1
|
Rodríguez-Santos L, Costas C, Louzao MC, Cagide E, Alvarez M, Rodríguez-Cañás I, Raposo-García S, Vale C, Vieytes MR, Lolo M, Botana LM. Bioavailability profiling shows differences in OA, DTX1 and DTX2 toxins that justify their toxicity. CHEMOSPHERE 2024; 366:143419. [PMID: 39349070 DOI: 10.1016/j.chemosphere.2024.143419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The marine toxins of the Okadaic acid (OA) group are natural compounds produced by dinoflagellates that enters the food chain by accumulating in seafood. They are responsible for Diarrhetic Shellfish Poisoning (DSP) events in humans over the world and therefore are also jointly named as Diarrhetic Shellfish Toxins (DSTs). The main objective of this study was to evaluate symptoms, toxicity, absorption, distribution, and elimination of OA, Dinophysistoxin-1 (DTX1), and Dinophysistoxin-2 (DTX2) at the sublethal dose of 90 μg toxin/kg bw administered through voluntary feeding to mice. The toxin comparison highlighted that OA and DTX1 induced more severe and specific symptoms such as diarrhea. After oral ingestion toxins were distributed through the entire organism being detected in liver, kidney, stomach, small and large intestine. Predominant excretion of the toxins was observed in feces, with OA exhibiting fast elimination, while DTX2 was showing prolonged excretion. The passage and accumulation of toxins in gastrointestinal organs instigated macroscopic damage in the stomach, small and large intestine that could persist up to 120 h. These findings highlight the importance of pharmacokinetic of sublethal doses of DSTs administered by voluntary feeding in their toxicity and their implication for public health.
Collapse
Affiliation(s)
- Luis Rodríguez-Santos
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Celia Costas
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | | | | | - Inés Rodríguez-Cañás
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain; Laboratorio Cifga, Lugo, Spain
| | - Sandra Raposo-García
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
2
|
Ozogul F, Rathod N, Köse S, Alak G, Kızılyıldırım S, Bilgin Ş, Emir Çoban Ö, İnanlı AG, Ünal-Şengör GF, İzci L, Ozogul Y, Tokur B, Ucak İ, Ceylan Z, Kulawik P. Biochemical and microbial food safety hazards in seafood: A Mediterranean perspective (Part 2). ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:209-271. [PMID: 40155085 DOI: 10.1016/bs.afnr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The marine environment is teeming with a diverse array of algae, dinoflagellates and phytoplankton. These organisms possess the remarkable capacity to produce toxic compounds that can be passed to humans through the ingestion of seafood, resulting in potential health risks. Similarly, seafood can be susceptible to contamination from various microorganisms, viruses and parasites, thereby, potentially compromising food safety. Consuming seafood that contains toxins or pathogenic microorganisms may have serious health consequences, including the potential for severe illness or even fatality. This chapter delves into the various hazards that arise from biochemical and microbiological factors, with particular emphasis on the Mediterranean region. In addition, it provides a succinct analysis regarding the effect of COVID-19 pandemic on the safety of seafood.
Collapse
Affiliation(s)
- Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye; Biotechnology Research and Application Center, Çukurova University, Adana, Türkiye.
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, Maharashtra, India.
| | - Sevim Köse
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Çamburnu, Trabzon, Türkiye
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye
| | - Suna Kızılyıldırım
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - Şengül Bilgin
- Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Türkiye
| | - Özlem Emir Çoban
- Department of Seafood Processing Technology, Faculty of Fisheries, Fırat University, Elazığ, Türkiye
| | - Ayşe Gürel İnanlı
- Department of Seafood Processing Technology, Faculty of Fisheries, Fırat University, Elazığ, Türkiye
| | - Gülgün F Ünal-Şengör
- Division of Food Safety, Department of Fisheries and Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, İstanbul, Türkiye
| | - Levent İzci
- Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Türkiye
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye.
| | - Bahar Tokur
- Fatsa Faculty of Marine Sciences, Ordu University, Ordu, Türkiye
| | - İlknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Zafer Ceylan
- Department of Molecular Biology and Genetics/Biotechnology, Science Faculty, Bartın University, Bartın, Turkiye
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland.
