3
|
Wei J, Liu J, Wang H, Wen K, Ni X, Lin Y, Huang J, You X, Lei Z, Li J, Shen H, Lin Y. Nanoplastic propels diet-induced NAFL to NASH via ER-mitochondrial tether-controlled redox switch. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133142. [PMID: 38061129 DOI: 10.1016/j.jhazmat.2023.133142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is multifactorial that lifestyle, genetic, and environmental factors contribute to its onset and progression, thereby posing a challenge for therapeutic intervention. Nanoplastic (NP) is emerged as a novel environmental metabolism disruptor but the etiopathogenesis remains largely unknown. In this study, C57BL/6 J mice were fed with normal chow diet (NCD) and high-fat diet (HFD) containing 70 nm polystyrene microspheres (NP). We found that dietary-derived NP adsorbed proteins and agglomerated during the in vivo transportation, enabling diet-induced hepatic steatosis to NASH. Mechanistically, NP promoted liver steatosis by upregulating Fatp2. Furthermore, NP stabilized the Ip3r1, and facilitated ER-mitochondria contacts (MAMs) assembly in the hepatocytes, resulting in mitochondrial Ca2+ overload and redox imbalance. The redox-sensitive Nrf2 was decreased in the liver of NP-exposed mice, which positively regulated miR26a via direct binding to its promoter region [-970 bp to -847 bp and -318 bp to -176 bp]. NP decreased miR26a simultaneously upregulated 10 genes involved in MAMs formation, lipid uptake, inflammation, and fibrosis. Moreover, miR26a inhibition elevated MAMs-tether Vdac1, which promoted the nucleus translocation of NF-κB P65 and Keap1 and functionally inactivated Nrf2, leading to a vicious cycle. Hepatocyte-specific overexpressing miR26a effectively restored ER-mitochondria miscommunication and ameliorated NASH phenotype in NP-exposed and Keap1-overexpressed mice on HFD. The hepatic MAM-tethers/Nrf2/miR26a feedback loop is an essential metabolic switch from simple steatosis to NASH and a promising therapeutic target for oxidative stress-associated liver damage and NASH.
Collapse
Affiliation(s)
- Jie Wei
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jintao Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Huan Wang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Kai Wen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Xiuye Ni
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Yilong Lin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingru Huang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiang You
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhao Lei
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China
| | - Juan Li
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China.
| | - Yi Lin
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China.
| |
Collapse
|
4
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Hua Z, Yang W, Li D, Cui Y, Shen L, Rao L, Zheng Y, Zhang Q, Zeng W, Gong Y, Yuan L. Metformin regulates the LIN28B‑mediated JNK/STAT3 signaling pathway through miR‑140‑3p in subretinal fibrosis. Exp Ther Med 2023; 26:528. [PMID: 37869644 PMCID: PMC10587880 DOI: 10.3892/etm.2023.12227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
Subretinal fibrosis (SF) is an important cause of submacular neovascularization that leads to permanent vision loss, but has no effective clinical treatment. The present study examined the influence of metformin on SF, and investigated whether the mechanism involves the microRNA (miR)-140-3p/LIN28B/JNK/STAT3-mediated regulation of oxidative stress, angiogenesis and fibrosis-associated indicators. A mouse model of laser-induced SF was established. In addition, an ARPE-19 fibrotic cell model was established using TGF-β1. A Cell Counting Kit-8 assay was used to examine cell viability. Flow cytometry was used to measure reactive oxygen species levels, and western blotting was used to detect the levels of proteins associated with epithelial-mesenchymal transition (EMT), signaling and fibrosis. The levels of superoxide dismutase, malondialdehyde, glutathione-peroxidase and catalase were measured using kits. Scratch assays and Transwell assays were used to assess cell migration and invasion, respectively, and reverse transcription-quantitative PCR was used to determine the levels of miR-140-3p and LIN28B. Dual-luciferase assays were used to verify the targeting relationship between miR-140-3p and LIN28B, and coimmunoprecipitation was used to confirm the interaction between LIN28B and JNK. Masson staining and hematoxylin and eosin staining were used to examine collagenous fibers and the histopathology of eye tissue. In ARPE-19 cells induced by TGF-β1, metformin promoted miR-140-3p expression and inhibited LIN28B expression and JNK/STAT3 pathway activation, thereby inhibiting oxidative stress, EMT and fibrosis in ARPE-19 cells. The overexpression of LIN28B or treatment with the JNK/STAT3 agonist anisomycin partially reversed the inhibitory effect of metformin on oxidative stress and fibrosis in ARPE-19 cells. The dual-luciferase reporter assay and coimmunoprecipitation assay showed that miR-140-3p targeted the 3' untranslated region of LIN28B mRNA and inhibited LIN28B expression. LIN28B targeted and bound to JNK and regulated the JNK/STAT3 pathway. Therefore, it may be concluded that metformin can promote miR-140-3p expression, inhibit LIN28B and then inhibit the JNK/STAT3 pathway to alleviate SF.
