1
|
Deng L, Chen X, Ma P, Wu Y, Okoye CO, Du D, Deng Q. The combined effect of oxidative stress and TRPV1 on temperature-induced asthma: Evidence in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123313. [PMID: 38185356 DOI: 10.1016/j.envpol.2024.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Temperature is one of the possible activators for asthma. As global warming continues, the health hazard of high temperatures is increasing. It is unclear, nevertheless, how high temperatures affect asthma. The research aims to examine how asthma is affected by high temperatures and underlying molecular mechanisms. The BALB/c mice were adopted in a model of asthma. The mice were exposed at 24 °C, 38 °C and 40 °C for 4h on weekdays from day 1 to day 30. After the experiment, the lung function was measured in vivo, and then serum protein, pulmonary inflammation and immunohistochemistry assay was assessed in vitro. As the temperature increased from 24 °C to 40 °C, there was a significant increase in serum protein, while there is no discernible difference in serum protein of OVA-sIgE and OVA-sIgG between the OVA (38 °C) group and OVA (24 °C) group. The immunohistochemistry assay showed a change in the pro-inflammatory cytokines. The histopathological analysis exhibited the change of airway structure after high-temperature exposure, especially for exposure at 40 °C. The results of signals protein showed a remarkable rise of TRPV1 for OVA+40 °C. Our results revealed that high temperatures may make asthmatic airway dysfunction severe, and the higher the temperature, the more serious asthma. The oxidative stress and TRPV1 receptor can be a potential drug target for asthma. It will provide a new tool for precision medicine in asthma.
Collapse
Affiliation(s)
- Linjing Deng
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China.
| | - Xunfeng Chen
- Biofuels Institute of Jiangsu university, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Ping Ma
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yang Wu
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Charles Obinwanne Okoye
- School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Daolin Du
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Skurk T, Krämer T, Marcinek P, Malki A, Lang R, Dunkel A, Krautwurst T, Hofmann TF, Krautwurst D. Sweetener System Intervention Shifted Neutrophils from Homeostasis to Priming. Nutrients 2023; 15:nu15051260. [PMID: 36904259 PMCID: PMC10005247 DOI: 10.3390/nu15051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.
Collapse
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, TUM School for Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Tamara Krämer
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Agne Malki
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Tiffany Krautwurst
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas F. Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
3
|
Romano M, Garcia-Bournissen F, Piskin D, Rodoplu U, Piskin L, Elzagallaai AA, Tuncer T, Sezer S, Ucuncuoglu D, Honca T, Poddighe D, Yavuz I, Stenvinkel P, Yilmaz MI, Demirkaya E. Anti-Inflammatory, Antioxidant, and Anti-Atherosclerotic Effects of Natural Supplements on Patients with FMF-Related AA Amyloidosis: A Non-Randomized 24-Week Open-Label Interventional Study. Life (Basel) 2022; 12:896. [PMID: 35743929 PMCID: PMC9228597 DOI: 10.3390/life12060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to evaluate the effect of a combination of natural products on parameters related to inflammation, endothelial dysfunction, and oxidative stress in a cohort of familial Mediterranean fever (FMF) patients with Serum Amyloid A amyloidosis, in a non-randomized, 24-week open-label interventional study. Morinda citrifolia (anti-atherosclerotic-AAL), omega-3 (anti-inflammatory-AIC), and extract with Alaskan blueberry (antioxidant-AOL) were given to patients with FMF-related biopsy-proven AA amyloidosis. Patients were >18 years and had proteinuria (>3500 mg/day) but a normal estimated glomerular filtration rate (eGFR). Arterial flow-mediated dilatation (FMD), carotid intima media thickness (CIMT), and serum biomarkers asymmetric dimethylarginine (ADMA), high sensitivity C-reactive protein (hs-CRP), pentraxin (PTX3), malondialdehyde (MDA), Cu/Zn-superoxide dismutase (Cu/Zn-SOD), and glutathione peroxidase (GSH-Px) were studied at baseline and after 24 weeks of treatment. A total of 67 FMF-related amyloidosis patients (52 male (77.6%); median age 36 years (range 21−66)) were enrolled. At the end of a 24-week treatment period with AAL, AIC, and AOL combination therapy, ADMA, MDA, PTX3, hsCRP, cholesterol, and proteinuria were significantly decreased compared to baseline, while CuZn-SOD, GSH-Px, and FMD levels were significantly increased. Changes in inflammatory markers PTX3, and hsCRP were negatively correlated with FMD change, and positively correlated with decreases in proteinuria, ADMA, MDA, cholesterol, and CIMT. Treatment with AAL, AIC and AOL combination for 24 weeks were significantly associated with reduction in inflammatory markers, improved endothelial functions, and oxidative state. Efficient control of these three mechanisms can have long term cardiovascular and renal benefits for patients with AA amyloidosis.
