1
|
Sanders JH, Taiwo KM, Adekanye GA, Bali A, Zhang Y, Paulsen CE. Calmodulin binding is required for calcium mediated TRPA1 desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627969. [PMID: 39713425 PMCID: PMC11661184 DOI: 10.1101/2024.12.11.627969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Calcium (Ca2+) ions affect nearly all aspects of biology. Excessive Ca2+ entry is cytotoxic and Ca2+-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca2+-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca2+ regulation with initial channel potentiation followed by rapid desensitization. The molecular mechanisms of TRPA1 Ca2+ regulation and whether CaM plays a role remain elusive. We find that TRPA1 binds CaM best at basal Ca2+ concentration, that they co-localize in resting cells, and that CaM suppresses TRPA1 activity. Combining biochemical, biophysical, modeling, NMR spectroscopy, and functional approaches, we identify an evolutionarily conserved, high-affinity CaM binding element in the distal TRPA1 C-terminus (DCTCaMBE). Genetic or biochemical perturbation of Ca2+/CaM binding to the TRPA1 DCTCaMBE yields hyperactive channels that exhibit drastic slowing of desensitization with no effect on potentiation. Ca2+/CaM TRPA1 regulation does not require the N-lobe, raising the possibility that CaM is not the Ca2+ sensor, per se. Higher extracellular Ca2+ can partially rescue slowed desensitization suggesting Ca2+/CaM binding to the TRPA1 DCTCaMBE primes an intrinsic TRPA1 Ca2+ binding site that, upon binding Ca2+, triggers rapid desensitization. Collectively, our results identify a critical regulatory element in an unstructured TRPA1 region highlighting the importance of these domains, they reveal Ca2+/CaM is an essential TRPA1 auxiliary subunit required for rapid desensitization that establishes proper channel function with implications for all future TRPA1 work, and they uncover a mechanism for receptor regulation by Ca2+/CaM that expands the scope of CaM biology.
Collapse
Affiliation(s)
- Justin H. Sanders
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kehinde M. Taiwo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Glory A. Adekanye
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Avnika Bali
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yuekang Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Candice E. Paulsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Lin S, Liu X, Jiang J, Ge W, Zhang Y, Li F, Tao Q, Liu S, Li M, Chen H. The involvement of keratinocytes in pruritus of chronic inflammatory dermatosis. Exp Dermatol 2024; 33:e15142. [PMID: 39032085 DOI: 10.1111/exd.15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.
Collapse
Affiliation(s)
- Shiying Lin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinlian Zhang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
3
|
Bali A, Schaefer SP, Trier I, Zhang AL, Kabeche L, Paulsen CE. Molecular mechanism of hyperactivation conferred by a truncation of TRPA1. Nat Commun 2023; 14:2867. [PMID: 37208332 PMCID: PMC10199097 DOI: 10.1038/s41467-023-38542-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
A drastic TRPA1 mutant (R919*) identified in CRAMPT syndrome patients has not been mechanistically characterized. Here, we show that the R919* mutant confers hyperactivity when co-expressed with wild type (WT) TRPA1. Using functional and biochemical assays, we reveal that the R919* mutant co-assembles with WT TRPA1 subunits into heteromeric channels in heterologous cells that are functional at the plasma membrane. The R919* mutant hyperactivates channels by enhancing agonist sensitivity and calcium permeability, which could account for the observed neuronal hypersensitivity-hyperexcitability symptoms. We postulate that R919* TRPA1 subunits contribute to heteromeric channel sensitization by altering pore architecture and lowering energetic barriers to channel activation contributed by the missing regions. Our results expand the physiological impact of nonsense mutations, reveal a genetically tractable mechanism for selective channel sensitization, uncover insights into the process of TRPA1 gating, and provide an impetus for genetic analysis of patients with CRAMPT or other stochastic pain syndromes.