Collapse
Affiliation(s)
- Zhijuan Hua
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China
| | - Wenchang Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Dongli Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yixin Cui
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Lu Shen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Lingna Rao
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxiang Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiying Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wenyi Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yi Gong
- Department of Physiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
6
|
Zhang W, Nie Q, Zhang X, Huang L, Pang G, Chu J, Yuan X. miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer. Expert Opin Ther Targets 2023; 27:1285-1297. [PMID: 38155599 DOI: 10.1080/14728222.2023.2293750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis. RESEARCH DESIGN & METHODS Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships. RESULTS Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis. CONCLUSION EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Qiwei Nie
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Xuling Zhang
- Department of Nursing, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Guofu Pang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Xiaoxu Yuan
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
7
|
Lu YY, Cao M, Li F, Tian M, Ren H, Chi Q, Huang Q. Atmospheric PM 2.5 induce autophagy and autophagic flux blockage in HUVEC cells via ROS/TXNIP signaling: Important role of metal components. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130623. [PMID: 37056006 DOI: 10.1016/j.jhazmat.2022.130623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/19/2023]
Abstract
Autophagy was involved in vascular endothelial injury caused by PM2.5, which aggravated the pathogenesis of cardiovascular diseases. However, major toxic components and underlying mechanism responsible for PM2.5-induced autophagy remain unclear. In this study, the effects of water-extracted PM2.5 (WE-PM2.5) on autophagy in human umbilical vein endothelial cells (HUVEC) were studied. Our results showed WE-PM2.5 promoted autophagosome initiation and formation, meanwhile, lysosomal function was impaired, which further caused autophagic flux blockage in HUVEC cells. Furthermore, removal of metals alleviated WE-PM2.5-induced autophagic flux blockage, while the artificial metal mixture reproduced the WE-PM2.5 response. Mechanistically, ROS regulated autophagy-related proteins evidenced by BECN1, LC3B and p62 expression reversed by NAC pretreatment in WE-PM2.5-exposed cells. WE-PM2.5 also increased TXNIP expression mediated by ROS; moreover, knockdown of TXNIP in WE-PM2.5-exposed cells decreased BECN1 and LC3B expression, but had little effects on the expression of p62, CTSB, and CTSD, indicating WE-PM2.5-induced TXNIP was involved in autophagosome initiation and formation rather than autophagic degradation. Collectively, WE-PM2.5-induced ROS not only promoted autophagosome initiation and formation, but also inhibited autophagic degradation. However, as the downstream molecule of ROS, TXNIP was only involved in autophagosome initiation and formation. Importantly, WE-PM2.5-bound metals were largely responsible for autophagic flux blockage in HUVEC cells.
