1
|
Leinardi R, Longo Sanchez-Calero C, Ibouraadaten S, Uwambayinema F, Yakoub Y, Pavan C, Claus R, Lemaire F, Ronsmans S, Ghosh M, Farczádi L, Moldovan H, Vanoirbeek JAJ, Turci F, Hoet PHM, Huaux F. Dynamic biodistribution of inhaled silica particles to extrapulmonary sites: Early and late translocation mechanisms with implication for particle biomonitoring. ENVIRONMENT INTERNATIONAL 2025; 199:109473. [PMID: 40250236 DOI: 10.1016/j.envint.2025.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
An innovative method based on inductively coupled plasma mass spectrometry (ICP-MS) was developed to quantify the time-dependent systemic redistribution pattern of pulmonary-deposited crystalline silica particles by measuring silicon (Si) levels in the lungs, distal organs, and biological fluids. The method was applied in a murine model and validated in blood and urine samples from two occupationally exposed cohorts (miners and porcelain industry workers). In mice, 30 % of silica particles deposited in the lungs via oropharyngeal administration accumulated in extrapulmonary sites in less than 4 months. An early translocation (within 3 days) resulted in silica distribution to liver and kidneys (13 %), followed by a delayed migration (up to 60 days) in mediastinal lymph nodes (12 %), spleen (1.7 %), and abdominal skin (1.7 %). The long-term increase of Si in urine suggested silica renal clearance. Our data also indicated that the toxic potential of particles is a key determinant of extrapulmonary redistribution. The interest of Si as biomarker of exposure has been confirmed in workers exposed to crystalline silica dust. In these individuals, elevated Si levels in blood and urine paralleled silica exposure. Our findings quantify the dynamics of silica biodistribution in extrapulmonary organs, offering new insights on the biomonitoring of silica exposure in different scenarios.
Collapse
Affiliation(s)
- Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57, 1200 Woluwe-Saint-Lambert, Brussels, Belgium.
| | - Chiara Longo Sanchez-Calero
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57, 1200 Woluwe-Saint-Lambert, Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57, 1200 Woluwe-Saint-Lambert, Brussels, Belgium
| | - Francine Uwambayinema
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57, 1200 Woluwe-Saint-Lambert, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57, 1200 Woluwe-Saint-Lambert, Brussels, Belgium
| | - Cristina Pavan
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Rani Claus
- Environment and Health Unit, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frauke Lemaire
- Environment and Health Unit, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Steven Ronsmans
- Environment and Health Unit, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Manosij Ghosh
- Environment and Health Unit, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lénárd Farczádi
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology (UMFST), Gh. Marinescu 38, 540142 Târgu Mureş, Romania
| | - Horatiu Moldovan
- Department of Occupational Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology (UMFST), Gh. Marinescu 38, 540142 Târgu Mureş, Romania
| | - Jeroen A J Vanoirbeek
- Environment and Health Unit, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Francesco Turci
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Peter H M Hoet
- Environment and Health Unit, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57, 1200 Woluwe-Saint-Lambert, Brussels, Belgium
| |
Collapse
|
2
|
Kogler L, Stellnberger S, Schwingenschlögl-Maisetschläger V, Aichinger L, Kopatz V, Teuschl-Woller AH, Kenner L, Pichler V. Production of detergent-free PET and biodegradable PBAT micro- and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138371. [PMID: 40273850 DOI: 10.1016/j.jhazmat.2025.138371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Microplastics comprise a heterogeneous group of polymer particles that vary in chemical properties, size, and shape, that may influence their environmental and in vivo behavior. Numerous in vitro and in vivo studies show induction of oxidative stress and metabolic disturbances. Valid critique regarding unrealistically high concentrations or additives within standard materials calls some results into question. Here, we present a novel protocol for the detergent-free production of polyethylene terephthalate (PET) and biodegradable poly(butylenadipat-co-terephthalat) (PBAT) micro- and nanoplastic particles (MNPs) as model microplastics for research. The particles were produced by dissolution precipitation from trifluoroacetic acid (TFA) for PET or tetrahydrofuran (THF)/ethanol for PBAT. Different PET sources were investigated for MNPs production. PET MNPs in the size range of 170-1000 nm with up to 80 % yield were produced from pellets as starting material. Particle size can be adjusted by ultrasounding. The non-toxic concentration range for two commonly used detergents was assessed by means of MTT assay. PET particles with a Zeta-potential of -45 were stable in aqueous suspension with and without detergents at neutral pH. Biodegradable PBAT particles in the micro- and nanometer range were produced by adapting the PET precipitation protocol. These high-yield production protocols provide additive-free authentic PET and PBAT MNPs for research.
