1
|
Hall M, Ashley-Martin J, Till C, Hu J, Lanphear B, Curl C, Arbuckle TE, Boivin M, Booij L, Muckle G, Fisher M, Asztalos E, Bouchard MF, MacFarlane AJ, Hyland C. Associations of prenatal glyphosate exposure with child neurodevelopment in a Canadian pregnancy cohort study. ENVIRONMENT INTERNATIONAL 2025; 199:109480. [PMID: 40344873 DOI: 10.1016/j.envint.2025.109480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVE Glyphosate is the most widely used pesticide worldwide. Few epidemiologic studies have examined the potential for neurotoxicity by glyphosate or its degradate, Aminomethylphosphonic Acid (AMPA). We examined associations of maternal urinary glyphosate and AMPA concentrations with child cognitive, social, and behavioural functioning in participants enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) study. METHODS Maternal urinary glyphosate and AMPA concentrations were measured in first trimester spot urine samples. We assessed children's cognition (IQ) at 3-4 years of age (n = 572) using the Wechsler Preschool and Primary Scale of Intelligence-III. Social (n = 566) and behavioural (n = 840) functioning were assessed using parent-report versions of the Social Responsiveness Scale-2 and Behavioral Assessment System for Children-2. We quantified associations between maternal urinary glyphosate and AMPA concentrations and child neurodevelopmental outcomes using multivariable linear regression models and assessed effect modification by child sex, maternal folic acid, and plasma folate. RESULTS Median (IQR) urinary glyphosate and AMPA concentrations were 0.31 (0.33) μg/L and 0.25 (0.25) μg/L. Maternal urinary glyphosate and AMPA concentrations were not significantly associated with children's cognitive, social or behavioural functioning, and there was no evidence of effect modification. We found a non-significant inverse trend between maternal urinary AMPA concentrations and Performance IQ (B = -0.85; 95 %CI: -1.71,0.01). CONCLUSION In this primarily urban cohort of Canadian mother-child pairs, prenatal glyphosate and AMPA exposure were not significantly associated with child neurodevelopment. Further evaluation of glyphosate as a potential developmental neurotoxicant in a study with multiple urine samples per participant and at higher exposure levels is warranted.
Collapse
Affiliation(s)
- Meaghan Hall
- Faculty of Health, York University, Toronto, ON, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | | | - Janice Hu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Cynthia Curl
- School of Public and Population Health, Boise State University, Boise, ID, United States
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Michel Boivin
- École de Psychologie, Université Laval, Québec, QC, Canada
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, QC, Canada; CHU Sainte-Justine Hospital Research Centre, Montreal, QC, Canada
| | - Gina Muckle
- École de Psychologie, Université Laval, Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Laval, QC, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Elizabeth Asztalos
- Department of Newborn & Developmental Paediatrics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Amanda J MacFarlane
- Texas A&M Agriculture, Food, and Nutrition Evidence Center, Fort Worth, TX, United States; Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Carly Hyland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States; UC Agriculture and Natural Resources, Berkeley, CA, United States
| |
Collapse
|
2
|
Chávez-Reyes J, López-Lariz CH, Acosta-Cruz MA, Marichal-Cancino BA. Acute glyphosate and aminomethylphosphonic acid (AMPA), its major metabolite, impaired spatial orientation, navigation, learning and/or memory in female rats. Behav Brain Res 2025; 478:115329. [PMID: 39522773 DOI: 10.1016/j.bbr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Human exposure to glyphosate-based herbicides (GBH) has been associated with a range of toxicological effects involving the central nervous system (CNS) such as alterations in learning and memory. Nevertheless, the effects of aminomethylphosphonic acid (AMPA), the main metabolite of glyphosate, remain essentially obscure. Previous preclinical reports suggest that acute intoxication with AMPA and glyphosate exerts decrease on hippocampal acetylcholinesterase activity and produces more metabolomic alterations in the female brain over the male one. Therefore, this work explored the effects of acute AMPA and glyphosate on spatial learning, memory and navigation in female rats. Sprague Dawley rats received a single injection (i.p.) of: (i) vehicle; (ii) 10 or 100 mg/kg of AMPA; or (iii) 10 or 100 mg/kg of glyphosate; subsequently, the Barnes maze paradigm was performance. Animals from the control group decreased latency and the attempts to solve the Barnes maze; and increased the degree of orientation when compared first training sessions (S1) vs. the last one (S4; p < 0.05). In contrast, both 10 and 100 mg/kg of glyphosate and 100 mg/kg of AMPA prevented the decrease in latency and attempts; and the increase of orientation (p > 0.05; S1 vs. S4). Both treatments decreased the use of the spatial navigation strategy (p < 0.05). Besides, glyphosate at the higher dose but not AMPA impaired the spatial memory during the test. Our findings suggest that acute exposure to glyphosate and AMPA similarly affected spatial orientation, navigations, learning and/or memory.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos H López-Lariz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - M Aisha Acosta-Cruz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.