Collapse
Affiliation(s)
- Yan-Yang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiyi Cao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 10386, China
| | - Fuping Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongyun Ren
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiaoqiao Chi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
8
|
Li H, Da D, Yu W, Chen L, Yang S, Zhang B, Wang Y, Li L, Dang C. Tumor suppressor genes are reactivated by miR-26A1 via enhancer reprogramming in NSCLC. Hum Mol Genet 2022; 32:79-92. [PMID: 35921230 PMCID: PMC9838096 DOI: 10.1093/hmg/ddac185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant epithelial tumors. Studies have suggested that DNA hypermethylation of promoters and abnormal histone modifications could induce tumor suppressor genes (TSGs) downregulation in NSCLC. However, the exact mechanism of TSGs downregulation remains unclear. In this study, we found that there is no difference in the regions of most TSGs promoters in NSCLC. Moreover, we found that there is no DNA methylation difference in the region of VILL promoter in NSCLC compared with adjacent tissue samples by pyrosequencing. We further demonstrated that VILL was markedly reactivated in A549 and H1703 cells infected with miR-26A1 lentivirus while this activation was inhibited by JQ1, an enhancer inhibitor. In addition, we identified that miR-26A1 could function as a tumor suppressor to inhibit proliferation and metastasis of NSCLC cells. Chromatin immunoprecipitation assays revealed that overexpression of miR-26A1 could significantly induce the enrichment of H3K27ac at the enhancer regions in A549 cells. To sum up, our findings revealed that enhancer-mediated TSGs regulation occured in NSCLC, suggesting that miR-26A1 could serve as a key regulator and may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Hongling Li
- To whom correspondence should be addressed at: Department of Oncology, Gansu Provincial Hospital, Lanzhou 730000, PR China. Tel: +86-0931-8281563;
| | | | | | - Lu Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Shuai Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Baolong Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Yongying Wang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| | - Linyu Li
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| | - Chunyan Dang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| |
Collapse
|
9
|
Xue Y, Wang L, Zhang Y, Zhao Y, Liu Y. Air pollution: A culprit of lung cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128937. [PMID: 35452993 DOI: 10.1016/j.jhazmat.2022.128937] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a global health problem, especially in the context of rapid economic development and the expansion of urbanization. Herein, we discuss the harmful effects of outdoor and indoor pollution on the lungs. Ambient particulate matters (PMs) from industrial and vehicle exhausts is associated with lung cancer. Workers exposed to asbestos, polycyclic aromatic hydrocarbons (PAHs), and toxic metals are also likely to develop lung cancer. Indoors, cooking fumes, second-hand smoke, and radioactive products from house decoration materials play roles in the development of lung cancer. Bacteria and viruses can also be detrimental to health and are important risk factors in lung inflammation and cancer. Specific effects of lung cancer caused by air pollution are discussed in detail, including inflammation, DNA damage, and epigenetic regulation. In addition, advanced materials for personal protection, as well as the current government policies to prevent air pollution, are summarized. This review provides a basis for future research on the relationship between lung cancer and air pollution.
Collapse
Affiliation(s)
- Yueguang Xue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Liuxiang Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| | - Ying Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| |
Collapse
|
10
|
Liu J, Li S, Fei X, Nan X, Shen Y, Xiu H, Cormier SA, Lu C, Guo C, Wang S, Cai Z, Wang P. Increased alveolar epithelial TRAF6 via autophagy-dependent TRIM37 degradation mediates particulate matter-induced lung metastasis. Autophagy 2022; 18:971-989. [PMID: 34524943 PMCID: PMC9196782 DOI: 10.1080/15548627.2021.1965421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Epidemiological and clinical studies have shown that exposure to particulate matter (PM) is associated with an increased incidence of lung cancer and metastasis. However, the underlying mechanism remains unclear. Here, we demonstrated the central role of PM-induced neutrophil recruitment in promoting lung cancer metastasis. We found that reactive oxygen species (ROS)-mediated alveolar epithelial macroautophagy/autophagy was essential for initiating neutrophil chemotaxis and pre-metastatic niche formation in the lungs in response to PM exposure. During PM-induced autophagy, the E3 ubiquitin ligase TRIM37 was degraded and protected TRAF6 from proteasomal degradation in lung epithelial cells, which promoted the NFKB-dependent production of chemokines to recruit neutrophils. Importantly, ROS blockade, autophagy inhibition or TRAF6 knockdown abolished PM-induced neutrophil recruitment and lung metastasis enhancement. Our study indicates that host lung epithelial cells and neutrophils coordinate to promote cancer metastasis to the lungs in response to PM exposure and provides ideal therapeutic targets for metastatic progression.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ATII: alveolar type II; Cho-Traf6 siRNA: 5'-cholesterol-Traf6 siRNA; EMT: epithelial-mesenchymal transition; HBE: human bronchial epithelial; HCQ: hydroxychloroquine; MAPK: mitogen-activated protein kinase; NAC: N-acetyl-L-cysteine; NFKB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NS: normal saline; PM: particulate matter; ROS: reactive oxygen species; TRAF6: TNF receptor-associated factor 6; TRIM37: tripartite motif-containing 37.