| |
Collapse
|
3
|
Zhu T, Yang Y, Hu C, Ma L, Sheng J, Chang R, Liao Y, Wang L, Zhu Y, Zhao M, Li B, Li T, Liao C. Effects of Enterobacter cloacae insecticidal protein on the Duox-ROS system and midgut bacterial community and function of Galleria mellonella larvae. Toxicon 2024; 247:107850. [PMID: 38971137 DOI: 10.1016/j.toxicon.2024.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Enterobacter cloacae insecticidal proteins have been reported to kill Galleria mellonella larvae through affecting their midgut microbiome. However, the mechanisms involved remain unclear. Here we aim to investigate how the insecticidal proteins act on the midgut Duox-ROS system and microbial community of G. mellonella larvae. METHODS Reverse transcription qPCR and fluorescence probes were utilized to assess the Duox expression levels and to evaluate quantitative changes of the ROS levels. Sequencing of the 16S rRNA gene sequences of the midgut bacteria of G. mellonella larvae was conducted for further analyses of bacterial diversity, composition, and abundance. RESULTS After the injection of the insecticidal proteins, the Duox expression levels first increased within 28 h, then dramatically peaked at 36 h, and slowly decreased thereafter. Simultaneously, the ROS levels increased significantly at 36 h, peaked at 48 h, and rapidly declined to the normal level at 60 h. Responsive to the change of the ROS levels, the structure of the midgut microbial community was altered substantially, compared to that of the untreated larvae. The relative abundance of Enterobacteriaceae and other specific pathogenic bacteria increased significantly, whereas that of Lactobacillus decreased sharply. Importantly, notable shifts were observed in the crucial midgut predicted metabolic functions, including membrane transportation, carbohydrate metabolism, and amino acid metabolism. CONCLUSION Insecticidal proteins of E. cloacae kill G. mellonella larvae mainly through generation of high oxidative stress, alterations of the midgut microbial community and function, and damage to the physiological functions. These findings provide insights into the inhibition mechanism of E. cloacae insecticidal proteins to G. mellonella larvae.
Collapse
Affiliation(s)
- Tao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yi Yang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Chao Hu
- Pingdingshan Academy of Agricultural Sciences, China
| | - Liang Ma
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Jiaqing Sheng
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Ruiying Chang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yanfei Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China.
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China.
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China.
| |
Collapse
|
4
|
Marino Cerrato L, Schiano E, Iannuzzo F, Tenore GC, Summa V, Daglia M, Novellino E, Stornaiuolo M. A Rapid and Reliable Spectrofluorimetric Method to Measure the Urinary Lactulose/Mannitol Ratio for Dysbiosis Assessment. Biomedicines 2024; 12:1557. [PMID: 39062130 PMCID: PMC11274872 DOI: 10.3390/biomedicines12071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Gut microbiota plays a crucial role in human health homeostasis, and the result of its alteration, known as dysbiosis, leads to several pathologies (e.g., inflammatory bowel disease, metabolic syndrome, and Crohn's disease). Traditional methods used to assess dysbiosis include the dual sugar absorption test and the urinary lactulose/mannitol ratio (LMR) measurement using mass spectrometry. Despite its precision, this approach is costly and requires specialized equipment. Hence, we developed a rapid and reliable spectrofluorimetric method for measuring LMR in urine, offering a more accessible alternative. This spectrofluorimetric assay quantifies the fluorescence of nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) produced during the enzymatic oxidation of mannitol and lactulose, respectively. The assay requires 100 µL of urine samples and detects LMR values lower (eubiosis) and higher (dysbiosis) than 0.05, ultimately being amenable to high-throughput screening and automatization, making it practical for clinical and research settings. A validation of the method demonstrated its high precision, accuracy, and robustness. Additionally, this study confirmed analyte stability under various storage conditions, ensuring reliable results even with delayed analysis. Overall, this spectrofluorimetric technique reduces costs, time, and the environmental impact associated with traditional mass spectrometry methods, making it a viable option for widespread use in the assessment of dysbiosis.
Collapse
Affiliation(s)
- Lorenzo Marino Cerrato
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (E.N.)
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D’Annunzio, 66100 Chieti, Italy;
| | - Gian Carlo Tenore
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Vincenzo Summa
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (E.N.)
