1
|
Carrão Dantas EK, Ferreira CLS, da Cunha Goldstein A, da Silva Fernandes A, Anastacio Ferraz ER, Felzenszwalb I, Araújo-Lima CF. Marketable 1,3-dimethylamylamine and caffeine-based thermogenic supplements: Regulatory genotoxicity assessment through in vitro and in silico approaches. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:245-265. [PMID: 38115604 DOI: 10.1080/15287394.2023.2294925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The consumption of dietary supplements to enhance physical performance has increased significantly in the last century, especially thermogenic pre-workout supplements. Nevertheless, this industry has faced criticism for inadequate safety measures surveillance in regulatory issues regarding their products. The aims of our study were to investigate two pre-workout supplements with respect to (1) mutagenicity utilizing Salmonella/microsome assay; (2) genotoxicity employing cytokinesis-block micronucleus (CBMN) assay protocols; and (3) hepatocytoxicity using WST cell proliferation, activities of lactate dehydrogenase (LDH) and alkaline phosphatase using human liver carcinoma (HepG2) and mouse fibroblast (F C3H) cells. Oxidative stress was determined through glutathione (GSH) measurement and in silico for predictions of pharmacokinetics and toxicity for the most abundant isolated substances present in these supplements. Both supplements induced mutagenicity in all examined bacterial strains, especially in the presence of exogenous metabolism. Further, tested supplements significantly elevated the formation of micronuclei (MN) as well as other cellular phenomena. Concentration- and time-dependent curves were observed for hepatotoxicity in both studied cell lines. In addition, both supplements decreased levels of intracellular and extracellular GSH. In silico predictions showed that the isolated individual compounds failed to induce the observed outcomes. Our findings provide contributions to the molecular mechanisms underlying two pre-workout supplement-induced toxicity and the need for surveillance.
Collapse
Affiliation(s)
- Eduardo Kennedy Carrão Dantas
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Caroline Lopes Simões Ferreira
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alana da Cunha Goldstein
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andreia da Silva Fernandes
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Park SM, Choi MS, Kim S, Jegal H, Han HY, Chun HS, Kim SK, Oh JH. Hepa-ToxMOA: a pathway-screening method for evaluating cellular stress and hepatic metabolic-dependent toxicity of natural products. Sci Rep 2024; 14:4319. [PMID: 38383711 PMCID: PMC10881971 DOI: 10.1038/s41598-024-54634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
In the field of drug discovery, natural products have emerged as therapeutic agents for diseases such as cancer. However, their potential toxicity poses significant obstacles in the developing effective drug candidates. To overcome this limitation, we propose a pathway-screening method based on imaging analysis to evaluate cellular stress caused by natural products. We have established a cellular stress sensing system, named Hepa-ToxMOA, which utilizes HepG2 cells expressing green fluorescent protein (GFP) fluorescence under the control of transcription factor response elements (TREs) for transcription factors (AP1, P53, Nrf2, and NF-κB). Additionally, to augment the drug metabolic activity of the HepG2 cell line, we evaluated the cytotoxicity of 40 natural products with and without S9 fraction-based metabolic activity. Our finding revealed different activities of Hepa-ToxMOA depending on metabolic or non-metabolic activity, highlighting the involvement of specific cellular stress pathways. Our results suggest that developing a Hepa-ToxMOA system based on activity of drug metabolizing enzyme provides crucial insights into the molecular mechanisms initiating cellular stress during liver toxicity screening for natural products. The pathway-screening method addresses challenges related to the potential toxicity of natural products, advancing their translation into viable therapeutic agents.
Collapse
Affiliation(s)
- Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34131, Daejeon, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34131, Daejeon, Republic of Korea
| | - Soojin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
| | - Hyun Jegal
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, 34113, Daejeon, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, 34113, Daejeon, Republic of Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, 17546, Anseong, South Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34131, Daejeon, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea.