Collapse
Affiliation(s)
- Lukas Kogler
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna 1090, Austria; Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Sarah Stellnberger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Verena Schwingenschlögl-Maisetschläger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Lisa Aichinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna 1090, Austria; Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Verena Kopatz
- CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Department of Experimental and Translational Pathology, Institute of Clinical Pathology, Medical University of Vienna, Vienna 1090, Austria; CCC - Comprehensive Cancer Center, Vienna 1090, Austria; Department of Radiation Oncology, Medical University of Vienna, Vienna 1090, Austria
| | - Andreas H Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna 1200, Austria
| | - Lukas Kenner
- CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Department of Experimental and Translational Pathology, Institute of Clinical Pathology, Medical University of Vienna, Vienna 1090, Austria; Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria; CCC - Comprehensive Cancer Center, Vienna 1090, Austria; University of Veterinary Medicine, Unit of Laboratory Animal Pathology, Vienna 1210, Austria; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden; Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna 1090, Austria.
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria.
| |
Collapse
|
3
|
Pavan C, Leinardi R, Benhida A, Ibouraadaten S, Yakoub Y, Brule SVD, Lison D, Turci F, Huaux F. Short- and long-term pathologic responses to quartz are induced by nearly free silanols formed during crystal fracturing. Part Fibre Toxicol 2024; 21:52. [PMID: 39633374 PMCID: PMC11619699 DOI: 10.1186/s12989-024-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Inhalation of respirable crystalline silica particles, including quartz, is associated with an increased risk of developing pathologies, including persistent lung inflammation, fibrosis, cancer, and systemic autoimmunity. We demonstrated that the nearly free silanols (NFS) generated upon quartz fracturing trigger the early molecular events determining quartz toxicity. Here, we address the involvement of NFS in driving short- and long-term pathogenic responses, including lung inflammation, fibrosis, cancer, and autoimmunity in multiple mouse models. RESULTS In vivo pulmonary responses to as-grown NFS-poor quartz (gQ) and fractured NFS-rich quartz (gQ-f) of synthetic origin were compared to two NFS-rich reference quartz dusts (Min-U-Sil 5, mQ-f). Acute and persistent inflammation, as well as fibrosis, were assessed 3 and 60 days, respectively, after administering one dose of particles (2 mg) via oropharyngeal aspiration (o.p.a.) to C57BL/6 mice. The carcinogenic potential was assessed in a co-carcinogenicity study using A/J mice, which were pre-treated with 3-methylcholanthrene (3-MC) and administered four doses of quartz particles (4 × 1 mg, o.p.a.), then sacrificed after 10 months. Autoimmunity was evaluated in autoimmune-prone 129/Sv mice 4 months after particle administration (2 × 1.25 mg, o.p.a). Mice exposed to NFS-rich quartz exhibited a strong acute lung inflammatory response, characterized by pro-inflammatory cytokine release and leukocyte accumulation, which persisted for up to 60 days. No inflammatory effect was observed in mice treated with NFS-poor gQ. Fibrosis onset (i.e., increased levels of pro-fibrotic factors, hydroxyproline, and collagen) was prominent in mice exposed to NFS-rich but not to NFS-poor quartz. Additionally, lung cancer development (tumour numbers) and autoimmune responses (elevated IgG and anti-dsDNA autoantibody levels) were only observed after exposure to NFS-rich quartz. CONCLUSIONS Collectively, the results indicate that NFS, which occur upon fracturing of quartz particles, play a crucial role in the short- and long-term local and systemic responses to quartz. The assessment of NFS on amorphous or crystalline silica particles may help create a predictive model of silica pathogenicity.
Collapse
Affiliation(s)
- Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
- Department of Chemistry, University of Turin, Turin, Italy.
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy.