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| |
Collapse
|
5
|
Mollerup IM, Bjørneset J, Krock B, Jensen TH, Galatius A, Dietz R, Teilmann J, van den Brand JMA, Osterhaus A, Kokotovic B, Lundholm N, Olsen MT. Did algal toxin and Klebsiella infections cause the unexplained 2007 mass mortality event in Danish and Swedish marine mammals? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169817. [PMID: 38184244 DOI: 10.1016/j.scitotenv.2023.169817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
An unusual mass mortality event (MME) of harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) occurred in Denmark and Sweden in June 2007. Prior to this incident, the region had experienced two MMEs in harbour seals caused by Phocine Distemper Virus (PDV) in 1988 and 2002. Although epidemiology and symptoms of the 2007 MME resembled PDV, none of the animals examined for PDV tested positive. Thus, it has been speculated that another - yet unknown - pathogen caused the June 2007 MME. To shed new light on the likely cause of death, we combine previously unpublished veterinary examinations of harbour seals with novel analyses of algal toxins and algal monitoring data. All harbour seals subject to pathological examination showed pneumonia, but were negative for PDV, influenza and coronavirus. Histological analyses revealed septicaemia in multiple animals, and six animals tested positive for Klebsiella pneumonia. Furthermore, we detected the algal Dinophysis toxin DTX-1b (1-115 ng g-1) in five seals subject to toxicology, representing the first time DTX-1b has been detected in marine vertebrates. However, no animals tested positive for both Klebsiella and toxins. Thus, while our relatively small sample size prevent firm conclusions on causative agents, we speculate that the unexplained MME may have been caused by a chance incidence of multiple pathogens acting in parallel in June 2007, including Dinophysis toxin and Klebsiella. Our study illustrates the complexity of wildlife MMEs and highlights the need for thorough sampling during and after MMEs, as well as additional research on and monitoring of DTX-1b and other algal toxins in the region.
Collapse
Affiliation(s)
- Ida-Marie Mollerup
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Juni Bjørneset
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Trine Hammer Jensen
- Aalborg Zoo/Section of Biology and Environmental Science, University of Aalborg, Fredrik Bajers Vej 7, H, 9220 Aalborg, Denmark
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rune Dietz
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jonas Teilmann
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Albert Osterhaus
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Branko Kokotovic
- Reference Laboratory for Antimicrobial Resistance, Department of Bacteria, Parasites & Fungi, Statens Seruminstitut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
6
|
Liu Y, Yuan TQ, Zheng JW, Li DW, Jiao YH, Li HY, Li RM, Yang WD. Exposure to okadaic acid could disrupt the colonic microenvironment in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115376. [PMID: 37597294 DOI: 10.1016/j.ecoenv.2023.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Okadaic acid (OA) is one of the most prevalent marine phycotoxin with complex toxicity, which can lead to toxic symptoms such as diarrhea, vomiting, nausea, abdominal pain, and gastrointestinal discomfort. Studies have shown that the main affected tissue of OA is digestive tract. However, its toxic mechanism is not yet fully understood. In this study, we investigated the changes that occurred in the epithelial microenvironment following OA exposure, including the epithelial barrier and gut bacteria. We found that impaired epithelial cell junctions, mucus layer destruction, cytoskeletal remodeling, and increased bacterial invasion occurred in colon of rats after OA exposure. At the same time, the gut bacteria decreased in the abundance of beneficial bacteria and increased in the abundance of pathogenic bacteria, and there was a significant negative correlation between the abundance of pathogenic bacteria represented by Escherichia/Shigella and animal body weight. Metagenomic analysis inferred that Escherichia coli and Shigella spp. in Escherichia/Shigella may be involved in the process of cytoskeletal remodeling and mucosal layer damage caused by OA. Although more evidence is needed, our results suggest that opportunistic pathogens may be involved in the complex toxicity of OA during OA-induced epithelial barrier damage.
Collapse
Affiliation(s)
- Yang Liu
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tian-Qing Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Man Li
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Copplestone D, Coates CJ, Lim J. Low dose γ-radiation induced effects on wax moth (Galleria mellonella) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162742. [PMID: 36906041 DOI: 10.1016/j.scitotenv.2023.162742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Larvae of the greater wax moth Galleria mellonella are common pests of beehives and commercial apiaries, and in more applied settings, these insects act as alternative in vivo bioassays to rodents for studying microbial virulence, antibiotic development, and toxicology. In the current study, our aim was to assess the putative adverse effects of background gamma radiation levels on G. mellonella. To achieve this, we exposed larvae to low (0.014 mGy/h), medium (0.056 mGy/h), and high (1.33 mGy/h) doses of caesium-137 and measured larval pupation events, weight, faecal discharge, susceptibility to bacterial and fungal challenges, immune cell counts, activity, and viability (i.e., haemocyte encapsulation) and melanisation levels. The effects of low and medium levels of radiation were distinguishable from the highest dose rates used - the latter insects weighed the least and pupated earlier. In general, radiation exposure modulated cellular and humoral immunity over time, with larvae showing heightened encapsulation/melanisation levels at the higher dose rates but were more susceptible to bacterial (Photorhabdus luminescens) infection. There were few signs of radiation impacts after 7 days exposure, whereas marked changes were recorded between 14 and 28 days. Our data suggest that G. mellonella demonstrates plasticity at the whole organism and cellular levels when irradiated and offers insight into how such animals may cope in radiologically contaminated environments (e.g. Chornobyl Exclusion Zone).