- Department of Human and Environmental Toxicology, University of Science & Technology, 34113, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Foster PA, Mueller JW. New structural insights provide a different angle on steroid sulfatase action. J Steroid Biochem Mol Biol 2023; 232:106353. [PMID: 37331434 DOI: 10.1016/j.jsbmb.2023.106353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
A central part of human sulfation pathways is the spatially and temporally controlled desulfation of biologically highly potent steroid hormones. The responsible enzyme - steroid sulfatase (STS) - is highly expressed in placenta and peripheral tissues, such as fat, colon, and the brain. The shape of this enzyme and its mechanism are probably unique in biochemistry. STS was believed to be a transmembrane protein, spanning the Golgi double-membrane by stem region formed by two extended internal alpha-helices. New crystallographic data however challenge this view. STS now is portraited as a trimeric membrane-associated complex. We discuss the impact of these results on STS function and sulfation pathways in general and we hypothesis that this new STS structural understanding suggests product inhibition to be a regulator of STS enzymatic activity.
Collapse
Affiliation(s)
- P A Foster
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - J W Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
4
|
Osman A, Chittiboyina AG, Avula B, Ali Z, Adams SJ, Khan IA. Quality Consistency of Herbal Products: Chemical Evaluation. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:163-219. [PMID: 37392312 DOI: 10.1007/978-3-031-26768-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The widespread utility of herbal products has been rising considerably worldwide, including both developed and developing countries, leading to the rapid growth of their availability in the United States and globally. This substantial increase in consumption of herbal products has witnessed the emergence of adverse effects upon oral administration of certain of these products, and thus has raised safety concerns. The adverse effects caused by the consumption of certain botanical medicines occur primarily as a result of the poor quality of plant raw materials or the finished products, which inherently may affect safety and/or efficacy. The poor quality of some herbal products can be attributed to a lack of proper quality assurance and quality control. A high demand for herbal products that surpasses production, combined with a desire for maximizing profits, along with a lack of rigorous quality control within some manufacturing facilities have led to the emergence of quality inconsistencies. The underlying causes for this involve the misidentification of plant species, or their substitution, adulteration, or contamination with harmful ingredients. Analytical assessments have revealed there to be frequent and significant compositional variations between marketed herbal products. The inconsistency of the quality of herbal products can be ascribed essentially to the inconsistency of the botanical raw material quality used to manufacture the products. Thus, the quality assurance and the quality control of the botanical raw materials is may contribute significantly to improving the quality and consistency of the quality of the end products. The current chapter focuses on the chemical evaluation of quality and consistency of herbal products, including botanical dietary supplements. Different techniques, instruments, applications, and methods used in identifying, quantifying, and generating chemical fingerprints and chemical profiles of the ingredients of the herbal products will be described. The strengths and weaknesses of the various techniques available will be addressed. Limitations of the other approaches including morphological or microscopic analysis and DNA-based analysis will be presented.
Collapse
Affiliation(s)
- Ahmed Osman
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA.
| | - Amar G Chittiboyina
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Zulfiqar Ali
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Sebastian J Adams
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
5
|
Healthcare Professionals' Knowledge and Behaviors Regarding Drug-Dietary Supplement and Drug-Herbal Product Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074290. [PMID: 35409970 PMCID: PMC8998985 DOI: 10.3390/ijerph19074290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/07/2022]
Abstract
Given the widespread use of dietary supplements (DS) and herbal products (HP), healthcare professionals (HCPs) will increasingly encounter patients who use these preparations with conventional drugs and who need their services to reduce the consequences of adverse therapeutic outcomes. The aim of our survey was to assess the knowledge and behaviors of HCPs regarding the risk of potential drug−dietary supplement (DDSIs) and drug−herbal product (DHPIs) interactions. This cross-sectional survey collected data via on paper-based questionnaire among general practitioners (GPs) (n = 105), specialty doctors (n = 87) and nurses (n = 154). The HCPs were mostly familiar with the interaction of doxycycline with magnesium (83%) and were least familiar with interaction of warfarin with glucosamine (14%). The results on DDSIs and DHPIs knowledge showed that GPs scored significantly higher than nurses (p < 0.001 and p = 0.003, respectively), while specialty doctors scored significantly higher than nurses only on DDSIs knowledge (p < 0.001). Only 28% of respondents reported that they often or always ask patients on drug therapy about the use of DS or HP, and 25% of respondents record such data in the medical documentation of patients. Our results showed that HCPs have sufficient knowledge about most major DDSIs and DHPIs, but insufficient knowledge about most moderate interactions. However, their overall knowledge and behavior regarding the risk of these interactions indicate the need for further continuing education and training.