Collapse
Affiliation(s)
- Micol Romano
- Department of Paediatrics, Division of Paediatric Rheumatology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada; (M.R.); (E.D.)
- Canadian Behcet and Autoinflammatory Disease Center (CAN BE AID), Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Facundo Garcia-Bournissen
- Department of Paediatrics, Division of Paediatric Clinical Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - David Piskin
- Canadian Behcet and Autoinflammatory Disease Center (CAN BE AID), Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Ulkumen Rodoplu
- Emergency Medicine Association of Turkey of All, 35220 Izmir, Turkey;
| | - Lizzy Piskin
- Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Abdelbaset A. Elzagallaai
- Schulich School of Medicine & Dentistry, Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Tunc Tuncer
- Unit of Biochemistry, Epigenetic Health Solutions, 06810 Ankara, Turkey;
| | - Siren Sezer
- Division of Nephrology, Faculty of Medicine, Atilim University, 06830 Ankara, Turkey;
| | - Didar Ucuncuoglu
- Department of Food Engineering, Faculty of Engineering, Cankiri Karatekin University, 18100 Cankiri, Turkey;
| | - Tevfik Honca
- Unit of Biochemistry, Gur Life Hospital, 26320 Eskisehir, Turkey;
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan;
- Clinical Academic Department of Pediatrics, National Research Center of Maternal and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan
| | - Izzet Yavuz
- Department of Nephrology, Lokman Hekim University, 06510 Ankara, Turkey;
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska Institute, Karolinska University Hospital, 17164 Stockholm, Sweden;
| | - Mahmut Ilker Yilmaz
- Unit of Nephrology, Center for Epigenetic Health Solutions, 06810 Ankara, Turkey
| | - Erkan Demirkaya
- Department of Paediatrics, Division of Paediatric Rheumatology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada; (M.R.); (E.D.)
- Canadian Behcet and Autoinflammatory Disease Center (CAN BE AID), Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
4
|
Dieterich P, Lindemann O, Moskopp ML, Tauzin S, Huttenlocher A, Klages R, Chechkin A, Schwab A. Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis. PLoS Comput Biol 2022; 18:e1010089. [PMID: 35584137 PMCID: PMC9154114 DOI: 10.1371/journal.pcbi.1010089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/31/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior.