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Anissa Benhida
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sybille van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Francesco Turci
- Department of Chemistry, University of Turin, Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
4
|
Bellomo C, Lagostina V, Pavan C, Paganini MC, Turci F. Reaction with Water Vapor Defines Surface Reconstruction and Membranolytic Activity of Quartz Milled in Different Molecular Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308369. [PMID: 38102095 DOI: 10.1002/smll.202308369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Industrial processing of quartz (SiO2) and quartz-containing materials produces toxic dust. Fracturing quartz crystals opens the Si‒O bond and produces highly reactive surface species which mainly react with molecules like water and oxygen. This surface-reconstruction process forms silanol (Si‒OH) on the quartz surface, which can damage biological membranes under specific configurations. To comprehend the impact of the quartz surface restructuring on membranolytic activity, the formation and reactivity of quartz radicals produced in four distinct molecular environments with electron paramagnetic resonance (EPR) spectroscopy are evaluated and their membranolytic activity is measured through in vitro hemolysis test. The four molecular environments are formulated with and without molecular water vapor and oxygen (±H2O/±O2). The absence of water favored the formation of surface radical species. In water-rich environments, diamagnetic species prevailed due to radical recombination. Quartz milled in -H2O/±O2 acquired membranolytic activity when exposed to water vapor, unlike quartz milled in +H2O/±O2. After being stabilized by reaction with water vapor, the membranolytic activity of quartz is maintained over time. It is demonstrated that the type and the reactivity of radical sites on quartz are modulated by the outer molecular environment, ultimately determining the biological activity of milled quartz dust.
Collapse
Affiliation(s)
- Chiara Bellomo
- Department of Chemistry, Università degli Studi di Torino, Torino, 10125, Italy
- "G. Scansetti" Interdepartmental Center for Studies on Asbestos, Other Toxic Particulates, Università degli Studi di Torino, Torino, 10125, Italy
| | - Valeria Lagostina
- Department of Chemistry, Università degli Studi di Torino, Torino, 10125, Italy
| | - Cristina Pavan
- Department of Chemistry, Università degli Studi di Torino, Torino, 10125, Italy
- "G. Scansetti" Interdepartmental Center for Studies on Asbestos, Other Toxic Particulates, Università degli Studi di Torino, Torino, 10125, Italy
- Louvain Center for Toxicology, Applied Pharmacology, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Maria Cristina Paganini
- Department of Chemistry, Università degli Studi di Torino, Torino, 10125, Italy
- NIS interdepartmental Center for Nanomaterials for Industry and Sustainability, Università degli Studi di Torino, Torino, 10125, Italy
| | - Francesco Turci
- Department of Chemistry, Università degli Studi di Torino, Torino, 10125, Italy
- "G. Scansetti" Interdepartmental Center for Studies on Asbestos, Other Toxic Particulates, Università degli Studi di Torino, Torino, 10125, Italy
| |
Collapse
|
5
|
Wang Z, Jiang Y, Tian G, Zhu C, Zhang Y. Toxicological Evaluation toward Refined Montmorillonite with Human Colon Associated Cells and Human Skin Associated Cells. J Funct Biomater 2024; 15:75. [PMID: 38535268 PMCID: PMC10971592 DOI: 10.3390/jfb15030075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2025] Open
Abstract
Montmorillonite has been refined to overcome uncertainties originating from different sources, which offers opportunities for addressing various health issues, e.g., cosmetics, wound dressings, and antidiarrheal medicines. Herein, three commercial montmorillonite samples were obtained from different sources and labeled M1, M2, and M3 for Ca-montmorillonite, magnesium-enriched Ca-montmorillonite, and silicon-enriched Na-montmorillonite, respectively. Commercial montmorillonite was refined via ultrasonic scission-differential centrifugation and labeled S, M, or L according to the particle sizes (small, medium, or large, respectively). The size distribution decreased from 2000 nm to 250 nm with increasing centrifugation rates from 3000 rpm to 12,000 rpm. Toxicological evaluations with human colon-associated cells and human skin-associated cells indicated that side effects were correlated with excess dosages and silica sand. These side effects were more obvious with human colon-associated cells. The microscopic interactions between micro/nanosized montmorillonite and human colon-associated cells or human skin-associated cells indicated that those interactions were correlated with the size distributions. The interactions of the M1 series with the human cells were attributed to size effects because montmorillonite with a broad size distribution was stored in the M1 series. The M2 series interactions with human cells did not seem to be correlated with size effects because large montmorillonite particles were retained after refining. The M3 series interactions with human cells were attributed to size effects because small montmorillonite particles were retained after refining. This illustrates that toxicological evaluations with refined montmorillonite must be performed in accordance with clinical medical practices.