Collapse
|
6
|
Ugwu CE, Suru SM. Medicinal plants with hepatoprotective potentials against carbon tetrachloride-induced toxicity: a review. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00161-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Carbon tetrachloride (CCl4) is a well-characterized hepatotoxic agent. With rising cases of liver diseases, the identification, assessment, and development of hepatoprotective agents from plants source has become imperative.
Main body
With arrays of literature on plants with hepatoprotective potentials, this review sourced published literatures between 1998 and 2020 and systematically highlighted about 92 medicinal plants that have been reported to protect against CCl4-induced liver injury in animal models. The results show that herbal plants provide protection for the liver against CCl4 by downregulation of the liver marker enzymes and activation of antioxidant capacity of the liver cells with the restoration of liver architecture. We also provided the traditional and accompanying pharmacological uses of the plants. A variety of phytochemicals mostly flavonoids and polyphenols compounds were suggested to offer protection against liver injuries.
Conclusion
It can be concluded that there are a variety of phytochemicals in plant products with hepatoprotective activity against CCl4-induced toxicity in animal models.
Collapse
|
7
|
Woo SM, Davis WD, Aggarwal S, Clinton JW, Kiparizoska S, Lewis JH. Herbal and dietary supplement induced liver injury: Highlights from the recent literature. World J Hepatol 2021; 13:1019-1041. [PMID: 34630872 PMCID: PMC8473494 DOI: 10.4254/wjh.v13.i9.1019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Herbal-induced liver injury (HILI) is an important and increasingly concerning cause of liver toxicity, and this study presents recent updates to the literature. An extensive literature review was conducted encompassing September 2019 through March 2021. Studies with clinically significant findings were analyzed and included in this review. We emphasized those studies that provided a causality assessment methodology, such as Roussel Uclaf Causality Assessment Method scores. Our review includes reports of individual herbals, including Garcinia cambogia, green tea extract, kratom as well as classes such as performance enhancing supplements, Traditional Chinese medicine, Ayurvedic medicine and herbal contamination. Newly described herbals include ashwagandha, boldo, skyfruit, and 'Thermo gun'. Several studies discussing data from national registries, including the United States Drug-Induced Liver Injury (DILI) Network, Spanish DILI Registry, and Latin American DILI Network were incorporated. There has also been a continued interest in hepatoprotection, with promising use of herbals to counter hepatotoxicity from anti-tubercular medications. We also elucidated the current legal conversation surrounding use of herbals by presenting updates from the Federal Drug Administration. The highlights of the literature over the past year indicate interest in HILI that will continue as the supplement industry in the United States grows.
Collapse
Affiliation(s)
- Stephanie M Woo
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States.
| | - William D Davis
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Soorya Aggarwal
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Joseph W Clinton
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Sara Kiparizoska
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - James H Lewis
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| |
Collapse
|
8
|
Teschke R, Eickhoff A, Schulze J, Danan G. Herb-induced liver injury (HILI) with 12,068 worldwide cases published with causality assessments by Roussel Uclaf Causality Assessment Method (RUCAM): an overview. Transl Gastroenterol Hepatol 2021; 6:51. [PMID: 34423172 PMCID: PMC8343418 DOI: 10.21037/tgh-20-149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Herbal products including herbal medicines are worldwide used in large amounts for treating minor ailments and for disease prevention. However, efficacy of most herbal products has rarely been well documented through randomized controlled trials in line with evidence-based medicine concepts, which could be used to estimate the benefit/risk ratio. Instead, much better documented are adverse reactions such as liver injury associated with the consumption of some herbal products, so called herb-induced liver injury (HILI), which represents a clinical challenge. In order to establish HILI as valid diagnosis, the use of a diagnostic algorithms such as Roussel Uclaf Causality Assessment Method (RUCAM) is widely recommended, although physicians in some countries are reluctant to use RUCAM for their HILI cases. This review on worldwide HILI and RUCAM, developed as part of the artificial intelligence ideas, reveals that China is the leading country with 24 publications on HILI cases that were all assessed for causality using RUCAM, followed by Korea with 15 reports, Germany with 9 reports, the US with 7 reports, and Spain with 6 reports, whereas the remaining countries provided less than 4 reports. The total number of assessed HILI cases is 12,068 worldwide derived from 80 publications but in each report HILI case numbers were variable in a range from 1 up to 6,971. This figure compares with 46,266 cases of drug-induced liver injury (DILI) published worldwide from 2014 to early 2019 also assessed for causality