Collapse
Affiliation(s)
| | - Otto Lindemann
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mats Leif Moskopp
- Institut für Physiologie, TU Dresden, Dresden, Germany
- Klinik für Neurochirurgie, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Sebastien Tauzin
- Department of Biology, Utah Valley University, Orem, Utah, United States of America
| | - Anna Huttenlocher
- Huttenlocher Lab, Department of Medical Microbiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rainer Klages
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
- Max Planck Institut für Physik komplexer Systeme, Dresden, Germany
| | - Aleksei Chechkin
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
- Institute for Theoretical Physics, NSC KIPT, Kharkov, Ukraine
| | - Albrecht Schwab
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
5
|
Najder K, Rugi M, Lebel M, Schröder J, Oster L, Schimmelpfennig S, Sargin S, Pethő Z, Bulk E, Schwab A. Role of the Intracellular Sodium Homeostasis in Chemotaxis of Activated Murine Neutrophils. Front Immunol 2020; 11:2124. [PMID: 33013896 PMCID: PMC7506047 DOI: 10.3389/fimmu.2020.02124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
The importance of the intracellular Ca2+ concentration ([Ca2+]i) in neutrophil function has been intensely studied. However, the role of the intracellular Na+ concentration ([Na+]i) which is closely linked to the intracellular Ca2+ regulation has been largely overlooked. The [Na+]i is regulated by Na+ transport proteins such as the Na+/Ca2+-exchanger (NCX1), Na+/K+-ATPase, and Na+-permeable, transient receptor potential melastatin 2 (TRPM2) channel. Stimulating with either N-formylmethionine-leucyl-phenylalanine (fMLF) or complement protein C5a causes distinct changes of the [Na+]i. fMLF induces a sustained increase of [Na+]i, surprisingly, reaching higher values in TRPM2-/- neutrophils. This outcome is unexpected and remains unexplained. In both genotypes, C5a elicits only a transient rise of the [Na+]i. The difference in [Na+]i measured at t = 10 min after stimulation is inversely related to neutrophil chemotaxis. Neutrophil chemotaxis is more efficient in C5a than in an fMLF gradient. Moreover, lowering the extracellular Na+ concentration from 140 to 72 mM improves chemotaxis of WT but not of TRPM2-/- neutrophils. Increasing the [Na+]i by inhibiting the Na+/K+-ATPase results in disrupted chemotaxis. This is most likely due to the impact of the altered Na+ homeostasis and presumably NCX1 function whose expression was shown by means of qPCR and which critically relies on proper extra- to intracellular Na+ concentration gradients. Increasing the [Na+]i by a few mmol/l may suffice to switch its transport mode from forward (Ca2+-efflux) to reverse (Ca2+-influx) mode. The role of NCX1 in neutrophil chemotaxis is corroborated by its blocker, which also causes a complete inhibition of chemotaxis.
Collapse
Affiliation(s)
- Karolina Najder
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University Hospital Münster, Münster, Germany
- University of Florence, Florence, Italy
| | - Mégane Lebel
- University of Sherbrooke, Sherbrooke, QC, Canada
| | - Julia Schröder
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Leonie Oster
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | | | - Sarah Sargin
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Etmar Bulk
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| |
Collapse
|
6
|
Hann J, Bueb JL, Tolle F, Bréchard S. Calcium signaling and regulation of neutrophil functions: Still a long way to go. J Leukoc Biol 2019; 107:285-297. [PMID: 31841231 DOI: 10.1002/jlb.3ru0719-241r] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in blood and disruption in their functions often results in an increased risk of serious infections and inflammatory autoimmune diseases. Following recent discoveries in their influence over disease progression, a resurgence of interest for neutrophil biology has taken place. The multitude of signaling pathways activated by the engagement of numerous types of receptors, with which neutrophils are endowed, reflects the functional complexity of these cells. It is therefore not surprising that there remains a huge lack in the understanding of molecular mechanisms underlining neutrophil functions. Moreover, studies on neutrophils are undoubtedly limited by the difficulty to efficiently edit the cell's genome. Over the past 30 years, compelling evidence has clearly highlighted that Ca2+ -signaling is governing the key processes associated with neutrophil functions. The confirmation of the role of an elevation of intracellular Ca2+ concentration has come from studies on NADPH oxidase activation and phagocytosis. In this review, we give an overview and update of our current knowledge on the role of Ca2+ mobilization in the regulation of pro-inflammatory functions of neutrophils. In particular, we stress the importance of Ca2+ in the formation of NETs and cytokine secretion in the light of newest findings. This will allow us to embrace how much further we have to go to understand the complex dynamics of Ca2+ -dependent mechanisms in order to gain more insights into the role of neutrophils in the pathogenesis of inflammatory diseases. The potential for therapeutics to regulate the neutrophil functions, such as Ca2+ influx inhibitors to prevent autoimmune and chronic inflammatory diseases, has been discussed in the last part of the review.