Collapse
Affiliation(s)
| | | | | | - Chuyu Zhu
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (Z.W.); (Y.J.); (G.T.)
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (Z.W.); (Y.J.); (G.T.)
| |
Collapse
|
6
|
Kamanzi C, Becker M, Jacobs M, Konečný P, Von Holdt J, Broadhurst J. The impact of coal mine dust characteristics on pathways to respiratory harm: investigating the pneumoconiotic potency of coals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7363-7388. [PMID: 37131112 PMCID: PMC10517901 DOI: 10.1007/s10653-023-01583-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Exposure to dust from the mining environment has historically resulted in epidemic levels of mortality and morbidity from pneumoconiotic diseases such as silicosis, coal workers' pneumoconiosis (CWP), and asbestosis. Studies have shown that CWP remains a critical issue at collieries across the globe, with some countries facing resurgent patterns of the disease and additional pathologies from long-term exposure. Compliance measures to reduce dust exposure rely primarily on the assumption that all "fine" particles are equally toxic irrespective of source or chemical composition. For several ore types, but more specifically coal, such an assumption is not practical due to the complex and highly variable nature of the material. Additionally, several studies have identified possible mechanisms of pathogenesis from the minerals and deleterious metals in coal. The purpose of this review was to provide a reassessment of the perspectives and strategies used to evaluate the pneumoconiotic potency of coal mine dust. Emphasis is on the physicochemical characteristics of coal mine dust such as mineralogy/mineral chemistry, particle shape, size, specific surface area, and free surface area-all of which have been highlighted as contributing factors to the expression of pro-inflammatory responses in the lung. The review also highlights the potential opportunity for more holistic risk characterisation strategies for coal mine dust, which consider the mineralogical and physicochemical aspects of the dust as variables relevant to the current proposed mechanisms for CWP pathogenesis.
Collapse
Affiliation(s)
- Conchita Kamanzi
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa.
- Department of Chemical Engineering, Centre for Minerals Research, University of Cape Town, Cape Town, South Africa.
| | - Megan Becker
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa
- Department of Chemical Engineering, Centre for Minerals Research, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Petr Konečný
- Division of Immunology, Department of Pathology, Institute for Infectious Diseases and Molecular Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Johanna Von Holdt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Jennifer Broadhurst
- Department of Chemical Engineering, Minerals to Metals Initiative, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Pavan C, Santalucia R, Escolano-Casado G, Ugliengo P, Mino L, Turci F. Physico-Chemical Approaches to Investigate Surface Hydroxyls as Determinants of Molecular Initiating Events in Oxide Particle Toxicity. Int J Mol Sci 2023; 24:11482. [PMID: 37511241 PMCID: PMC10380507 DOI: 10.3390/ijms241411482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Rosangela Santalucia
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Piero Ugliengo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Francesco Turci
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| |
Collapse
|
8
|
Yao J, Zhou P, Zhang X, Yuan B, Pan Y, Jiang J. The Cytotoxicity of Tungsten Ions Derived from Nanoparticles Correlates with Pulmonary Toxicity. TOXICS 2023; 11:528. [PMID: 37368628 DOI: 10.3390/toxics11060528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Tungsten carbide nanoparticles (nano-WC) are prevalent in composite materials, and are attributed to their physical and chemical properties. Due to their small size, nano-WC particles can readily infiltrate biological organisms via the respiratory tract, thereby posing potential health hazards. Despite this, the studies addressing the cytotoxicity of nano-WC remain notably limited. To this purpose, the BEAS-2B and U937 cells were cultured in the presence of nano-WC. The significant cytotoxicity of nano-WC suspension was evaluated using a cellular LDH assay. To investigate the cytotoxic impact of tungsten ions (W6+) on cells, the ion chelator (EDTA-2Na) was used to adsorb W6+ from nano-WC suspension. Subsequent to this treatment, the modified nano-WC suspension was subjected to flow cytometry analysis to evaluate the rates of cellular apoptosis. According to the results, a decrease in W6+ could mitigate the cellular damage and enhance cell viability, which indicated that W6+ indeed exerted a significant cytotoxic influence on the cells. Overall, the present study provides valuable insight into the toxicological mechanisms underlying the exposure of lung cells to nano-WC, thereby reducing the environmental toxicant risk to human health.