| |
Collapse
|
3
|
Zhu Y, Yang Z, Chen Y, Qian L, Hao C, Hao L, Yang B, Duan J. Association between glyphosate exposure and cardiovascular health using "Life's Essential 8" metrics in US adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117559. [PMID: 39693852 DOI: 10.1016/j.ecoenv.2024.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Glyphosate, as one of the most widely used herbicides worldwide, has been reclassified as a potential carcinogen and linked to multiple health problems. Recent data from animal experiments have proved its potential cardiovascular toxicity. However, whether glyphosate exposure influences human cardiovascular health at the population levels remains unknown. This study aims to elucidate the correlation between glyphosate exposure and Cardiovascular Health (CVH) by utilizing comprehensive Life's Essential 8 (LE8) metrics. METHODS Data from 2842 participants, approximating 155.24 million U.S. adults, from 2013 to 2018 in National Health and Nutrition Examination Survey were analyzed. The association between natural logarithm (ln)-transformed glyphosate exposure in urine and CVH was examined using weighted linear regression and restricted cubic spline (RCS) models. Mediation analysis was used to determine potential mediators correlated with glyphosate and CVH. Further subgroup analysis and sensitive analysis were conducted to confirm the results. RESULTS In fully adjusted models, the total CVH score decreased by 1.33 points for every unit increase in continuous ln-transformed glyphosate [β = -1.33, 95 % confidence interval (CI) (-2.25, -0.41)]. There was a negative correlation between the total CVH score and the lowest quantiles of ln-transformed glyphosate (Q1), Q2, Q3, and Q4 with p for trend < 0.05. A non-linear relationship between glyphosate and total CVH emerged (p for non-linear<0.001, p for overall = 0.003), and no safe threshold of glyphosate was observed. Serum insulin was an important mediator in the adverse effects of glyphosate on CVH with an 18.73 % mediation proportion. Moreover, higher serum insulin levels and higher homeostasis model assessment of insulin resistance were associated with higher glyphosate exposure but negatively correlated with total CVH score. CONCLUSIONS Glyphosate exposure may pose a risk to cardiovascular health at the population levels, with elevated serum insulin levels acting as a crucial mediating element. Further studies are required to investigate the safe threshold and underlying mechanism of glyphosate impairment.
Collapse
Affiliation(s)
- Yuankang Zhu
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Zhenlin Yang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuhao Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325015, China.
| | - Lingzi Qian
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Changning Hao
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Liangshi Hao
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Boshen Yang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Junli Duan
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
4
|
Meira DD, Da Gama Kohls VN, Casotti MC, Louro LS, Santana GM, Santos Louro TE, Alvares da Silva AM, Castro Altoé LS, Trabach RR, Groisman S, de Carvalho EF, Perini Machado JA, Seneff S, Louro ID. Laying the groundwork: Exploring pesticide exposure and genetic factors in south-eastern Brazilian farmers. Curr Res Toxicol 2025; 8:100215. [PMID: 39895912 PMCID: PMC11783379 DOI: 10.1016/j.crtox.2025.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Brazil is the world leader in pesticide consumption, and its indiscriminate use puts farmers' health at risk. The CYP2C9 gene encodes the CYP2C9 enzyme, which metabolizes several endogenous substrates and specific xenobiotics, especially pesticides. Our goal is to study the risk of pesticide use, especially the herbicide glyphosate, in the development of diseases and the association with two CYP2C9 polymorphisms, in farmers living in the southern region of Espírito Santo state, Brazil. The allelic frequency of CYP2C9*1, CYP2C9*2 and CYP2C9*3 was determined in blood samples from individuals exposed or not to pesticides using real-time PCR. 304 blood samples were analyzed, dividing CYP2C9 genotypes into three metabolization classes: normal, intermediate, and slow. Our results indicate that normal metabolizers may be more susceptible to conditions such as high blood pressure, cardiovascular disease, and kidney problems. Intermediate metabolizers show an association with attention deficit disorder and miscarriages, suggesting that farmers' symptoms correlated with their CYP2C9 genotype. Insufficient data prevented conclusions about slow metabolizers (*2 and/or *3). These findings suggest that the CYP2C9 genotype may influence the way farmers exposed to pesticides respond, but more research is needed to clarify causality and investigate other possible health effects. As an introductory effort, this study provides insights into the complex relationship between genetic variations and pesticide exposure, laying the groundwork for future research. This pioneering work on associations between specific genetic variations and health risks with pesticide exposure, emphasizes the importance of personalized medicine and stricter regulation of pesticide use for public health and occupational safety.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular Universidade Federal do Espírito Santo (UFES) Espírito Santo Brasil
| | | | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular Universidade Federal do Espírito Santo (UFES) Espírito Santo Brasil
| | - Luana Santos Louro
- Centro de Ciências da Saúde Curso de Medicina Universidade Federal do Espírito Santo (UFES) Espírito Santo Brasil
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde Curso de Medicina Universidade Federal do Espírito Santo (UFES) Espírito Santo Brasil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM) Espírito Santo Brasil
| | | | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular Universidade Federal do Espírito Santo (UFES) Espírito Santo Brasil
| | - Raquel Reis Trabach
- Núcleo de Genética Humana e Molecular Universidade Federal do Espírito Santo (UFES) Espírito Santo Brasil
| | - Sonia Groisman
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG) Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro Brasil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG) Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro Brasil
| | | | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge MA USA 02139
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular Universidade Federal do Espírito Santo (UFES) Espírito Santo Brasil
| |
Collapse
|
5
|
El Hamzaoui A, Lamtai M, El Brouzi MY, Azirar S, Rezqaoui A, Zghari O, El Aoufi M, Nouar R, El-Hessni A, Mesfioui A. Melatonin attenuates affective disorders and cognitive deficits induced by perinatal exposure to a glyphosate-based herbicide via antioxidant pathway in adult male and female rats. Int J Dev Neurosci 2024; 84:745-757. [PMID: 39224983 DOI: 10.1002/jdn.10374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The massive use of herbicides, particularly glyphosate-based herbicides (GBHs), raises several worries, notably their neurotoxic effects. Several studies have explored the consequences of developmental exposure. Our work aims to determine the impact of maternal exposure to GBH on behavioral disorders and memory deficits, as well as the involvement of oxidative stress in the hippocampus and prefrontal cortex. In addition, our study explores the neuroprotective properties of melatonin in male and female offspring. Pregnant Wistar rats were injected with GBH 75 mg/kg during gestation and lactation. After weaning, the offspring were treated with melatonin (4 mg/kg) from postnatal days 30-58. Our results show that GBH increases anxiety-like behavior levels in offspring, as well as depression-like behavior. GBH also impairs working memory in progeny. While markers of oxidative stress show a disturbance in lipid peroxidation and catalase activity, with a more pronounced effect in females, on the other hand, melatonin considerably attenuated the neurotoxic impact observed in the offspring, with higher efficacy in females. The oxidative stress results confirm the antioxidant power of melatonin to counteract the damaging effects of exposure to environmental contaminants such as glyphosate-based pesticides. It will then be interesting to further our work to fully understand the sex-dependent effect of melatonin.
Collapse
Affiliation(s)
- Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Sofia Azirar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mustapha El Aoufi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Rihab Nouar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El-Hessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
6
|
Abolarin PO, Owoyele BV. Tannic acid inhibits pain mediators, inflammation and oxidative stress in mice exposed to glyphosate-based herbicide. Environ Anal Health Toxicol 2024; 39:e2024019-0. [PMID: 39054833 PMCID: PMC11294660 DOI: 10.5620/eaht.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/17/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic exposure to glyphosate-based herbicide (Gly) has been associated with neurological disorders. Tannic acid (TA) is an antioxidant with attenuating action against neuroinflammation-associated conditions. This study evaluated the effect of Gly on pain perception alongside antinociceptive and anti-inflammatory actions of TA in Gly-exposed mice. Male Swiss mice were randomly divided into six groups (n=8): control (distilled water 0.2 ml/kg), Gly (Gly 500 mg/kg), Pre-TA + Gly (TA 50 mg/kg pre-treatment, afterwards Gly-administered), TA + Gly (TA 50 mg/kg and Gly co-administered), Pre-AA + Gly (ascorbic acid (AA) 10 mg/kg pre-treatment, afterwards Gly-administered), and AA + Gly (AA 10 mg/kg and Gly co-administered). Mechanical, thermal, and chemical pain were evaluated six weeks post vehicle/drugs administrations orally, followed by brain biochemical measurements. TA treatment alleviated Gly-induced hyperalgesia in similar version to the values of control and AA groups by increasing significantly (p < 0.05) nociceptive thresholds. Moreover, TA-treatment significantly decreased malondialdehyde (MDA) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels, significantly increased anti-inflammatory cytokines (IL-10, IL-4, and TGF-1β) levels, and antioxidant enzymes, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities compared to Gly-treated mice (p < 0.05). Conclusively, TA treatment exerted antinociceptive and anti-inflammatory actions, possibly through its antioxidant and anti-inflammatory actions in Gly-exposed mice. Notably, TA pre-treatment showed a better response than TA and Gly co-administration. We propose the potential neuroprotective and ameliorative functions of TA in Gly-induced hyperalgesia. This merits further clinical research into protective roles of TA against pesticide-related conditions.