Collapse
Affiliation(s)
- Jiajun Liu
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuefeng Fei
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Nan
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqing Xiu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Stephania A. Cormier
- Pennington Biomedical Researcher Center and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chaojie Lu
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shibo Wang
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pingli Wang
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Chen S, Li D, Yu D, Li M, Ye L, Jiang Y, Tang S, Zhang R, Xu C, Jiang S, Wang Z, Aschner M, Zheng Y, Chen L, Chen W. Determination of tipping point in course of PM 2.5 organic extracts-induced malignant transformation by dynamic network biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128089. [PMID: 34933256 DOI: 10.1016/j.jhazmat.2021.128089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The dynamic network biomarkers (DNBs) are designed to identify the tipping point and specific molecules in initiation of PM2.5-induced lung cancers. To discover early-warning signals, we analyzed time-series gene expression datasets over a course of PM2.5 organic extraction-induced human bronchial epithelial (HBE) cell transformation (0th~16th week). A composition index of DNB (CIDNB) was calculated to determine correlations and fluctuations in molecule clusters at each timepoint. We identified a group of genes with the highest CIDNB at the 10th week, implicating a tipping point and corresponding DNBs. Functional experiments revealed that manipulating respective DNB genes at the tipping point led to remarkable changes in malignant phenotypes, including four promoters (GAB2, NCF1, MMP25, LAPTM5) and three suppressors (BATF2, DOK3, DAP3). Notably, co-altered expression of seven core DNB genes resulted in an enhanced activity of malignant transformation compared to effects of single-gene manipulation. Perturbation of pathways (EMT, HMGB1, STAT3, NF-κB, PTEN) appeared in HBE cells at the tipping point. The core DNB genes were involved in regulating lung cancer cell growth and associated with poor survival, indicating their synergistic effects in initiation and development of lung cancers. These findings provided novel insights into the mechanism of dynamic networks attributable to PM2.5-induced cell transformation.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Miao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Chi Xu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shuyun Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
12
|
Wang L, Li M, Chen F. microRNA-26a represses pancreatic cancer cell malignant behaviors by targeting E2F7. Discov Oncol 2021; 12:55. [PMID: 35201478 PMCID: PMC8777553 DOI: 10.1007/s12672-021-00448-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 01/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) exerts key roles in the development of pancreatic cancer (PCa). miR-26a is reportedly a tumor suppressor in cancers. However, whether miR-26a modulates PCa progression is poorly understood. Here, we found that miR-26a was down-regulated in PCa. Overexpressed miR-26a suppressed PCa cell proliferation, colony formation, and tumor stem cell properties. Mechanically, the transcription factor E2F7 is a downstream target of miR-26a. miR-26a decreased E2F7 expression through binding to the 3'-untranslated region (UTR) of E2F7. Decreased miR-26a in PCa tissues was inversely correlated with E2F7. The inhibitory effects of miR-26a in PCa were reversed by E2F7 overexpression. Consistently, the knockout of E2F7 further significantly inhibited the growth of PCa cells combined with miR-26a overexpression. Further study revealed that E2F7 bound the promoter of vascular endothelial growth factor A (VEGFA), a key factor in angiogenesis, and transcriptionally activated the expression of VEGFA. miR-26a overexpression attenuated the effects of E2F7 on VEGFA promotion. Our results uncovered the novel function of miR-26a/E2F7/VEGFA in PCa, making miR-26a a possible target for PCa treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meijun Li
- Department of Blood, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical University, No. 2 of the People Street, Gu Ta district, Jinzhou, 121001, Liao Ning, China.