Collapse
Affiliation(s)
- Jun Yao
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pengfei Zhou
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing Tech University, Nanjing 211816, China
| | - Yong Pan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing Tech University, Nanjing 211816, China
| | - Juncheng Jiang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing Tech University, Nanjing 211816, China
- School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
9
|
Leinardi R, Pochet A, Uwambayinema F, Yakoub Y, Quesniaux V, Ryffel B, Broz P, Pavan C, Huaux F. Gasdermin D membrane pores orchestrate IL-1α secretion from necrotic macrophages after NFS-rich silica exposure. Arch Toxicol 2023; 97:1001-1015. [PMID: 36840754 PMCID: PMC10025216 DOI: 10.1007/s00204-023-03463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
IL-1α is an intracellular danger signal (DAMP) released by macrophages contributing to the development of silica-induced lung inflammation. The exact molecular mechanism orchestrating IL-1α extracellular release from particle-exposed macrophages is still unclear. To delineate this process, murine J774 and bone-marrow derived macrophages were exposed to increasing concentrations (1-40 cm2/ml) of a set of amorphous and crystalline silica particles with different surface chemical features. In particular, these characteristics include the content of nearly free silanols (NFS), a silanol population responsible for silica cytotoxicity recently identified. We first observed de novo stocks of IL-1α in macrophages after silica internalization regardless of particle physico-chemical characteristics and cell stress. IL-1α intracellular production and accumulation were observed by exposing macrophages to biologically-inert or cytotoxic crystalline and amorphous silicas. In contrast, only NFS-rich reactive silica particles triggered IL-1α release into the extracellular milieu from necrotic macrophages. We demonstrate that IL-1α is actively secreted through the formation of gasdermin D (GSDMD) pores in the plasma membrane and not passively released after macrophage plasma membrane lysis. Our findings indicate that the GSDMD pore-dependent secretion of IL-1α stock from macrophages solely depends on cytotoxicity induced by NFS-rich silica. This new regulated process represents a key first event in the mechanism of silica toxicity, suitable to refine the existing adverse outcome pathway (AOP) for predicting the inflammatory activity of silicas.
Collapse
Affiliation(s)
- Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Amandine Pochet
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Francine Uwambayinema
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Valérie Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans and Artimmune, Orléans, France
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans and Artimmune, Orléans, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Chemistry, “G. Scansetti” Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Bellomo C, Pavan C, Fiore G, Escolano-Casado G, Mino L, Turci F. Top-Down Preparation of Nanoquartz for Toxicological Investigations. Int J Mol Sci 2022; 23:15425. [PMID: 36499757 PMCID: PMC9738116 DOI: 10.3390/ijms232315425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to quartz dust is associated with fatal diseases. Quartz dusts generated by mechanical fracturing are characterized by a broad range of micrometric to nanometric particles. The contribution of this nanometric fraction to the overall toxicity of quartz is still largely unexplored, primarily because of the strong electrostatic adhesion forces that prevent isolation of the nanofraction. Furthermore, fractured silica dust exhibits special surface features, namely nearly free silanols (NFS), which impart a membranolytic activity to quartz. Nanoquartz can be synthetized via bottom-up methods, but the surface chemistry of such crystals strongly differs from that of nanoparticles resulting from fracturing. Here, we report a top-down milling procedure to obtain a nanometric quartz that shares the key surface properties relevant to toxicity with fractured quartz. The ball milling was optimized by coupling the dry and wet milling steps, using water as a dispersing agent, and varying the milling times and rotational speeds. Nanoquartz with a strong tendency to form submicrometric agglomerates was obtained. The deagglomeration with surfactants or simulated body fluids was negligible. Partial lattice amorphization and a bimodal crystallite domain size were observed. A moderate membranolytic activity, which correlated with the number of NFS, signaled coherence with the previous toxicological data. A membranolytic nanoquartz for toxicological investigations was obtained.