Collapse
Affiliation(s)
- J Hann
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - J-L Bueb
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - F Tolle
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - S Bréchard
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
7
|
Qian X, Zhao H, Chen X, Li J. Disruption of transient receptor potential melastatin 2 decreases elastase release and bacterial clearance in neutrophils. Innate Immun 2019; 24:122-130. [PMID: 29495939 PMCID: PMC6830898 DOI: 10.1177/1753425918759181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elastase released by neutrophils is critical for eliminating Gram-negative
bacteria. Ca2+ influx plays a key role in elastase release and
bacterial clearance in neutrophils. Transient receptor potential melastatin 2
(TRPM2) is a Ca2+-permeable cation channel highly expressed in
neutrophils. Here, we explore the role and possible mechanism of TRPM2 in
bacterial clearance in TRPM2 knockout (TRPM2-KO) mice neutrophils. After
exposure to Escherichia coli, TRPM2–KO bone marrow
neutrophils (BMNs) had increased bacterial burden and decreased elastase
release. The same was observed for septic TRPM2-KO mice which also had decreased
survival rate. After stimulation with chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP), elastase release
was lower in TRPM2-KO BMNs than in wild type (WT) BMNs. Pre-treatment of WT BMNs
with p38 MAPK inhibitor reduced fMLP-induced elastase release. Compared with WT
BMNs, TRPM2-KO BMNs had decreased p38 MAPK phosphorylation after fMLP
stimulation. Removal of extracellular Ca2+ reduced fMLP-induced p38
MAPK phosphorylation and elastase release. The concentration of intracellular
Ca2+ decreased in TRPM2-KO BMNs compared with WT BMNs after fMLP
treatment. Hence, TRPM2 plays an important role in bacterial clearance in
neutrophils, possibly by regulating elastase release. TRPM2-mediated
Ca2+ influx regulates elastase release partially via p38 MAPK
phosphorylation in neutrophils.
Collapse
Affiliation(s)
- XiaoWei Qian
- 1 Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, China.,2 Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, China
| | - Hang Zhao
- 3 Department of Anesthesiology, Yancheng Third People's Hospital, China
| | - XinZhong Chen
- 1 Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Jun Li
- 2 Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, China
| |
Collapse
|
8
|
Ribeiro D, Freitas M, Rocha S, Lima JLFC, Carvalho F, Fernandes E. Calcium Pathways in Human Neutrophils-The Extended Effects of Thapsigargin and ML-9. Cells 2018; 7:204. [PMID: 30423935 PMCID: PMC6262620 DOI: 10.3390/cells7110204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 12/01/2022] Open
Abstract
In neutrophils, intracellular Ca2+ levels are regulated by several transporters and pathways, namely SERCA [sarco(endo)plasmic reticulum Ca2+-ATPase], SOCE (store-operated calcium entry), and ROCE (receptor-operated calcium entry). However, the exact mechanisms involved in the communication among these transporters are still unclear. In the present study, thapsigargin, an irreversible inhibitor of SERCA, and ML-9, a broadly used SOCE inhibitor, were applied in human neutrophils to better understand their effects on Ca2+ pathways in these important cells of the immune system. The thapsigargin and ML-9 effects in the intracellular free Ca2+ flux were evaluated in freshly isolated human neutrophils, using a microplate reader for monitoring fluorimetric kinetic readings. The obtained results corroborate the general thapsigargin-induced intracellular pattern of Ca2+ fluctuation, but it was also observed a much more extended effect in time and a clear sustained increase of Ca2+ levels due to its influx by SOCE. Moreover, it was obvious that ML-9 enhanced the thapsigargin-induced emptying of the internal stores. Indeed, ML-9 does not have this effect by itself, which indicates that, in neutrophils, thapsigargin does not act only on the influx by SOCE, but also by other Ca2+ pathways, that, in the future, should be further explored.