Collapse
Affiliation(s)
- Patrick Oluwole Abolarin
- Department of Physiology/Pharmacology, Chrisland University, College of Basic Medical Sciences, Abeokuta, Ogun state, Nigeria
- Department of Physiology, Neuroscience and Pain Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Kwara state, Nigeria
| | - Bamidele Victor Owoyele
- Department of Physiology/Pharmacology, Chrisland University, College of Basic Medical Sciences, Abeokuta, Ogun state, Nigeria
| |
Collapse
|
7
|
Jenkins HM, Meeker JD, Zimmerman E, Cathey A, Fernandez J, Montañez GH, Park S, Pabón ZR, Vélez Vega CM, Cordero JF, Alshawabkeh A, Watkins DJ. Gestational glyphosate exposure and early childhood neurodevelopment in a Puerto Rico birth cohort. ENVIRONMENTAL RESEARCH 2024; 246:118114. [PMID: 38211716 DOI: 10.1016/j.envres.2024.118114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION N-(phosphonomethyl)glycine, or glyphosate, is a non-selective systemic herbicide widely used in agricultural, industrial, and residential settings since 1974. Glyphosate exposure has been inconsistently linked to neurotoxicity in animals, and studies of effects of gestational exposure among humans are scarce. In this study we investigated relationships between prenatal urinary glyphosate analytes and early childhood neurodevelopment. METHODS Mother-child pairs from the PROTECT-CRECE birth cohort in Puerto Rico with measures for both maternal urinary glyphosate analytes and child neurodevelopment were included for analysis (n = 143). Spot urine samples were collected 1-3 times throughout pregnancy and analyzed for glyphosate and aminomethylphosphonic acid (AMPA), an environmental degradant of glyphosate. Child neurodevelopment was assessed at 6, 12, and 24 months using the Battelle Developmental Inventory, 2nd edition Spanish (BDI-2), which provides scores for adaptive, personal-social, communication, motor, and cognitive domains. We used multivariable linear regression to examine associations between the geometric mean of maternal urinary glyphosate analytes across pregnancy and BDI-2 scores at each follow-up. Results were expressed as percent change in BDI-2 score per interquartile range increase in exposure. RESULTS Prenatal AMPA concentrations were negatively associated with communication domain at 12 months (%change = -5.32; 95%CI: 9.04, -1.61; p = 0.007), and communication subdomain scores at 12 and 24 months. At 24 months, four BDI-2 domains were associated with AMPA: adaptive (%change = -3.15; 95%CI: 6.05, -0.25; p = 0.038), personal-social (%change = -4.37; 95%CI: 7.48, -1.26; p = 0.008), communication (%change = -7.00; 95%CI: 11.75, -2.26; p = 0.005), and cognitive (%change = -4.02; 95%CI: 6.72, -1.32; p = 0.005). Similar trends were observed with GLY concentrations, but most confidence intervals include zero. We found no significant associations at 6 months. CONCLUSIONS Our results suggest that gestational exposure to glyphosate is associated with adverse early neurodevelopment, with more pronounced delays at 24 months. Given glyphosate's wide usage, further investigation into the impact of gestational glyphosate exposure on neurodevelopment is warranted.
Collapse
Affiliation(s)
- Haley M Jenkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, 02115, USA.
| | - Amber Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Jennifer Fernandez
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Gredia Huerta Montañez
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Zaira Rosario Pabón
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Carmen M Vélez Vega
- Department of Social Sciences, UPR Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, PR, 00936, USA.
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA.
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Cresto N, Courret M, Génin A, Martin CMP, Bourret J, Sakkaki S, de Bock F, Janvier A, Polizzi A, Payrastre L, Ellero-Simatos S, Audinat E, Perroy J, Marchi N. Continuous low-level dietary exposure to glyphosate elicits dose and sex-dependent synaptic and microglial adaptations in the rodent brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123477. [PMID: 38307239 DOI: 10.1016/j.envpol.2024.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Prolonged exposure to low levels of dietary contaminants is a context in modern life that could alter organ physiology gradually. Here, we aimed to investigate the impact of continuous exposure to acceptable daily intake (ADI) and non-observable adverse effect level (NOAEL) of glyphosate from gestation to adulthood using C57BL/6J mice and incorporating these levels into their food pellets. From adulthood, we analyzed neurophysiological and neuro-glia cellular adaptations in male and female animals. Using ex-vivo hippocampal slice electrophysiology, we found a reduced efficacy of Schaffer collateral-to-CA1 excitatory synapses in glyphosate-exposed dietary conditions, with ADI and NOAEL dose-dependent effects. Short-term facilitation of excitatory synaptic transmission was specifically increased in NOAEL conditions, with a predominant influence in males, suggesting a reduced probability of neurotransmitter release. Long-term synaptic potentiation (LTP) was decreased in NOAEL-exposed mice. Next, we explore whether these neurophysiological modifications are associated with neuro-glia changes in the somatosensory cortex and hippocampus. High-resolution confocal microscopy analyses unveil a dose-dependent increased density of excitatory Vglut1+ Homer1+ synapses. Microglial Iba1+ cells displayed a shortening of their ramifications, a sign of cellular reactivity that was more pronounced in males at NOAEL levels. The morphology of GFAP+ astrocytes was generally not modified. Finally, we asked whether mouse-specific cross-correlations exist among all data sets generated. This examination included the novel object recognition (NOR) test performed before ex vivo functional and immunohistochemical examinations. We report a negative linear regression between the number of synapses and NOR or LTP maintenance when plotting ADI and NOAEL datasets. These results outline synaptic and microglial cell adaptations resulting from prenatal and continuous dietary low levels of glyphosate, discernible in, but not limited to, adult males exposed to the NOAEL. We discuss the potential significance of these findings to real-world consumer situations and long-term brain resilience.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Margot Courret