Collapse
Affiliation(s)
- Chiara Bellomo
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
| | - Cristina Pavan
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Gianluca Fiore
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Francesco Turci
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| |
Collapse
|
11
|
Pavan C, Sydor MJ, Bellomo C, Leinardi R, Cananà S, Kendall RL, Rebba E, Corno M, Ugliengo P, Mino L, Holian A, Turci F. Molecular recognition between membrane epitopes and nearly free surface silanols explains silica membranolytic activity. Colloids Surf B Biointerfaces 2022; 217:112625. [PMID: 35738078 PMCID: PMC10796170 DOI: 10.1016/j.colsurfb.2022.112625] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
Inhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge. The results demonstrate that NFS content is the primary determinant of membrane disruption causing red blood cell lysis and changes in lipid order in zwitterionic, but not in negatively charged liposomes. NFS-rich silica strongly and irreversibly adsorbs zwitterionic self-assembled phospholipid structures. This selective interaction is corroborated by density functional theory and supports the hypothesis that NFS recognize membrane epitopes that exhibit a positive quaternary amino and negative phosphate group. These new findings define a new paradigm for deciphering particle-biomembrane interactions that will support safer design of materials and what types of treatments might interrupt particle-biomembrane interactions.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Belgium.
| | - Matthew J Sydor
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Chiara Bellomo
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy.
| | - Riccardo Leinardi
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Belgium.
| | - Stefania Cananà
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy.
| | - Rebekah L Kendall
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Erica Rebba
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Marta Corno
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Piero Ugliengo
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Lorenzo Mino
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Francesco Turci
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| |
Collapse
|
12
|
Zhu R, Yu X, Zhang T, Kong Y, Wang F, Jia J, Xue Y, Huang H. In vitro and intracellular inhibitory activities of nosiheptide against Mycobacterium abscessus. Front Microbiol 2022; 13:926361. [PMID: 35958142 PMCID: PMC9360784 DOI: 10.3389/fmicb.2022.926361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
The high level of inherent drug resistance of Mycobacterium abscessus makes the infection caused by it very difficult to be treated. The objective of this study was to evaluate the potential of nosiheptide (NOS) as a new drug candidate for treating M. abscessus infections. The microplate AlamarBlue assay was performed to determine the minimum inhibitory concentrations (MICs) of NOS for 28 reference strains of rapidly growing mycobacteria (RGM) and 77 clinical isolates of M. abscessus. Time-kill kinetic and post-antibiotic effect (PAE) of NOS against M. abscessus was evaluated. Its bactericidal activity against M. abscessus in macrophages was determined by an intracellular colony numerating assay. NOS manifested good activity against the reference strains of RGM and M. abscessus clinical isolates in vitro. The MICs of NOS against M. abscessus clinical isolates ranged from 0.0078 to 1 μg/ml, and the MIC50 and MIC90 were 0.125 μg/ml and 0.25 μg/ml, respectively. The pattern of growth and kill by NOS against M. abscessus was moderate with apparent concentration-dependent characteristics, and the PAE value of NOS was found to be ~6 h. Furthermore, NOS had low cell toxicity against the THP-1 cell line after 48 h of exposure (IC50 = 106.9 μM). At 4 μg/ml, NOS exhibited high intracellular bactericidal activity against M. abscessus reference strains with an inhibitory rate of 66.52% ± 1.51%, comparable with that of clarithromycin at 2 μg/ml. NOS showed suitable inhibitory activities against M. abscessus in vitro and in macrophages and could be a potential drug candidate to treat M. abscessus infection.
Collapse
|
13
|
Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23126412. [PMID: 35742856 PMCID: PMC9224477 DOI: 10.3390/ijms23126412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.