Collapse
Affiliation(s)
- Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - José L F C Lima
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Toxicology Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
9
|
Immler R, Simon SI, Sperandio M. Calcium signalling and related ion channels in neutrophil recruitment and function. Eur J Clin Invest 2018; 48 Suppl 2:e12964. [PMID: 29873837 PMCID: PMC6221920 DOI: 10.1111/eci.12964] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
The recruitment of neutrophils to sites of inflammation, their battle against invading microorganisms through phagocytosis and the release of antimicrobial agents is a highly coordinated and tightly regulated process that involves the interplay of many different receptors, ion channels and signalling pathways. Changes in intracellular calcium levels, caused by cytosolic Ca2+ store depletion and the influx of extracellular Ca2+ via ion channels, play a critical role in synchronizing neutrophil activation and function. In this review, we provide an overview of how Ca2+ signalling is initiated in neutrophils and how changes in intracellular Ca2+ levels modulate neutrophil function.
Collapse
Affiliation(s)
- Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Klinikum der Universität, Ludwig-Maximilians-Universität München, Germany
| | - Scott I. Simon
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, Davis, CA, USA
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Klinikum der Universität, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
10
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
11
|
Reduced Necrosis and Content of Apoptotic M1 Macrophages in Advanced Atherosclerotic Plaques of Mice With Macrophage-Specific Loss of Trpc3. Sci Rep 2017; 7:42526. [PMID: 28186192 PMCID: PMC5301208 DOI: 10.1038/srep42526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/09/2017] [Indexed: 01/08/2023] Open
Abstract
In previous work we reported that ApoeKO mice transplanted with bone marrow cells deficient in the Transient Receptor Potential Canonical 3 (TRPC3) channel have reduced necrosis and number of apoptotic macrophages in advanced atherosclerotic plaques. Also, in vitro studies with polarized macrophages derived from mice with macrophage-specific loss of TRPC3 showed that M1, but not M2 macrophages, deficient in Trpc3 are less susceptible to ER stress-induced apoptosis than Trpc3 expressing cells. The questions remained (a) whether the plaque phenotype in transplanted mice resulted from a genuine effect of Trpc3 on macrophages, and (b) whether the reduced necrosis and macrophage apoptosis in plaques of these mice was a manifestation of the selective effect of TRPC3 on apoptosis of M1 macrophages previously observed in vitro. Here, we addressed these questions using Ldlr knockout (Ldlr−/−) mice with macrophage-specific loss of Trpc3 (MacTrpc3−/−/Ldlr−/− → Ldlr−/−). Compared to controls, we observed decreased plaque necrosis and number of apoptotic macrophages in MacTrpc3−/−/Ldlr−/− → Ldlr−/− mice. Immunohistochemical analysis revealed a reduction in apoptotic M1, but not apoptotic M2 macrophages. These findings confirm an effect of TRPC3 on plaque necrosis and support the notion that this is likely a reflection of the reduced susceptibility of Trpc3-deficient M1 macrophages to apoptosis.
Collapse
|
12
|
Anti-tumor Necrosis Factor Alpha (Infliximab) Attenuates Apoptosis, Oxidative Stress, and Calcium Ion Entry Through Modulation of Cation Channels in Neutrophils of Patients with Ankylosing Spondylitis. J Membr Biol 2016; 249:437-47. [PMID: 26956056 DOI: 10.1007/s00232-016-9884-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Ankylosing Spondylitis (AS) is known to be associated with increased neutrophil activation and oxidative stress, however, the mechanism of neutrophil activation is still unclear. We have hypothesized that the antioxidant and anti-tumor necrosis factor properties of infliximab may affect intracellular Ca(2+) concentration in the neutrophils of AS patients. The objective of this study was to investigate the effects of infliximab on calcium signaling, oxidative stress, and apoptosis in neutrophils of AS patients. Neutrophils collected from ten patients with AS and ten healthy controls were used in the study. In a cell viability test, the ideal non-toxic dose and incubation time of infliximab were found as 100 μM and 1 h, respectively. In some experiments, the neutrophils were incubated with the voltage-gated calcium channel (VGCC) blockers verapamil + diltiazem (V + D) and the TRPM2 channel blocker 2-aminoethyl diphenylborinate (2-APB). Intracellular Ca(2+) concentration, lipid peroxidation, apoptosis, caspase 3, and caspase 9 values were high in neutrophils of AS patients and were reduced with infliximab treatment. Reduced glutathione level and glutathione peroxidase activity were low in the patients and increased with infliximab treatment. The intracellular Ca(2+) concentrations were low in 2-APB and V + D groups. In conclusion, the current study suggests that infliximab is useful against apoptotic cell death and oxidative stress in neutrophils of patients with AS, which seem to be dependent on increased levels of intracellular Ca(2+) through activation of TRPM2 and VGCC.