Collapse
Affiliation(s)
- Avnika Bali
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Samantha P Schaefer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Alice L Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Candice E Paulsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Qi H, Shi Y, Wu H, Niu C, Sun X, Wang K. Inhibition of temperature-sensitive TRPV3 channel by two natural isochlorogenic acid isomers for alleviation of dermatitis and chronic pruritus. Acta Pharm Sin B 2022; 12:723-734. [PMID: 35256942 PMCID: PMC8897028 DOI: 10.1016/j.apsb.2021.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic gain-of-function mutations of warm temperature-sensitive transient receptor potential vanilloid 3 (TRPV3) channel cause Olmsted syndrome characterized by severe itching and keratoderma, indicating that pharmacological inhibition of TRPV3 may hold promise for therapy of chronic pruritus and skin diseases. However, currently available TRPV3 tool inhibitors are either nonselective or less potent, thus impeding the validation of TRPV3 as therapeutic target. Using whole-cell patch-clamp and single-channel recordings, we report the identification of two natural dicaffeoylquinic acid isomers isochlorogenic acid A (IAA) and isochlorogenic acid B (IAB) that selectively inhibit TRPV3 currents with IC50 values of 2.7 ± 1.3 and 0.9 ± 0.3 μmol/L, respectively, and reduce the channel open probability to 3.7 ± 1.2% and 3.2 ± 1.1% from 26.9 ± 5.5%, respectively. In vivo evaluation confirms that both IAA and IAB significantly reverse the ear swelling of dermatitis and chronic pruritus. Furthermore, the isomer IAB is able to rescue the keratinocyte death induced by TRPV3 agonist carvacrol. Molecular docking combined with site-directed mutations reveals two residues T636 and F666 critical for the binding of the two isomers. Taken together, our identification of isochlorogenic acids A and B that act as specific TRPV3 channel inhibitors and gating modifiers not only provides an essential pharmacological tool for further investigation of the channel pharmacology and pathology, but also holds developmental potential for treatment of dermatitis and chronic pruritus.
Collapse
Key Words
- 2-APB, 2-aminoethoxydiphenyl borate
- AITC, allyl isothiocyanate
- Chronic pruritus
- DMEM, Dulbecco's modified Eagle's medium
- Dermatitis
- Dicaffeoylquinic acid
- Ear swelling
- Gate modifier
- HEK293, human embryonic kidney 293
- HaCaT, human immortalized nontumorigenic keratinocyte
- IAA, isochlorogenic acid A
- IAB, isochlorogenic acid B
- OS, Olmsted syndrome
- Olmsted syndrome
- RR, ruthenium red
- TRP, transient receptor potential
- TRPV3
Collapse
|
5
|
Wilzopolski J, Kietzmann M, Mishra SK, Stark H, Bäumer W, Rossbach K. TRPV1 and TRPA1 Channels Are Both Involved Downstream of Histamine-Induced Itch. Biomolecules 2021; 11:1166. [PMID: 34439832 PMCID: PMC8391774 DOI: 10.3390/biom11081166] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 01/17/2023] Open
Abstract
Two histamine receptor subtypes (HR), namely H1R and H4R, are involved in the transmission of histamine-induced itch as key components. Although exact downstream signaling mechanisms are still elusive, transient receptor potential (TRP) ion channels play important roles in the sensation of histaminergic and non-histaminergic itch. The aim of this study was to investigate the involvement of TRPV1 and TRPA1 channels in the transmission of histaminergic itch. The potential of TRPV1 and TRPA1 inhibitors to modulate H1R- and H4R-induced signal transmission was tested in a scratching assay in mice in vivo as well as via Ca2+ imaging of murine sensory dorsal root ganglia (DRG) neurons in vitro. TRPV1 inhibition led to a reduction of H1R- and H4R- induced itch, whereas TRPA1 inhibition reduced H4R- but not H1R-induced itch. TRPV1 and TRPA1 inhibition resulted in a reduced Ca2+ influx into sensory neurons in vitro. In conclusion, these results indicate that both channels, TRPV1 and TRPA1, are involved in the transmission of histamine-induced pruritus.