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Athénaïs Génin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Julie Bourret
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Sakkaki
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Frederic de Bock
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alicia Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
9
|
Chávez-Reyes J, Gutiérrez-Reyes CD, Hernández-Cuellar E, Marichal-Cancino BA. Neurotoxicity of glyphosate: Focus on molecular mechanisms probably associated with alterations in cognition and behavior. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104381. [PMID: 38311300 DOI: 10.1016/j.etap.2024.104381] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
In recent decades, glyphosate and glyphosate-based herbicides (GBH) have been extensively used in agriculture all over the world. Initially, they were considered safe, but rising evidence suggests that these molecules reach the central nervous system producing metabolic, functional, and permanent alterations that impact cognition and behavior. This theoretical and non-systematic review involved searching, integrating, and analyzing preclinical evidence regarding the effects of acute, sub-chronic, and chronic exposure to glyphosate and GBH on cognition, behavior, neural activity, and development in adult and juvenile rodents following perinatal exposition. In addition, this review gathers the mechanisms underlying the neurotoxicity of glyphosate mediating cognitive and behavioral alterations. Furthermore, clinical evidence of the effects of exposition to GBH on human health and its possible link with several neurological disorders was revised.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | | | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.
| |
Collapse
|
10
|
Daramola O, Gutierrez Reyes CD, Chávez-Reyes J, Marichal-Cancino BA, Nwaiwu J, Onigbinde S, Adeniyi M, Solomon J, Bhuiyan MMAA, Mechref Y. Metabolomic Changes in Rat Serum after Chronic Exposure to Glyphosate-Based Herbicide. Metabolites 2024; 14:50. [PMID: 38248853 PMCID: PMC10819816 DOI: 10.3390/metabo14010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Glyphosate-based herbicides (GBHs) have gained extensive popularity in recent decades. For many years, glyphosate has been regarded as harmless or minimally toxic to mammals due to the absence of its primary target, the shikimic acid pathway in humans. Nonetheless, mounting evidence suggests that glyphosate may cause adverse health effects in humans via other mechanisms. In this study, we described the metabolomic changes in the serum of experimental rats exposed to chronic GBH using the highly sensitive LC-MS/MS technique. We investigated the possible relationship between chronic exposure to GBH and neurological disorders. Our findings suggest that chronic exposure to GBH can alter spatial learning memory and the expression of some important metabolites that are linked to neurophysiological disorders in young rats, with the female rats showing higher susceptibility compared to the males. This indicates that female rats are more likely to show early symptoms of the disorder on exposure to chronic GBH compared to male rats. We observed that four important metabolites (paraxanthine, epinephrine, L-(+)-arginine, and D-arginine) showed significant changes and involvement in neurological changes as suggested by ingenuity pathway analysis. In conclusion, our results indicate that chronic exposure to GBH can increase the risk of developing neurological disorders.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Jesús Chávez-Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Bruno A. Marichal-Cancino
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Md Mostofa Al Amin Bhuiyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| |
Collapse
|
11
|
Ren J, Yu Y, Wang Y, Dong Y, Shen X. Association Between Urinary Glyphosate Exposure and Cognitive Impairment in Older Adults from NHANES 2013-2014. J Alzheimers Dis 2024; 97:609-620. [PMID: 38143355 DOI: 10.3233/jad-230782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Glyphosate is the most commonly used herbicide with potential neurotoxicity. However, limited epidemical evidence is found in the relationship between glyphosate and cognitive impairment, especially in the cognitive-disrupting sensitive elderly populations. OBJECTIVE This study aimed to examine the association of urinary glyphosate exposure with cognitive impairment in the United State (US) older adults. METHODS Cognitive impairment was determined by the following four tests: the Consortium to Establish a Registry for Alzheimer's disease (CERAD) Immediate Recall test (IR), the CERAD Delayed Recall tests (DR), the Animal Fluency (AF) test and the Digit Substitution test (DSST). Survey weighted logistic regression and restricted cubic splines were applied to evaluate and visualize the association between glyphosate and cognitive impairment. RESULTS A total of 465 elderly adults were identified in the National Health and Nutrition Examination Survey (NHANES) 2013-2014 cycle, and among them, 83.87% individuals had detectable urinary levels of glyphosate (0.628 ng/mL in average). After adjusting for the potential covariates, glyphosate was significantly linked to increased DR and AF impairment, and the corresponding ORs were 1.52 (1.01 to 2.30, p = 0.049) and 1.69 (1.11 to 2.59, p = 0.019), respectively. No significant association was identified between glyphosate and IR or DSST impairment. The RCS plot further confirmed the linear and positive relationships between glyphosate and DR and AF impairment. CONCLUSIONS These findings suggested that exposure to glyphosate might be associated with declined cognitive function in the elderly, and it might be prudent to evaluate cognitive outcomes for aged individuals with glyphosate exposures.