by RUCAM. The original version of RUCAM was validated and established in 1993 and updated in 2016 that should be used in future HILI cases. RUCAM is an objective, structured, and validated method, specifically designed for liver injury. It is a scoring system including case data elements to be assessed and scored individually to provide a final score in five causality gradings. Among the 11,404/12,068 HILI (94.5%) cases assessable for evaluation, causality gradings were highly probable in 4.2%, probable in 15.5%, possible in 70.3%, and unlikely or excluded in 10.0%. To improve the future reporting of RUCAM based HILI cases, recommendations include the strict adherence to instructions outlined in the updated RUCAM and, in particular, to follow prospective data collection on the cases to ensure completeness of case data. In conclusion, RUCAM can well be used to assess causality in suspected HILI cases, and additional efforts are now required to increase the quality of the reported cases.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Axel Eickhoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance consultancy, Paris, France
| |
Collapse
|
9
|
Analysis of Monacolins and Berberine in Food Supplements for Lipid Control: An Overview of Products Sold on the Italian Market. Molecules 2021; 26:molecules26082222. [PMID: 33921464 PMCID: PMC8069111 DOI: 10.3390/molecules26082222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
The use of dietary supplements for the prevention and management of diseases associated with excess of lipids is spreading in Western countries. Supplements containing red yeast rice (RYR) and extracts from Berberis species, characterized, respectively, by the active compounds monacolin K (MK) and berberine (BBR), are sold in pharmacies as over the counter medicines (OTC) and in regular markets without the need of medical prescription and medical surveillance. However, MK is chemically identical to lovastatin, a drug commonly used to treat hypercholesterolemia, and is characterized by the same mechanism of action, pharmacokinetic profile and toxicity. On the other hand, although BBR-containing supplements are considered to be well-tolerated and safe, they frequently show poor standardization of active ingredients, and this could lead to lack of effects. In this work, with the aim to give an overview on the potency of RYR- and BBR-containing supplements available on the Italian market, we analyzed a pool of supplements bought from both local pharmacies and markets. Results confirm the data already published by other authors, showing scarce standardization of bioactives and discrepancy between the doses of bioactives reported by the manufacturers and the amounts resulting from analysis of the same products. Overall, our data represent a further proof that a strict legislation regulating the production and marketing of dietary supplements and a close monitoring of these products by food and drug regulatory organs is mandatory.
Collapse
|
10
|
Li T, Tong W, Roberts R, Liu Z, Thakkar S. DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation. Chem Res Toxicol 2020; 34:550-565. [PMID: 33356151 DOI: 10.1021/acs.chemrestox.0c00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) is the most frequently reported single cause of safety-related withdrawal of marketed drugs. It is essential to identify drugs with DILI potential at the early stages of drug development. In this study, we describe a deep learning-powered DILI (DeepDILI) prediction model created by combining model-level representation generated by conventional machine learning (ML) algorithms with a deep learning framework based on Mold2 descriptors. We conducted a comprehensive evaluation of the proposed DeepDILI model performance by posing several critical questions: (1) Could the DILI potential of newly approved drugs be predicted by accumulated knowledge of early approved ones? (2) is model-level representation more informative than molecule-based representation for DILI prediction? and (3) could improved model explainability be established? For question 1, we developed the DeepDILI model using drugs approved before 1997 to predict the DILI potential of those approved thereafter. As a result, the DeepDILI model outperformed the five conventional ML algorithms and two state-of-the-art ensemble methods with a Matthews correlation coefficient (MCC) value of 0.331. For question 2, we demonstrated that the DeepDILI model's performance was significantly improved (i.e., a MCC improvement of 25.86% in test set) compared with deep neural networks based on molecule-based representation. For question 3, we found 21 chemical descriptors that were enriched, suggesting a strong association with DILI outcome. Furthermore, we found that the DeepDILI model has more discrimination power to identify the DILI potential of drugs belonging to the World Health Organization therapeutic category of 'alimentary tract and metabolism'. Moreover, the DeepDILI model based on Mold2 descriptors outperformed the ones with Mol2vec and MACCS descriptors. Finally, the DeepDILI model was applied to the recent real-world problem of predicting any DILI concern for potential COVID-19 treatments from repositioning drug candidates. Altogether, this developed DeepDILI model could serve as a promising tool for screening for DILI risk of compounds in the preclinical setting, and the DeepDILI model is publicly available through https://github.com/TingLi2016/DeepDILI.