| |
Collapse
|
13
|
Shi H, Xie J, Wang K, Li W, Yin L, Wang G, Wu Z, Ni J, Mao W, Guo C, Peng B. LINC01451 drives epithelial-mesenchymal transition and progression in bladder cancer cells via LIN28/TGF-β/Smad pathway. Cell Signal 2021; 81:109932. [PMID: 33516780 DOI: 10.1016/j.cellsig.2021.109932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The pathogenesis of bladder cancer (BLCa) is still unclear. Long non-coding RNAs (lncRNAs) participate in diverse biological processes across every branch of life, especially in cancer. Dysregulated lncRNAs in BLCa and their biological significance require further investigations. METHODS Herein, a differential expression profile of lncRNAs in BLCa was conducted by microarray data. The expression level of lncRNA LINC01451 in 70 pairs of BLCa tissue samples and different BLCa cell lines were analyzed via real-time quantitative PCR. The CRISPR-CAS9 technique was employed to establish the LINC01451 stably transfected cell lines. Loss-of-function, as well as gain-of-function assays were carried out to evaluate the effects of LINC01451 on cell proliferation, migration, and invasion. Patient-derived xenograft (PDX) mouse models were adopted in the in vivo experiments. Western blot, biotinylated RNA probe pull-down assay, fluorescence in situ hybridization, and immunohistochemistry were utilized to assess the underlying molecular mechanisms of LINC01451 in BLCa. RESULTS LINC01451 was identified a novel functional lncRNA, whose expression level in BLCa tissues was significantly higher compared with the normal tissues. Furthermore, it was found that LINC01451 directly docked LIN28A and LIN28B, and promoted the proliferation, invasion, and metastasis of BLCa. Mechanistically, LINC0145 was shown to depend on LIN28A and LIN28B, facilitated epithelial-mesenchymal transition (EMT) through activating the TGF-β/Smad signaling pathway, which subsequently aggravated BLCa progression. CONCLUSIONS We demonstrates that LINC01451 drives EMT-induced BLCa progression by activating the LIN28/TGF-β/Smad signaling pathway. Promisingly, LINC01451 acts as a prognostic biomarker and a novel therapeutic target for BLCa.
Collapse
Affiliation(s)
- Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Urology, Nantong Tongzhou People's Hospital, Nantong 226000, China
| | - Jinbo Xie
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Weiyi Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zonglin Wu
- Department of Urology, Shidong Hospital of Shanghai, Shanghai 200438, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai 200072, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
14
|
Wei J, Hao Q, Chen C, Li J, Han X, Lei Z, Wang T, Wang Y, You X, Chen X, Li H, Ding Y, Huang W, Hu Y, Lin S, Shen H, Lin Y. Epigenetic repression of miR-17 contributed to di(2-ethylhexyl) phthalate-triggered insulin resistance by targeting Keap1-Nrf2/miR-200a axis in skeletal muscle. Theranostics 2020; 10:9230-9248. [PMID: 32802189 PMCID: PMC7415800 DOI: 10.7150/thno.45253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Skeletal muscle insulin resistance is detectable before type 2 diabetes is diagnosed. Exposure to di(2-ethylhexyl) phthalate (DEHP), a typical environmental endocrine-disrupting chemical, is a novel risk factor for insulin resistance and type 2 diabetes. This study aimed to explore insulin signaling regulatory pathway in skeletal muscle of the DEHP-induced insulin-resistant mice and to investigate potential therapeutic strategies for treating insulin resistance. Methods: C57BL/6J male mice were exposed to 2 mg/kg/day DEHP for 15 weeks. Whole-body glucose homeostasis, oxidative stress and deregulated miRNA-mediated molecular transduction in skeletal muscle were examined. microRNA (miRNA) interventions based on lentiviruses and adeno-associated viruses 9 (AAV9) were performed. Results: Dnmt3a-dependent promoter methylation and lncRNA Malat1-related sponge functions cooperatively downregulated miR-17 in DEHP-exposed skeletal muscle cells. DEHP suppressed miR-17 to disrupt the Keap1-Nrf2 redox system and to activate oxidative stress-responsive Txnip in skeletal muscle. Oxidative stress upregulated miR-200a, which directly targets the 3'UTR of Insr and Irs1, leading to hindered insulin signaling and impaired insulin-dependent glucose uptake in skeletal muscle, ultimately promoting the development of insulin resistance. AAV9-induced overexpression of miR-17 and lentivirus-mediated silencing of miR-200a in skeletal muscle ameliorated whole-body insulin resistance in DEHP-exposed mice. Conclusions: The miR-17/Keap1-Nrf2/miR-200a axis contributed to DEHP-induced insulin resistance. miR-17 is a positive regulator, whereas miR-200a is a negative regulator of insulin signaling in skeletal muscle, and both miRNAs have the potential to become therapeutic targets for preventing and treating insulin resistance or type 2 diabetes.
