1
|
Hartwell HJ, Shang B, Douillet C, Bousquet AG, Liu T, Zou F, Ideraabdullah F, Stýblo M, Fry RC. Heritable dysregulation of DNA methylation may underlie the diabetogenic effects of paternal preconception exposure to inorganic arsenic in C57BL/6J mice. Toxicol Appl Pharmacol 2025; 496:117242. [PMID: 39894169 PMCID: PMC11846692 DOI: 10.1016/j.taap.2025.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Chronic exposure to inorganic arsenic (iAs) has been linked with the development of diabetes mellitus (DM). We recently showed that parental exposure to iAs (200 ppb) prior to mating was associated with diabetic phenotypes in offspring and altered gene expression in parents and offspring. The goal of the present study was to determine if DNA methylation underlies the differential gene expression in the livers of offspring. DNA methylation was assessed in paternal (G0) sperm and livers of their offspring (G1) using a genome wide DNA methylation array. We found that iAs exposure significantly altered CpG methylation (p < 0.05) in 54.3 %, 49.4 %, and 63.7 % of the differentially expressed genes in G0 sperm, G1 female livers, and G1 male livers, respectively. Importantly, a subset of differentially methylated CpG sites were shared across generations. Sensitivity analyses (FDR < 0.1) of imprinted and DM-associated genes revealed differential methylation of 74 imprinted genes and 100 DM-associated genes in the livers of G1 males. These male-specific results are intriguing given the prior findings of diabetic phenotypes found exclusively in male offspring from parents exposed to iAs. In summary, these data demonstrate that heritable changes in DNA methylation through the paternal germline may underlie the diabetogenic effects of preconception iAs exposure.
Collapse
Affiliation(s)
- Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingzhen Shang
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Audrey G Bousquet
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Ideraabdullah
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Liu Y, Wang W, Liang B, Zou Z, Zhang A. NLRP3 inflammasome activation and disruption of IRS-1/PI3K/AKT signaling: Potential mechanisms of arsenic-induced pancreatic beta cells dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117504. [PMID: 39657381 DOI: 10.1016/j.ecoenv.2024.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Environmental exposure to arsenic is associated with significant health risks, including diabetogenic effects linked to pancreatic dysfunction. The NOD-like receptor protein 3 (NLRP3) inflammasome has been implicated in various metabolic abnormalities; however, its specific role in arsenic-induced pancreatic dysfunction remains insufficiently understood. This study aimed to elucidate the involvement and underlying mechanisms of the NLRP3 inflammasome in arsenic-induced pancreatic beta cells dysfunction through in vivo and in vitro models. In rat models, arsenic exposure was found to activate the NLRP3 inflammasome, as evidenced by pathomorphological changes and the expression of inflammasome activation markers. These pathological changes were accompanied by disruptions in the insulin signaling pathway, characterized by increased phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser616, reduced expression of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (AKT) at Ser473, and significant decreases in downstream targets, including the nuclear translocation of PDX-1, membrane translocation of glucose transporter 2 (GLUT2), and glucokinase (GCK) expression. In vitro, NaAsO2-treated INS-1 cells exhibited a dose-dependent reduction in glucose-stimulated insulin secretion. Furthermore, arsenic exposure in these cells activated the NLRP3 inflammasome, suppressed the IRS-1/PI3K/AKT signaling pathway, and downregulated insulin secretion regulatory molecules (PDX-1, GLUT2, and GCK). Notably, these arsenic-induced effects were reversed by MCC950, an NLRP3 inflammasome inhibitor, and Extendin-4, an agonist of the IRS-1/PI3K/AKT signaling pathway. Collectively, these findings demonstrate that NLRP3 inflammasome activation disrupts the IRS-1/PI3K/AKT signaling pathway, contributing to arsenic-induced pancreatic beta cells dysfunction in rats.
Collapse
Affiliation(s)
- Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
3
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
4
|
Liu Q, Liu Y, Zhang J, Guan Y, Zhou Q, Yan Y, Li W, An J, He M. Gut microbiota deficiency aggravates arsenic-induced toxicity by affecting bioaccumulation and biotransformation in C57BL/6J mice. Food Chem Toxicol 2024; 186:114564. [PMID: 38438009 DOI: 10.1016/j.fct.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Todero J, Douillet C, Shumway AJ, Koller BH, Kanke M, Phuong DJ, Stýblo M, Sethupathy P. Molecular and Metabolic Analysis of Arsenic-Exposed Humanized AS3MT Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127021. [PMID: 38150313 PMCID: PMC10752418 DOI: 10.1289/ehp12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models. The development of a new "humanized" mouse model overcomes this limitation. In this study, we leveraged this model to study sex differences in the context of iAs exposure. OBJECTIVES The aim of this study was to determine if males and females exhibit different liver and adipose molecular profiles and metabolic phenotypes in the context of iAs exposure. METHODS Our study was performed on wild-type (WT) 129S6/SvEvTac and humanized arsenic + 3 methyl transferase (human AS3MT) 129S6/SvEvTac mice treated with 400 ppb of iAs via drinking water ad libitum. After 1 month, mice were sacrificed and the liver and gonadal adipose depots were harvested for iAs quantification and sequencing-based microRNA and gene expression analysis. Serum blood was collected for fasting blood glucose, fasting plasma insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). RESULTS We detected sex divergence in liver and adipose markers of diabetes (e.g., miR-34a, insulin signaling pathways, fasting blood glucose, fasting plasma insulin, and HOMA-IR) only in humanized (not WT) mice. In humanized female mice, numerous genes that promote insulin sensitivity and glucose tolerance in both the liver and adipose are elevated compared to humanized male mice. We also identified Klf11 as a putative master regulator of the sex divergence in gene expression in humanized mice. DISCUSSION Our study underscored the importance of future studies leveraging the humanized mouse model to study iAs-associated metabolic disease. The findings suggested that humanized males are at increased risk for metabolic dysfunction relative to humanized females in the context of iAs exposure. Future investigations should focus on the detailed mechanisms that underlie the sex divergence. https://doi.org/10.1289/EHP12785.
Collapse
Affiliation(s)
- Jenna Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexandria J. Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Beverly H. Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
7
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|
8
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|