Collapse
|
13
|
Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2016; 173:953-69. [PMID: 26603538 DOI: 10.1111/bph.13392] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases.
Collapse
Affiliation(s)
- A Parenti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - F De Logu
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - P Geppetti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - S Benemei
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin 2016; 37:4-12. [PMID: 26725732 DOI: 10.1038/aps.2015.141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022]
Abstract
Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca(2+) overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca(2+)-permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.
Collapse
|
15
|
Vazquez G, Solanki S, Dube P, Smedlund K, Ampem P. On the Roles of the Transient Receptor Potential Canonical 3 (TRPC3) Channel in Endothelium and Macrophages: Implications in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:185-99. [PMID: 27161230 DOI: 10.1007/978-3-319-26974-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the cardiovascular and hematopoietic systems the Transient Receptor Potential Canonical 3 (TRPC3) channel has a well-recognized role in a number of signaling mechanisms that impact the function of diverse cells and tissues in physiology and disease. The latter includes, but is not limited to, molecular and cellular mechanisms associated to the pathogenesis of cardiac hypertrophy, hypertension and endothelial dysfunction. Despite several of these functions being closely related to atherorelevant mechanisms, the potential roles of TRPC3 in atherosclerosis, the major cause of coronary artery disease, have remained largely unexplored. Over recent years, a series of studies from the authors' laboratory revealed novel functions of TRPC3 in mechanisms related to endothelial inflammation, monocyte adhesion to endothelium and survival and apoptosis of macrophages. The relevance of these new TRPC3 functions to atherogenesis has recently began to receive validation through studies in mouse models of atherosclerosis with conditional gain or loss of TRPC3 function. This chapter summarizes these novel findings and provides a discussion of their impact in the context of atherosclerosis, in an attempt to delineate a framework for further exploration of this terra incognita in the TRPC field.
Collapse
Affiliation(s)
- Guillermo Vazquez
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA.
| | - Sumeet Solanki
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Prabhatachandra Dube
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Prince Ampem
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| |
Collapse
|
16
|
Moreau C, Kirchberger T, Swarbrick JM, Bartlett SJ, Fliegert R, Yorgan T, Bauche A, Harneit A, Guse AH, Potter BVL. Structure-activity relationship of adenosine 5'-diphosphoribose at the transient receptor potential melastatin 2 (TRPM2) channel: rational design of antagonists. J Med Chem 2013; 56:10079-102. [PMID: 24304219 PMCID: PMC3873810 DOI: 10.1021/jm401497a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Adenosine
5′-diphosphoribose (ADPR) activates TRPM2, a Ca2+, Na+, and K+ permeable cation channel.
Activation is induced by ADPR binding to the cytosolic C-terminal
NudT9-homology domain. To generate the first structure–activity
relationship, systematically modified ADPR analogues were designed,
synthesized, and evaluated as antagonists using patch-clamp experiments
in HEK293 cells overexpressing human TRPM2. Compounds with a purine C8 substituent show antagonist activity, and an 8-phenyl
substitution (8-Ph-ADPR, 5) is very effective. Modification
of the terminal ribose results in a weak antagonist, whereas its removal
abolishes activity. An antagonist based upon a hybrid structure, 8-phenyl-2′-deoxy-ADPR
(86, IC50 = 3 μM), is more potent than
8-Ph-ADPR (5). Initial bioisosteric replacement of the
pyrophosphate linkage abolishes activity, but replacement of the pyrophosphate
and the terminal ribose by a sulfamate-based group leads to a weak
antagonist, a lead to more drug-like analogues. 8-Ph-ADPR (5) inhibits Ca2+ signalling and chemotaxis in human neutrophils,
illustrating the potential for pharmacological intervention at TRPM2.