Collapse
Affiliation(s)
- Jie Wei
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, 1748 E. 118th Street, Los Angeles, CA, 90059, USA
| | - Chengkun Chen
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Juan Li
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xikui Han
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tao Wang
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yinan Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiang You
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huasheng Li
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuxin Ding
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weihao Huang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yangyang Hu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shuirong Lin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Zhang X, Zhang Y, Meng Q, Sun H, Wu S, Xu J, Yun J, Yang X, Li B, Zhu H, Xue L, Li X, Chen R. MicroRNA-382-5p is involved in pulmonary inflammation induced by fine particulate matter exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114278. [PMID: 32146367 DOI: 10.1016/j.envpol.2020.114278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Exposure to atmospheric particulate matter (PM) has been related to the increasing incidence and mortality of pulmonary diseases, where microRNAs (miRNAs) play significant roles in these biological and pathological processes. In the present study, we found that miR-382-5p played an anti-inflammatory role in pulmonary inflammation induced by fine particulate matter (PM2.5) or diesel exhaust particles (DEPs) in vitro and in vivo. The expression level of miR-382-5p was downregulated, while its target gene, namely CXCL12, was elevated in HBE cells after exposure to PM2.5 or DEPs. Mechanistically, PM2.5 or DEPs exposure increased CXCL12/MMP9 expression via miR-382-5p inhibition, subsequently triggered pulmonary inflammation. Furthermore, antagonizing the function of CXCL12 significantly reduced the expression of MMP9 and local inflammation induced by PM2.5 or DEPs. PM2.5 or DEPs caused apoptosis and G1 phase arrest could be partially restored by overexpression of miR-382-5p and antagonism of CXCL12. In a murine model, enhanced miR-382-5p expression effectively reduced expression levels of CXCL12, MMP9 and inflammatory cytokines, hereby protected lung tissues against PM2.5 or DEPs-induced lesions. Collectively, the miR-382-5p/CXCL12/MMP9 pathway may provide a mechanism, which mediates inflammatory response to PM2.5 or DEPs exposure.
Collapse
Affiliation(s)
- Xinwei Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xi Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hao Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Ling Xue
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
16
|
Boudhraa Z, Carmona E, Provencher D, Mes-Masson AM. Ran GTPase: A Key Player in Tumor Progression and Metastasis. Front Cell Dev Biol 2020; 8:345. [PMID: 32528950 PMCID: PMC7264121 DOI: 10.3389/fcell.2020.00345] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Ran (Ras-related nuclear protein) GTPase is a member of the Ras superfamily. Like all the GTPases, Ran cycles between an active (GTP-bound) and inactive (GDP-bound) state. However, Ran lacks the CAAX motif at its C-terminus, a feature of other small GTPases that ensures a plasma membrane localization, and largely traffics between the nucleus and the cytoplasm. Ran regulates nucleo-cytoplasmic transport of molecules through the nuclear pore complex and controls cell cycle progression through the regulation of microtubule polymerization and mitotic spindle formation. The disruption of Ran expression has been linked to cancer at different levels - from cancer initiation to metastasis. In the present review, we discuss the contribution of Ran in the acquisition of three hallmarks of cancer, namely, proliferative signaling, resistance to apoptosis, and invasion/metastasis, and highlight its prognostic value in cancer patients. In addition, we discuss the use of this GTPase as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Liu S, Yang N, Wang L, Wei B, Chen J, Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β-catenin signaling pathway. J Cell Physiol 2020; 235:7541-7553. [PMID: 32239719 DOI: 10.1002/jcp.29656] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.