Collapse
|
14
|
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, Roeder F, Tengelmann C, Wimmer BH, Laforsch C, Kress H. From properties to toxicity: Comparing microplastics to other airborne microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128151. [PMID: 35042167 DOI: 10.1016/j.jhazmat.2021.128151] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) debris is considered as a potentially hazardous material. It is omnipresent in our environment, and evidence that MP is also abundant in the atmosphere is increasing. Consequently, the inhalation of these particles is a significant exposure route to humans. Concerns about potential effects of airborne MP on human health are rising. However, currently, there are not enough studies on the putative toxicity of airborne MP to adequately assess its impact on human health. Therefore, we examined potential drivers of airborne MP toxicity. Physicochemical properties like size, shape, ζ-potential, adsorbed molecules and pathogens, and the MP's bio-persistence have been proposed as possible drivers of MP toxicity. Since their role in MP toxicity is largely unknown, we reviewed the literature on toxicologically well-studied non-plastic airborne microparticles (asbestos, silica, soot, wood, cotton, hay). We aimed to link the observed health effects and toxicology of these microparticles to the abovementioned properties. By comparing this information with studies on the effects of airborne MP, we analyzed possible mechanisms of airborne MP toxicity. Thus, we provide a basis for a mechanistic understanding of airborne MP toxicity. This may enable the assessment of risks associated with airborne MP pollution, facilitating effective policymaking and product design.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Julian Bender
- Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jonas Kitzinger
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Felix Meyer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anja Frm Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Franz Roeder
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Caroline Tengelmann
- Medical Faculty, University of Würzburg, Würzburg, Germany; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
15
|
Characterisation of dust emissions from machined engineered stones to understand the hazard for accelerated silicosis. Sci Rep 2022; 12:4351. [PMID: 35288630 PMCID: PMC8921240 DOI: 10.1038/s41598-022-08378-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Engineered stones are novel construction materials associated with a recent upsurge in silicosis cases among workers in the stonemason industry. In order to understand the hazard for the short latency of lung disease among stonemasons, we simulated real-time dust exposure scenario by dry-machining engineered stones in controlled conditions, capturing and analysing the respirable dust generated for physical and chemical characteristics. Natural granite and marble were included for comparison. Cutting engineered stones generated high concentrations of very fine particles (< 1 µm) with > 80% respirable crystalline silica content, in the form of quartz and cristobalite. Engineered stones also contained 8–20% resin and 1–8% by weight metal elements. In comparison, natural stones had far lower respirable crystalline silica (4- 30%) and much higher metal content, 29–37%. Natural stone dust emissions also had a smaller surface area than engineered stone, as well as lower surface charge. This study highlighted the physical and chemical variability within engineered stone types as well as between engineered and natural stones. This information will ultimately help understand the unique hazard posed by engineered stone fabrication work and help guide the development of specific engineering control measures targeting lower exposure to respirable crystalline silica.
Collapse
|
16
|
Ma J, Liu X, Yang Y, Qiu J, Dong Z, Ren Q, Zuo YY, Xia T, Chen W, Liu S. Binding of Benzo[ a]pyrene Alters the Bioreactivity of Fine Biochar Particles toward Macrophages Leading to Deregulated Macrophagic Defense and Autophagy. ACS NANO 2021; 15:9717-9731. [PMID: 34124884 DOI: 10.1021/acsnano.1c00324] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contaminant-bearing fine biochar particles (FBPs) may exert significantly different toxicity profiles from their contaminant-free counterparts. While the role of FBPs in promoting contaminant uptake has been recognized, it is unclear whether the binding of contaminants can modify the biochemical reactivity and toxicological profiles of FBPs. Here, we show that binding of benzo[a]pyrene (B(a)P, a model polycyclic aromatic hydrocarbon) at environmentally relevant exposure concentrations markedly alters the cytotoxicity of FBPs to macrophages, an important line of innate immune defense against airborne particulate matters (PMs). Specifically, B(a)P-bearing FBPs elicit more severe disruption of the phospholipid membrane, endocytosis, oxidative stress, autophagy, and compromised innate immune defense, as evidenced by blunted proinflammatory effects, compared with B(a)P-free FBPs. Notably, the altered cytotoxicity cannot be attributed to the dissolution of B(a)P from the B(a)P-bearing FBPs, but appears to be related to B(a)P adsorption-induced changes of FBPs bioreactivity toward macrophages. Our findings highlight the significance of environmental chemical transformation in altering the bioreactivity and toxicity of PMs and call for further studies on other types of carbonaceous nanoparticles and additional exposure scenarios.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Yi Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, and Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Mahla RS, Kumar A, Tutill HJ, Krishnaji ST, Sathyamoorthy B, Noursadeghi M, Breuer J, Pandey AK, Kumar H. NIX-mediated mitophagy regulate metabolic reprogramming in phagocytic cells during mycobacterial infection. Tuberculosis (Edinb) 2021; 126:102046. [PMID: 33421909 DOI: 10.1016/j.tube.2020.102046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