Collapse
Affiliation(s)
- Jiawen Ren
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yu Dong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Hsiao CC, Yang AM, Wang C, Lin CY. Association between glyphosate exposure and cognitive function, depression, and neurological diseases in a representative sample of US adults: NHANES 2013-2014 analysis. ENVIRONMENTAL RESEARCH 2023; 237:116860. [PMID: 37562738 DOI: 10.1016/j.envres.2023.116860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Glyphosate, the most widely used herbicide globally, has been linked to neurological impairments in some occupational studies. However, the potential neurotoxic effects of glyphosate exposure in the general population are still not fully understood. We conducted analyses on existing data collected from 1532 adults of the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to explore the possible relationship between glyphosate exposure and cognitive function, depressive symptoms, disability, and neurological medical conditions. Our results showed a significant negative association between urinary glyphosate levels and the Consortium to Establish a Registry for Alzheimer's Disease Word List Memory Test (CERAD-WLT) trial 3 recall and delayed recall scores in both models, with ß coefficients of -0.288 (S.E. = 0.111, P = 0.021) and -0.426 (S.E. = 0.148, P = 0.011), respectively. Furthermore, the odds ratio did not show a significant increase with the severity of depressive symptoms with a one-unit increase in ln-glyphosate levels. However, the odds ratio for severe depressive symptoms was significantly higher than for no symptoms (odds ratio = 4.148 (95% CI = 1.009-17.133), P = 0.049). Notably, the odds ratio showed a significant increase for individuals with serious hearing difficulty (odds ratio = 1.354 (95% CI = 1.018-1.800), P = 0.039) with a one-unit increase in ln-glyphosate levels, but not for other neurological medical conditions. In conclusion, our findings provide the first evidence that glyphosate exposure may be associated with neurological health outcomes in the US adult population. Additional investigation is necessary to understand the potential mechanisms and clinical significance of these correlations.
Collapse
Affiliation(s)
- Ching Chung Hsiao
- Department of Nephrology, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan.
| |
Collapse
|
13
|
Knežević S, Jovanović NT, Vlahović F, Ajdačić V, Costache V, Vidić J, Opsenica I, Stanković D. Direct glyphosate soil monitoring at the triazine-based covalent organic framework with the theoretical study of sensing principle. CHEMOSPHERE 2023; 341:139930. [PMID: 37659506 DOI: 10.1016/j.chemosphere.2023.139930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Covalent organic frameworks (COFs) are emerging as promising sensing materials due to their controllable structure and function properties, as well as excellent physicochemical characteristics. Here, specific interactions between a triazine-based COF and a mass-used herbicide - glyphosate (GLY) have been utilized to design a disposable sensing platform for GLY detection. This herbicide has been extensively used for decades, however, its harmful environmental impact and toxicity to humans have been recently proven, conditioning the necessity for the strict control and monitoring of its use and its presence in soil, water, and food. Glyphosate is an organophosphorus compound, and its detection in complex matrices usually requires laborious pretreatment. Here, we developed a direct, miniaturized, robust, and green approach for disposable electrochemical sensing of glyphosate, utilizing COF's ability to selectively capture and concentrate negatively charged glyphosate molecules inside its nanopores. This process generates the concentration gradient of GLY, accelerating its diffusion towards the electrode surface. Simultaneously, specific COF-glyphosate binding catalyses the oxidative cleavage of the C-P bond and, together with pore nanoconfinement, enables sensitive glyphosate detection. Detailed sensing principles and selectiveness were scrutinized using DFT-based modelling. The proposed electrochemical method has a linear working range from 0.1 μM to 10 μM, a low limit of detection of 96 nM, and a limit of quantification of 320 nM. The elaborated sensing approach is viable for use in real sample matrices and tested for GLY determination in soil and water samples, without pretreatment, preparation, or purification. The results showed the practical usefulness of the sensor in the real sample analysis and suggested its suitability for possible out-of-laboratory sensing.