Collapse
Affiliation(s)
- Christelle Moreau
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
18
|
Korthuis RJ, Kalogeris T. TRPing up reperfusion: neutrophil TRPM2 channels exacerbate necrosis and contractile dysfunction in post-ischaemic myocardium. Cardiovasc Res 2013; 97:197-9. [PMID: 23234682 DOI: 10.1093/cvr/cvs365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Hardaker L, Bahra P, de Billy BC, Freeman M, Kupfer N, Wyss D, Trifilieff A. The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases. Respir Res 2012; 13:30. [PMID: 22475739 PMCID: PMC3349593 DOI: 10.1186/1465-9921-13-30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Background There is strong evidence that oxidative stress is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD). The transient receptor potential melastatin-2 (TRPM2) is an oxidative stress sensing channel that is expressed in a number of inflammatory cells and therefore it has been suggested that inhibition of TRPM2 could lead to a beneficial effect in COPD patients. In this study, we have investigated the role of TRPM2 in a variety of mouse models of oxidative stress and COPD using TRPM2-deficent mice. Methods Mice were exposed to ozone (3 ppm for 4 h) or lipopolysaccharide (LPS, 0.3 mg/kg, intranasaly). In another model, mice were exposed to tobacco smoke (750 μg/l total wet particulate matter) for 30 min twice a day on three consecutive days. For the exacerbation model, the smoke exposure on the morning of day 3 animals was replaced with intranasal administration of LPS (0.3 mg/kg). Animals were killed 3 and 24 h after the challenge (ozone and LPS model) or 18 h after the last tobacco smoke exposure. In vitro neutrophil chemotaxis and monocyte activation were also studied using cells isolated from wild type and TRPM2-deficient animals. Statistical significance for the in vivo data (P < 0.05) was determined using analysis of variance with Kruskal-Wallis and Dunns multiple comparison test. Results In all models studied, no difference in the bronchoalveolar lavage inflammation could be evidenced when comparing wild type and TRPM2-deficient mice. In addition, no difference could be seen in the lung inflammation as assessed by the measurement of various cytokines/chemokines. Similarly in various in vitro cellular activation assays using isolated neutrophils and monocytes no significant differences could be observed when comparing wild type and TRPM2-deficient mice. Discussion We have shown, in all the models tested, no difference in the development of airway inflammation or cell activation between TRPM2-deficient mice and their wild type counterparts. These results would suggest that inhibiting TRPM2 activity in COPD would have no anti-inflammatory effect.
Collapse
Affiliation(s)
- Liz Hardaker
- Novartis Institutes for BioMedical Research, Respiratory Diseases Area, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Banner KH, Igney F, Poll C. TRP channels: emerging targets for respiratory disease. Pharmacol Ther 2011; 130:371-84. [PMID: 21420429 DOI: 10.1016/j.pharmthera.2011.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/16/2022]
Abstract
The mammalian transient receptor potential (TRP) superfamily of cation channels is divided into six subfamilies based on sequence homology TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) and TRPML (mucolipin). The expression of these channels is especially abundant in sensory nerves, and there is increasing evidence demonstrating their existence in a broad range of cell types which are thought to play a key role in respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). These ion channels can be activated by a diverse range of chemical and physical stimuli. Physical stimuli include temperature, membrane potential changes and osmotic stress, and some of the more well known chemical stimuli include capsaicin (TRPV1), menthol (TRPM8) and acrolein (TRPA1). There is increasing evidence in this rapidly moving field to suggest that selective blockers of these channels may represent attractive novel strategies to treat characteristic features of respiratory diseases such as asthma and COPD. This review focuses on summarising the evidence that modulation of selected TRP channels may have beneficial effects at targeting key features of these respiratory diseases including airways inflammation, airways hyper-reactivity, mucus secretion and cough.