Collapse
Affiliation(s)
- Shaoxia Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningning Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jiayao Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghua Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Li K, Ma YB, Tian YH, Xu XL, Gao Y, He YQ, Pan WT, Zhang JW, He CJ, Wei L. Silencing lncRNA SNHG6 suppresses proliferation and invasion of breast cancer cells through miR-26a/VASP axis. Pathol Res Pract 2019; 215:152575. [DOI: 10.1016/j.prp.2019.152575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 01/17/2023]
|
19
|
Asghariazar V, Sakhinia E, Mansoori B, Mohammadi A, Baradaran B. Tumor suppressor microRNAs in lung cancer: An insight to signaling pathways and drug resistance. J Cell Biochem 2019; 120:19274-19289. [DOI: 10.1002/jcb.29295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Vahid Asghariazar
- Department of Medical Genetics, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Aging Research Institute, Physical Medicine and Rehabilitation Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine University of Southern Denmark Odense Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine University of Southern Denmark Odense Denmark
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
20
|
Ding D, Ye G, Lin Y, Lu Y, Zhang H, Zhang X, Hong Z, Huang Q, Chi Y, Chen J, Dong S. MicroRNA-26a-CD36 signaling pathway: Pivotal role in lipid accumulation in hepatocytes induced by PM 2.5 liposoluble extracts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:269-278. [PMID: 30798028 DOI: 10.1016/j.envpol.2019.01.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Exposure to ambient particular matters (PM) has been associated with the development of non-alcoholic fatty liver disease (NAFLD), but the underlying mechanism remains unclear. Given that microRNA (miRNA) is recognized as a key regulator of lipid metabolism and a potential mediator of environmental cues, this study aimed to explore the role of miRNA-mRNA regulation underlying abnormal lipid metabolism triggered by PM2.5liposoluble extracts. We confirmed that 72-h exposure to liposoluble extracts of PM2.5 from Nanjing at 25 μg/cm2 induced lipid accumulation in HepG2 cells by promoting uptake of free fatty acids (FFAs). Notably, lipid accumulation induced by PM2.5 liposoluble extracts was associated with decreased expression of miR-26a and consequent upregulation of fatty acid translocase (FAT, also known as CD36). Using gain- and loss-of-function assays, we demonstrated that miR-26a negatively regulated CD36 to mediate lipid accumulation in HepG2 cells. We further confirmed that miR-26a directly acted on the 3' untranslated region (3'UTR) of CD36. Furthermore, overexpression of miR-26a abolished steatosis in HepG2 cells treated with PM2.5 liposoluble extracts by suppressing CD36. In addition, we demonstrated that PM2.5 liposoluble extracts caused inflammation in HepG2 cells by raising p65 phosphorylation, thereby fuelling the transition from simple non-alcoholic fatty liver to non-alcoholic steatohepatitis. In conclusion, this study demonstrated a novel mechanism by which miR-26a-CD36 pathway mediated lipid accumulation induced by PM2.5 liposoluble extracts in hepatocytes. Lipid accumulation and inflammation induced by PM2.5 liposoluble extracts implied the potential role of PM2.5 in developing NAFLD.
Collapse
Affiliation(s)
- Dongxiao Ding
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yi Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yanyang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Han Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xu Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyu Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yulang Chi
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
21
|
Niu Y, Su M, Wu Y, Fu L, Kang K, Li Q, Li L, Hui G, Li F, Gou D. Circulating Plasma miRNAs as Potential Biomarkers of Non-Small Cell Lung Cancer Obtained by High-Throughput Real-Time PCR Profiling. Cancer Epidemiol Biomarkers Prev 2018; 28:327-336. [PMID: 30377207 DOI: 10.1158/1055-9965.epi-18-0723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Because of limited stability and sensitivity, circulating miRNAs as noninvasive biomarkers have not so far been used for early diagnosis and prognosis of non-small cell lung cancer (NSCLC) in clinic. Therefore, it is imperative to find more reliable biomarker(s). METHODS We performed one of most sensitive qRT-PCR assays, S-Poly(T) Plus, to select differently expressed miRNAs from genome-wide miRNA profiling. miRNA candidates were validated through a three-phase selection and two validation processes with 437 NSCLC cases and 415 controls. RESULTS A unique set of 7 and 9 miRNAs differed significantly in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) samples compared with those in controls, of which, there were 5 universal biomarkers for NSCLC (ADC or SCC). Ten of 11 miRNAs could discriminate early stage (stage I) of NSCLC from healthy individuals. Risk score was obtained from the validation set-1 and was tested using the ROC curves with a high area under ROC curve of 0.89 in ADC and 0.96 in SCC. Ultimately, potential biomarkers and the risk score were verified by the validation set-2 with a sensitivity of 94% and a specificity of 91.6% in ADC, and a sensitivity of 98.5% and a specificity of 51.5% in SCC, respectively. CONCLUSIONS Taken together, 7 miRNAs and 9 miRNAs may provide noninvasive biomarkers for diagnosis and prognosis in ADC and SCC, respectively. IMPACT On the basis of our sensitive and accurate method, we hope that these candidate miRNAs may have strong impact on the early lung cancer diagnosis.
Collapse
Affiliation(s)
- Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Mingyang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong, China
| | - Yike Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, Guangdong, China
| | - Qing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Gang Hui
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, China.
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|