Collapse
Affiliation(s)
- Sara Knežević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Nataša Terzić Jovanović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Filip Vlahović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdačić
- Innovative Centre Ltd., Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, 78350, Jouy en Josas, France
| | - Jasmina Vidić
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dalibor Stanković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Department of Radioisotopes, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
González-Moscoso M, Meza-Figueroa D, Martínez-Villegas NV, Pedroza-Montero MR. GLYPHOSATE IMPACT on human health and the environment: Sustainable alternatives to replace it in Mexico. CHEMOSPHERE 2023; 340:139810. [PMID: 37598951 DOI: 10.1016/j.chemosphere.2023.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is a broad-spectrum, non-selective herbicide used to control weeds and protect agricultural crops, and it is classified as potentially carcinogenic by the International Agency for Research on Cancer. In Mexico, the use of pesticides is a common practice, including glyphosate. However, on December 31st, 2020, the Mexican government decreed the prohibition of this herbicide as of January 2024. In this review, we investigate the association between glyphosate and cancer risk and found that most of the studies focused using animals showing negative effects such as genotoxicity, cytotoxicity and neurotoxicity, some studies used cancer cell lines showing proliferative effects due to glyphosate exposure. To our knowledge, in Mexico, there are no scientific reports on the association of glyphosate with any type of cancer. In addition, we reviewed the toxicological effects of the herbicide glyphosate, and the specific case of the current situation of the use and environmental damage of this herbicide in Mexico. We found that few studies have been published on glyphosate, and that the largest number of publications are from the International Agency for Research on Cancer classification to date. Additionally, we provide data on glyphosate stimulation at low doses as a biostimulant in crops and analytical monitoring techniques for the detection of glyphosates in different matrices. Finally, we have tried to summarize the actions of the Mexican government to seek sustainable alternatives and replace the use of glyphosate, to obtain food free of this herbicide and take care of the health of the population and the environment.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Departamento de Nanotecnología, Universidad Politécnica de Chiapas (UPChiapas), Carretera Tuxtla Gutierrez.-Portillo Zaragoza Km 21+500, Col. Las Brisas, Suchiapa, 29150, Chiapas, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| | | | - Martín Rafael Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
15
|
Flach H, Dietmann P, Liess M, Kühl M, Kühl SJ. Glyphosate without Co-formulants affects embryonic development of the south african clawed frog Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115080. [PMID: 37262967 DOI: 10.1016/j.ecoenv.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most widely used herbicide in the world. Due to its mode of action as an inhibitor of the 5-enolpyruvylshikimate-3-phosphate synthase, an important step in the shikimate pathway, specifically in plants, GLY is considered to be of low toxicity to non-target organisms. However, various studies have shown the negative effects of GLY on the mortality and development of different non-target organisms, including insects, rodents, fish and amphibians. To better understand the various effects of GLY in more detail, we studied the effects of GLY without co-formulants during the embryogenesis of the aquatic model organism Xenopus laevis. RESULTS A treatment with GLY affected various morphological endpoints in X. laevis tadpoles (body length, head width and area, eye area). Additionally, GLY interfered with the mobility as well as the neural and cardiac development of the embryos at stage 44/45. We were able to detect detailed structural changes in the cranial nerves and the heart and gained insights into the negative effects of GLY on cardiomyocyte differentiation. CONCLUSION The application of GLY without co-formulants resulted in negative effects on several endpoints in the early embryonic development of X. laevis at concentrations that are environmentally relevant and concentrations that reflect the worst-case scenarios. This indicates that GLY could have a strong negative impact on the survival and lives of amphibians in natural waters. As a result, future GLY approvals should consider its impact on the environment.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
16
|
Qi L, Dong YM, Chao H, Zhao P, Ma SL, Li G. Glyphosate based-herbicide disrupts energy metabolism and activates inflammatory response through oxidative stress in mice liver. CHEMOSPHERE 2023; 315:137751. [PMID: 36608876 DOI: 10.1016/j.chemosphere.2023.137751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate, the most widely used herbicide worldwide, has been reported to cause hepatotoxicity. However, these systematic mechanisms remain poorly understood. Here, we investigated the effects of glyphosate-based herbicides (GBH) on liver toxicity in mice exposed to 0, 50, 250, and 500 mg/kg/day GBH for 30 d. Pathological and ultrastructural changes, serum biochemical indicators, oxidative stress state, and transcriptome and key protein alterations were performed to describe the hepatic responses to GBH. GBH induced hepatocytes structural alterations, vacuolation, and inflammatory, mitochondrial swelling and vacuolization; damaged liver function and aggravated oxidative stress; blocked the respiratory chain, promoted gluconeogenesis, fatty acid synthesis and elongation, and activated complement and coagulation cascades system (CCCS) in the liver. Moreover, SOD, H2O2, and MDA were negatively correlated with the CxI and CxIV genes, but positively correlated with the genes in glucolipid metabolism and CCCS pathways; however, the opposite results were observed for CAT, GSH-Px, and T-AOC. Overall, this study revealed the systematic mechanism underlying hepatotoxicity caused by GBH, providing new insights into understanding the hepatotoxicity of organophosphorus pesticide.