Collapse
Affiliation(s)
- Jenny Wilzopolski
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| | - Santosh K. Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
| | - Holger Stark
- Institute of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany;
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| |
Collapse
|
6
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
7
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
8
|
Kim YW, Zhou T, Ko EA, Kim S, Lee D, Seo Y, Kwon N, Choi T, Lim H, Cho S, Bae G, Hwang Y, Kim D, Park H, Lee M, Jang E, Choi J, Bae H, Lim I, Bang H, Ko JH. Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:151-159. [PMID: 30820159 PMCID: PMC6384194 DOI: 10.4196/kjpp.2019.23.2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/28/2023]
Abstract
Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a , Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.
Collapse
Affiliation(s)
- Young-Won Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Eun-A Ko
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Seongtae Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Donghee Lee
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yelim Seo
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Nahee Kwon
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Taeyeon Choi
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Heejung Lim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sungvin Cho
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Gwanhui Bae
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yuseong Hwang
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Dojin Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyewon Park
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Minjae Lee
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Eunkyung Jang
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyemi Bae
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Inja Lim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
9
|
Xie B, Li X. Inflammatory mediators causing cutaneous chronic itch in some diseases via transient receptor potential channel subfamily V member 1 and subfamily A member 1. J Dermatol 2019; 46:177-185. [PMID: 30588658 PMCID: PMC6590237 DOI: 10.1111/1346-8138.14749] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
Abstract
Chronic itch with an itch-scratch vicious circle is a significant problem in a large amount of diseases. Some of these diseases, such as psoriasis, atopic dermatitis, prurigo nodularis, Sézary syndrome, uremic pruritus, diabetes and jaundice, are common. For a very long time, chronic itch has been a thorny problem with few effective treatments. Because of this, itch researchers and dermatologists seek to find the mechanisms among chronic itch, inflammatory cytokines and neurons. As an immediate area of research focus, we are going to find the peripheral cross-talk between neurons and skin cells. Two receptors, named transient receptor potential channel vanilloid 1 and transient receptor potential channel ankyrin transmembrane protein 1, have been shown to play important roles in chronic itch. Many advances have been made so far this decade. This review talks about the updated mechanism of itch-related inflammatory cytokines via transient receptor potential channels in cutaneous chronic itch and corresponding diseases. The search for itch-related inflammatory mediators and the structure of transient receptor potential channels this decade could deepen our understanding of the mechanism of itch and help us find more treatments of chronic itch in the future.
Collapse
Affiliation(s)
- Bo Xie
- Department of PharmacologyInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Xin‐Yu Li
- Department of PharmacologyInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
10
|
Zhang H, Sun X, Qi H, Ma Q, Zhou Q, Wang W, Wang K. Pharmacological Inhibition of the Temperature-Sensitive and Ca 2+-Permeable Transient Receptor Potential Vanilloid TRPV3 Channel by Natural Forsythoside B Attenuates Pruritus and Cytotoxicity of Keratinocytes. J Pharmacol Exp Ther 2019; 368:21-31. [PMID: 30377214 DOI: 10.1124/jpet.118.254045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 03/08/2025] Open
Abstract