Collapse
Affiliation(s)
- Ting Li
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States.,University of Arkansas at Little Rock and University of Arkansas for Medical Sciences Joint Bioinformatics Program, Little Rock, Arkansas 72204, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ruth Roberts
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States.,ApconiX Ltd., Alderley Park, Alderley Edge SK10 4TG, United Kingdom.,University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Shraddha Thakkar
- Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
11
|
Teschke R, Zhu Y, Jing J. Herb-induced Liver Injury in Asia and Current Role of RUCAM for Causality Assessment in 11,160 Published Cases. J Clin Transl Hepatol 2020; 8:200-214. [PMID: 32832401 PMCID: PMC7438347 DOI: 10.14218/jcth.2020.00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Herb-induced liver injuries (HILI) by traditional herbal medicines are particular challenges in Asian countries, with issues over the best approach to establish causality. The aim of the current analysis was to provide an overview on how causality was assessed in HILI cases from Asian countries and whether the Roussel Uclaf Causality Assessment Method (RUCAM) was the preferred diagnostic algorithm, as shown before in worldwide evaluated cases of drug-induced liver injury (DILI). Using the PubMed database, publications in English language were preferred to allow for reevaluation by peers. Overall 11,160 HILI cases have assessed causality using RUCAM and were published by first authors working in Asian countries. With 21 evaluable reports, most publications came from mainland China, with Hong Kong and Taiwan, followed by Korea (n=15), Singapore (n=2), and Japan (n=1), while other Asian countries were not contributory. Most publications provided case and RUCAM data of good quality. For better presentation of future cases, however, the following recommendations are given: (1) preference of prospective study design with use of the updated RUCAM version; (2) clear separation of HILI cohorts from those of other herbal products or DILI; (3) case series for epidemiology studies should contain many essential data, possibly also as supplementary material; (4) otherwise, preference of single case reports providing individual case data and RUCAM-based causality gradings, and applying liver test threshold values; and (5) publication in English language journals. In conclusion, China and Korea are top in presenting RUCAM-based HILI cases, other Asian countries are encouraged to follow.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
- Correspondence to: Rolf Teschke, Department of Internal Medicine II, Klinikum Hanau, Teaching Hospital of the Goethe University of Frankfurt/Main, Leimenstrasse 20, D-63450 Hanau, Germany. Tel: +49-6181-21859, Fax: +49-6181-2964211, E-mail:
| | - Yun Zhu
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Jing Jing
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| |
Collapse
|
12
|
Chang L, Xu D, Zhu J, Ge G, Kong X, Zhou Y. Herbal Therapy for the Treatment of Acetaminophen-Associated Liver Injury: Recent Advances and Future Perspectives. Front Pharmacol 2020; 11:313. [PMID: 32218738 PMCID: PMC7078345 DOI: 10.3389/fphar.2020.00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury worldwide, and mitochondrial oxidative stress is considered the major event responsible for APAP-associated liver injury (ALI). Despite the identification of N-acetyl cysteine, a reactive oxygen species scavenger that is regarded as an effective clinical treatment, therapeutic effectiveness remains limited due to rapid disease progression and diagnosis at a late phase, which leads to the need to explore various therapeutic approaches. Since the early 1990s, a number of natural products and herbs have been found to have hepatoprotective effects against APAP-induced hepatotoxicity in terms of acute liver failure prevention and therapeutic amelioration of ALI. In this review, we summarize the hepatoprotective effects and mechanisms of medicinal plants, including herbs and fruit extracts, along with future perspectives that may provide guidance to improve the current status of herbal therapy against ALI.
Collapse
Affiliation(s)
- Ling Chang
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|