Collapse
Affiliation(s)
- Katharine Helen Banner
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom.
| | | | | |
Collapse
|
21
|
Sahin M, Uğuz AC, Demirkan H, Nazıroğlu M. Colchicine modulates oxidative stress in serum and leucocytes from remission patients with Family Mediterranean Fever through regulation of Ca²+ release and the antioxidant system. J Membr Biol 2011; 240:55-62. [PMID: 21249347 DOI: 10.1007/s00232-011-9342-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/02/2011] [Indexed: 01/28/2023]
Abstract
We investigated the effects of colchicine on oxidative stress and Ca²+ release in serum and polymorphonuclear leucocytes (PMNs) of Familial Mediterranean Fever (FMF) patients with attack, remission and unremission periods. Eighteen FMF patients and six age-matched healthy subjects in four groups were used. The first group was a control. The second group included patients with active FMF. The third and fourth groups were patients with remission and unremission, respectively. Colchicine (1.5 mg/day) was given to the third and fourth groups for 1 month. PMN cells, serum lipid peroxidation and intracellular Ca²+-release levels in the attack and unremission groups were higher than in those in controls, although they were lower in the remission group than in the attack group. Serum vitamin E and β-carotene concentrations were higher in the remission group than in the control and attack groups. However, PMN, serum lipid peroxidation and Ca²+-release levels were further increased in the unremission group compared to the attack group. Glutathione peroxidase, reduced glutathione and vitamin A values in the four groups did not change by FMF and colchicine. In conclusion, we observed that colchicine induced protective effects on oxidative stress by modulating vitamin E, β-carotene and Ca²+-release levels in FMF patients with a remission period.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | | | | |
Collapse
|
22
|
Harteneck C, Klose C, Krautwurst D. Synthetic modulators of TRP channel activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:87-106. [PMID: 21290290 DOI: 10.1007/978-94-007-0265-3_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In humans, 27 TRP channels from 6 related families contribute to a broad spectrum of cellular functions, such as thermo-, pressure-, volume-, pain- and chemosensation. Pain and inflammation-inducing compounds represent potent plant and animal defense mechanisms explaining the great variety of the naturally occurring, TRPV1-, TRPM8-, and TRPA1-activating ligands. The discovery of the first vanilloid receptor (TRPV1) and its involvement in nociception triggered the euphoria and the hope in novel therapeutic strategies treating pain, and this clear-cut indication inspired the development of TRPV1-selective ligands. On the other hand the nescience in the physiological role and putative clinical indication hampered the development of a selective drug in the case of the other TRP channels. Therefore, currently only a handful of mostly un-selective blocker is available to target TRP channels. Nevertheless, there is an ongoing quest for new, natural or synthetic ligands and modulators. In this chapter, we will give an overview on available broad-range blocker, as well as first TRP channel-selective compounds.
Collapse
Affiliation(s)
- Christian Harteneck
- Institute for Pharmacology and Toxicology, Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICEPHA), Eberhard-Karls-University, Tübingen, Germany.
| | | | | |
Collapse
|
23
|
Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cell Mol Life Sci 2010; 68:1455-66. [PMID: 20878536 PMCID: PMC3064896 DOI: 10.1007/s00018-010-0533-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/18/2010] [Accepted: 09/07/2010] [Indexed: 12/17/2022]
Abstract
Oxidative DNA damage to cells activates poly(ADP-ribose)polymerase-1 (PARP-1) and the poly(ADP-ribose) formed is rapidly degraded to ADP-ribose by poly(ADP-ribose)glycohydrolase (PARG). Here we show that PARP-1 and PARG control extracellular Ca2+ fluxes through melastatin-like transient receptor potential 2 channels (TRPM2) in a cell death signaling pathway. TRPM2 activation accounts for essentially the entire Ca2+ influx into the cytosol, activating caspases and causing the translocation of apoptosis inducing factor (AIF) from the inner mitochondrial membrane to the nucleus followed by cell death. Abrogation of PARP-1 or PARG function disrupts these signals and reduces cell death. ADP-ribose-loading of cells induces Ca2+ fluxes in the absence of oxidative damage, suggesting that ADP-ribose is the key metabolite of the PARP-1/PARG system regulating TRPM2. We conclude that PARP-1/PARG control a cell death signal pathway that operates between five different cell compartments and communicates via three types of chemical messengers: a nucleotide, a cation, and proteins.
Collapse
|