Collapse
Affiliation(s)
- David Copplestone
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK; Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
8
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
9
|
Sabockytė A, McAllister S, Coates CJ, Lim J. Effect of acute ultraviolet radiation on Galleria mellonella health and immunity. J Invertebr Pathol 2023; 198:107899. [PMID: 36806465 DOI: 10.1016/j.jip.2023.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
For humans, acute and chronic overexposure to ultraviolet (UV) radiation can cause tissue damage in the form of sunburn and promote cancer(s). The immune-modulating properties of UV radiation and health-related consequences are not well known. Herein, we used the larvae of the wax moth Galleria mellonella, to determine UV-driven changes in cellular components of innate immunity. From immune cell (haemocyte) reactivity and the production of antimicrobial factors, these insects share many functional similarities with mammalian cellular innate immunity. After exposing insects to UVA or UVB for up to two hours, we monitored larval viability, susceptibility to infection, haemolymph (blood) physiology and faecal discharge. Prolonged exposure of larvae to UVB coincided with decreased survival, enhanced susceptibility to bacterial challenge, melanin synthesis in the haemolymph, compromised haemocyte functionality and changes in faecal (bacterial) content. We contend G. mellonella is a reliable in vivo model for assessing the impact of UV exposure at the whole organism and cellular levels.
Collapse
Affiliation(s)
- Aušrinė Sabockytė
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK
| | - Samuel McAllister
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK.
| |
Collapse
|
10
|
Grizanova EV, Krytsyna TI, Kalmykova GV, Sokolova E, Alikina T, Kabilov M, Coates CJ, Dubovskiy IM. Virulent and necrotrophic strategies of Bacillus thuringiensis in susceptible and resistant insects, Galleria mellonella. Microb Pathog 2023; 175:105958. [PMID: 36572197 DOI: 10.1016/j.micpath.2022.105958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Bacillus thuringiensis (Bt) is one of the most common entomopathogenic bacteria used as a biopesticide, and source of endotoxin genes for generating insect-resistant transgenic plants. The mechanisms underpinning an insect's susceptibility or resistance to B. thuringiensis are diverse. The bacterial lifecycle does not end with the death of a host, they continue to exploit the cadaver to reproduce and sporulate. Herein, we studied the progression of B. thuringiensis subsp. galleriae infection in two populations of wax moth larvae (Galleria mellonella) to gain further insight into the "arms race" between B. thuringiensis virulence and insect defences. Two doses of B. thuringiensis subsp. galleriae (spore and crystalline toxin mixtures) were administered orally to compare the responses of susceptible (S) and resistant (R) populations at ∼30% mortality each. To investigate B. thuringiensis-insect antibiosis, we used a combination of in vivo infection trials, bacterial microbiome analysis, and RNAi targeting the antibacterial peptide gloverin. Within 48 h post-inoculation, B. thuringiensis-resistant insects purged the midgut of bacteria, i.e., colony forming unit numbers fell below detectable levels. Second, B. thuringiensis rapidly modulated gene expression to initiate sporulation (linked to quorum sensing) when exposed to resistant insects in contrast to susceptible G. mellonella. We reinforce earlier findings that elevated levels of antimicrobial peptides, specifically gloverin, are found in the midgut of resistant insects, which is an evolutionary strategy to combat B. thuringiensis infection via its main portal of entry. A sub-population of highly virulent B. thuringiensis can survive the enhanced immune defences of resistant G. mellonella by disrupting the midgut microbiome and switching rapidly to a necrotrophic strategy, prior to sporulation in the cadaver.
Collapse
Affiliation(s)
- Ekaterina V Grizanova
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| | - Tatiana I Krytsyna
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| | - Galina V Kalmykova
- Faculty of Physical Engineering, Novosibirsk State Technical University, 630039, Novosibirsk, Russia.
| | - Elina Sokolova
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630039, Novosibirsk, Russia.
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630039, Novosibirsk, Russia.