RNASeq analysis of PBMCs from treatment naïve TB patients and healthy controls revealed that M. tuberculosis (Mtb) infection dysregulates several metabolic pathways and upregulates BNIP3L/NIX receptor mediated mitophagy. Analysis of publicly available transcriptomic data from the NCBI-GEO database indicated that M. bovis (BCG) infection also induces similar rewiring of metabolic and mitophagy pathways. Mtb chronic infection and BCG in-vitro infection both downregulated oxidative phosphorylation and upregulated glycolysis and mitophagy; therefore, we used non-pathogenic mycobacterial species BCG as a model for Mtb infection to gain molecular insights and outcomes of this phenomenon. BCG infection in PBMCs and THP-1 macrophages induce mitophagy and glycolysis, leading to differentiation of naïve macrophage to M1 phenotype. Glucose consumption and lactate production were quantified by NMR, while the mitochondrial mass assessment was performed by mitotracker red uptake assay. Infected macrophages predominantly exhibit M1-phenotype, which is indicated by an increase in M1 specific cytokines (IL-6, TNF-α, and IL-1β) and increased NOS2/ARG1, CD86/CD206 ratio. NIX knockdown abrogates this upregulation of glycolysis, mitophagy, and secretion of pro-inflammatory cytokines in BCG infected cells, indicating that mycobacterial infection-induced immunometabolic changes are executed via NIX mediated mitophagy and are essential for macrophage differentiation and resolution of infection.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Helena J Tutill
- Division of Infection and Immunity, Faculty of Medical Sciences, Cruciform Building, University College London, UK
| | | | - Bharathwaj Sathyamoorthy
- Biomolecular NMR Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, Faculty of Medical Sciences, Cruciform Building, University College London, UK
| | - Judith Breuer
- Division of Infection and Immunity, Faculty of Medical Sciences, Cruciform Building, University College London, UK; Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India; Laboratory of Host Defense, WPI Immunology Frontier Research Centre, Osaka University, Osaka, Japan.
| |
Collapse
|
18
|
Pavan C, Santalucia R, Leinardi R, Fabbiani M, Yakoub Y, Uwambayinema F, Ugliengo P, Tomatis M, Martra G, Turci F, Lison D, Fubini B. Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles. Proc Natl Acad Sci U S A 2020; 117:27836-27846. [PMID: 33097669 PMCID: PMC7668052 DOI: 10.1073/pnas.2008006117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive. Here, we have identified a unique subfamily of silanols as the major determinant of silica particle toxicity. This population of "nearly free silanols" (NFS) appears on the surface of quartz particles upon fracture and can be modulated by thermal treatments. Density functional theory calculations indicates that NFS locate at an intersilanol distance of 4.00 to 6.00 Å and form weak mutual interactions. Thus, NFS could act as an energetically favorable moiety at the surface of silica for establishing interactions with cell membrane components to initiate toxicity. With ad hoc prepared model quartz particles enriched or depleted in NFS, we demonstrate that NFS drive toxicity, including membranolysis, in vitro proinflammatory activity, and lung inflammation. The toxic activity of NFS is confirmed with pyrogenic and vitreous amorphous silica particles, and industrial quartz samples with noncontrolled surfaces. Our results identify the missing key molecular moieties of the silica surface that initiate interactions with cell membranes, leading to pathological outcomes. NFS may explain other important interfacial processes involving silica particles.
Collapse
Affiliation(s)
- Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology, UCLouvain, 1200 Brussels, Belgium
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, 10125 Turin, Italy
| | - Rosangela Santalucia
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, 10125 Turin, Italy
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology, UCLouvain, 1200 Brussels, Belgium
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, 10125 Turin, Italy
| | - Marco Fabbiani
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, 10125 Turin, Italy
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology, UCLouvain, 1200 Brussels, Belgium
| | - Francine Uwambayinema
- Louvain Centre for Toxicology and Applied Pharmacology, UCLouvain, 1200 Brussels, Belgium
| | - Piero Ugliengo
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, 10125 Turin, Italy
| | - Maura Tomatis
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, 10125 Turin, Italy
| | - Gianmario Martra
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, 10125 Turin, Italy
| | - Francesco Turci
- Department of Chemistry, University of Turin, 10124 Turin, Italy;
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, 10125 Turin, Italy
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology, UCLouvain, 1200 Brussels, Belgium;
| | - Bice Fubini
- Department of Chemistry, University of Turin, 10124 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, 10125 Turin, Italy
| |
Collapse
|