Collapse
Affiliation(s)
- Lei Qi
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yan-Mei Dong
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Hong Chao
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Peng Zhao
- Digital Curriculum Center, Academic Affairs Department, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Shu-Li Ma
- Public Health Experimental Center, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
17
|
Madani NA, Carpenter DO. Effects of glyphosate and glyphosate-based herbicides like Roundup™ on the mammalian nervous system: A review. ENVIRONMENTAL RESEARCH 2022; 214:113933. [PMID: 35868581 DOI: 10.1016/j.envres.2022.113933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is the active ingredient in glyphosate-based herbicides (GBHs), such as Roundup™, the most widely used herbicides in the world. Glyphosate targets an essential enzyme in plants that is not found in animals. However, both glyphosate and GBHs are rated as Group 2A, probable human carcinogens, and also have documented effects on reproduction, acting as endocrine disruptive chemicals. We have reviewed reports of the effects of glyphosate and GBHs on mammalian nervous system function. As with several other herbicides, GBHs exposure has been associated with an increased risk of Parkinson's Disease and death of neurons in the substantia nigra. There is also some evidence implicating Roundup™ in elevated risk of autism. Other studies have shown the effects of GBHs on synaptic transmission in animal and cellular studies. The major mechanism of action appears to be oxidative stress, accompanied by mitochondrial dysfunction. In addition, some gut bacteria utilize the enzyme used by plants, and glyphosate and GBHs use has been shown to alter the gut microbiome. There is a large and growing body of evidence that the gut microbiome alters susceptibility to great number of human diseases, including nervous system function. The weight of the evidence indicates that in addition to cancer and reproductive effects, glyphosate and GBHs have significant adverse effects on the brain and behavior and increase the risk of at least some serious neurological diseases.
Collapse
Affiliation(s)
- Najm Alsadat Madani
- Department of Environmental Health Science, School of Public Health, 1 University Place, University at Albany, Rensselaer, NY 12144, USA; Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, NY 12144, USA
| | - David O Carpenter
- Department of Environmental Health Science, School of Public Health, 1 University Place, University at Albany, Rensselaer, NY 12144, USA; Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, NY 12144, USA.
| |
Collapse
|
18
|
Moser VC, Morris-Schaffer K, Richardson JR, Li AA. Glyphosate and neurological outcomes: A systematic literature review of animal studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:162-209. [PMID: 35676826 DOI: 10.1080/10937404.2022.2083739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of nervous system effects of glyphosate, a widely used herbicide, have not been critically examined. The aim of this paper was to systematically review glyphosate-induced neurotoxicity literature to determine its usefulness in regulatory decision-making. The review was restricted to mammalian studies of behavior, neuropathology, and neuropharmacology; in vitro and other biochemical studies were considered supplementary information. Glyphosate formulation studies were also considered, despite uncertainties regarding toxicities of the formulated products; no studies used a formulation vehicle as the control. Inclusion criteria were developed a priori to ensure consistent evaluation of studies, and in vivo investigations were also ranked using ToxRTool software to determine reliability. There were 27 in vivo studies (open literature and available regulatory reports), but 11 studies were considered unreliable (mostly due to critical methodological deficiencies). There were only seven acceptable investigations on glyphosate alone. Studies differed in terms of dosing scenarios, experimental designs, test species, and commercial product. Limitations included using only one dose and/or one test time, small sample sizes, limited data presentation, and/or overtly toxic doses. While motor activity was the most consistently affected endpoint (10 of 12 studies), there were considerable differences in outcomes. In six investigations, there were no marked neuropathological changes in the central or peripheral nervous system. Other neurological effects were less consistent, and some outcomes were less convincing due to influences including high variability and small effect sizes. Taken together, these studies do not demonstrate a consistent impact of glyphosate on the structure or function of the mammalian nervous system.
Collapse
Affiliation(s)
| | - Keith Morris-Schaffer
- Exponent Inc, Center for Chemical Regulation and Food Safety, Sacramento, California
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Abby A Li
- Exponent Inc, Center for Health Sciences, Oakland, CA, United States
| |
Collapse
|
19
|
Costas-Ferreira C, Durán R, Faro LRF. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int J Mol Sci 2022; 23:4605. [PMID: 35562999 PMCID: PMC9101768 DOI: 10.3390/ijms23094605] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
Glyphosate, a non-selective systemic biocide with broad-spectrum activity, is the most widely used herbicide in the world. It can persist in the environment for days or months, and its intensive and large-scale use can constitute a major environmental and health problem. In this systematic review, we investigate the current state of our knowledge related to the effects of this pesticide on the nervous system of various animal species and humans. The information provided indicates that exposure to glyphosate or its commercial formulations induces several neurotoxic effects. It has been shown that exposure to this pesticide during the early stages of life can seriously affect normal cell development by deregulating some of the signaling pathways involved in this process, leading to alterations in differentiation, neuronal growth, and myelination. Glyphosate also seems to exert a significant toxic effect on neurotransmission and to induce oxidative stress, neuroinflammation and mitochondrial dysfunction, processes that lead to neuronal death due to autophagy, necrosis, or apoptosis, as well as the appearance of behavioral and motor disorders. The doses of glyphosate that produce these neurotoxic effects vary widely but are lower than the limits set by regulatory agencies. Although there are important discrepancies between the analyzed findings, it is unequivocal that exposure to glyphosate produces important alterations in the structure and function of the nervous system of humans, rodents, fish, and invertebrates.
Collapse
Affiliation(s)
| | | | - Lilian R. F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (C.C.-F.); (R.D.)
| |
Collapse
|