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland; Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK.
| | - Ivan M Dubovskiy
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| |
Collapse
|
11
|
Ahlawat S, Sharma KK. Lepidopteran insects: emerging model organisms to study infection by enteropathogens. Folia Microbiol (Praha) 2022; 68:181-196. [PMID: 36417090 DOI: 10.1007/s12223-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022]
Abstract
The in vivo analysis of a pathogen is a critical step in gaining greater knowledge of pathogen biology and host-pathogen interactions. In the last two decades, there has been a notable rise in the number of studies on developing insects as a model for studying pathogens, which provides various benefits, such as ethical acceptability, relatively short life cycle, and cost-effective care and maintenance relative to routinely used rodent infection models. Furthermore, lepidopteran insects provide many advantages, such as easy handling and tissue extraction due to their large size relative to other invertebrate models, like Caenorhabditis elegans. Additionally, insects have an innate immune system that is highly analogous to vertebrates. In the present review, we discuss the components of the insect's larval immune system, which strengthens its usage as an alternative host, and present an updated overview of the research findings involving lepidopteran insects (Galleria mellonella, Manduca sexta, Bombyx mori, and Helicoverpa armigera) as infection models to study the virulence by enteropathogens due to the homology between insect and vertebrate gut.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, 122505, Haryana, India.
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
12
|
Jarosova R, Niyangoda SS, Hettiarachchi P, Johnson MA. Impaired Dopamine Release and Latent Learning in Alzheimer's Disease Model Zebrafish. ACS Chem Neurosci 2022; 13:2924-2931. [PMID: 36113115 PMCID: PMC10127145 DOI: 10.1021/acschemneuro.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, fatal, neurodegenerative disorder for which only treatments of limited efficacy are available. Despite early mentions of dementia in the ancient literature and the first patient diagnosed in 1906, the underlying causes of AD are not well understood. This study examined the possible role of dopamine, a neurotransmitter that is involved in cognitive and motor function, in AD. We treated adult zebrafish (Danio rerio) with okadaic acid (OKA) to model AD and assessed the resulting behavioral and neurochemical changes. We then employed a latent learning paradigm to assess cognitive and motor function followed by neurochemical analysis with fast-scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes to measure the electrically stimulated dopamine release. The behavioral assay showed that OKA treatment caused fish to have lower motivation to reach the goal chamber, resulting in impeded learning and decreased locomotor activity compared to controls. Our voltammetric measurements revealed that the peak dopamine overflow in OKA-treated fish was about one-third of that measured in controls. These findings highlight the profound neurochemical changes that may occur in AD. Furthermore, they demonstrate that applying the latent learning paradigm and FSCV to zebrafish is a promising tool for future neurochemical studies and may be useful for screening drugs for the treatment of AD.
Collapse
Affiliation(s)
- Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
- Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czech Republic 12843
| | - Sayuri S. Niyangoda
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
13
|
Liu Y, Xu S, Cai Q, Li D, Li H, Yang W. In Vitro Interactions between Okadaic Acid and Rat Gut Microbiome. Mar Drugs 2022; 20:556. [PMID: 36135745 PMCID: PMC9500940 DOI: 10.3390/md20090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Okadaic acid (OA) is a marine biotoxin associated with diarrhetic shellfish poisoning (DSP), posing some threat to human beings. The oral toxicity of OA is complex, and the mechanism of toxicity is not clear. The interaction between OA and gut microbiota may provide a reasonable explanation for the complex toxicity of OA. Due to the complex environment in vivo, an in vitro study may be better for the interactions between OA and gut microbiome. Here, we conducted an in vitro fermentation experiment of gut bacteria in the presence of 0-1000 nM OA. The remolding ability of OA on bacterial composition was investigated by 16S rDNA sequencing, and differential metabolites in fermentation system with different concentration of OA was detected by LC-MS/MS. We found that OA inhibited some specific bacterial genera but promoted others. In addition, eight possible metabolites of OA, including dinophysistoxin-2 (DTX-2), were detected in the fermentation system. The abundance of Faecalitalea was strongly correlated with the possible metabolites of OA, suggesting that Faecalitalea may be involved in the metabolism of OA in vitro. Our findings confirmed the direct interaction between OA and gut bacteria, which helps to reveal the metabolic process of OA and provide valuable evidence for elucidating the complex toxicity of OA.
Collapse
Affiliation(s)
| | | | | | - Dawei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Weidong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Li L, Ma R, Zhao Y, Wang L, Wang S, Mao X. Development of a colorimetric aptasensor fabricated with a group-specific aptamer and AuNPs@Fe2+ nanozyme for simultaneous detection of multiple diarrheic shellfish poisons. Talanta 2022; 246:123534. [DOI: 10.1016/j.talanta.2022.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
15
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|