The temperature-sensitive and calcium-permeable transient receptor potential vanilloid 3 (TRPV3) channel abundantly expressed in keratinocytes plays important functions in skin physiology. Dysfunctional gain-of-function TRPV3 gene mutations cause genetic Olmsted syndrome characterized by periorificial keratoderma, palmoplantar keratoderma, inflammation, and severe itching, which suggests that pharmacological inhibition of overactive TRPV3 function may be beneficial in treating pruritus or skin disorders. To test this hypothesis, we identified natural compound forsythoside B as a TRPV3 inhibitor through screening of human embryonic kidney 293 (HEK293) cells expressing human TRPV3 channels in a calcium fluorescent assay. Whole-cell patch-clamp recordings of HEK293 cells expressing TRPV3 confirmed that forsythoside B selectively inhibited the channel current activated by agonist 2-aminoethoxydiphenyl borate (50 µM) in a dose-dependent fashion, with an IC50 value of 6.7 ± 0.7 μM. In vivo evaluation of scratching behavior demonstrated that pharmacological inhibition of TRPV3 by forsythoside B significantly attenuated acute itch induced by either the TRPV3 agonist carvacrol or the pruritogen histamine, as well as chronic itch induced by acetone-ether-water in a mouse model of dry skin. Furthermore, forsythoside B was able to prevent the death of HEK293 cells or native human immortalized nontumorigenic keratinocyte cells from human keratinocytes expressing a gain-of-function TRPV3 G573S mutant or in the presence of the TRPV3 agonist carvacrol. Taken together, our findings demonstrate the crucial role of TRPV3 in pruritus and keratinocyte toxicity; thus, specific inhibition of overactive TRPV3 by natural forsythoside B may possess therapeutic potential for treatment of chronic pruritus, skin allergy, or inflammation-related skin diseases.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hang Qi
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingxia Ma
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiqi Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Sun XY, Sun LL, Qi H, Gao Q, Wang GX, Wei NN, Wang K. Antipruritic Effect of Natural Coumarin Osthole through Selective Inhibition of Thermosensitive TRPV3 Channel in the Skin. Mol Pharmacol 2018; 94:1164-1173. [PMID: 30108138 DOI: 10.1124/mol.118.112466] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
Coumarin osthole is a dominant bioactive ingredient of the natural Cnidium monnieri plant commonly used for traditional Chinese herbal medicines for therapies and treatments including antipruritus and antidermatitis. However, the molecular mechanism underlying the action of osthole remains unclear. In this study, we report that osthole exerts an antipruritic effect through selective inhibition of Ca2+-permeable and thermosensitive transient receptor potential vanilloid 3 (TRPV3) cation channels that are primarily expressed in the keratinocytes of the skin. Coumarin osthole was identified as an inhibitor of TRPV3 channels transiently expressed in HEK293 cells in a calcium fluorescent assay. Inhibition of the TRPV3 current by osthole and its selectivity were further confirmed by whole-cell patch clamp recordings of TRPV3-expressing HEK293 cells and mouse primary cultured keratinocytes. Behavioral evaluation demonstrated that inhibition of TRPV3 by osthole or silencing by knockout of the TRPV3 gene significantly reduced the scratching induced by either acetone-ether-water or histamine in localized rostral neck skin in mice. Taken together, our findings provide a molecular basis for use of natural coumarin osthole from the C. monnieri plant in antipruritic or skin care therapy, thus establishing a significant role of the TRPV3 channel in chronic itch signaling or acute histamine-dependent itch sensation.
Collapse
Affiliation(s)
- Xiao-Ying Sun
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Li-Lan Sun
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Hang Qi
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Qin Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Gong-Xin Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Ning-Ning Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
12
|
Ca 2+ Regulation of TRP Ion Channels. Int J Mol Sci 2018; 19:ijms19041256. [PMID: 29690581 PMCID: PMC5979445 DOI: 10.3390/ijms19041256] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Ca2+ signaling influences nearly every aspect of cellular life. Transient receptor potential (TRP) ion channels have emerged as cellular sensors for thermal, chemical and mechanical stimuli and are major contributors to Ca2+ signaling, playing an important role in diverse physiological and pathological processes. Notably, TRP ion channels are also one of the major downstream targets of Ca2+ signaling initiated either from TRP channels themselves or from various other sources, such as G-protein coupled receptors, giving rise to feedback regulation. TRP channels therefore function like integrators of Ca2+ signaling. A growing body of research has demonstrated different modes of Ca2+-dependent regulation of TRP ion channels and the underlying mechanisms. However, the precise actions of Ca2+ in the modulation of TRP ion channels remain elusive. Advances in Ca2+ regulation of TRP channels are critical to our understanding of the diversified functions of TRP channels and complex Ca2+ signaling.
Collapse
|
13
|
Esancy K, Condon L, Feng J, Kimball C, Curtright A, Dhaka A. A zebrafish and mouse model for selective pruritus via direct activation of TRPA1. eLife 2018; 7:32036. [PMID: 29561265 PMCID: PMC5912907 DOI: 10.7554/elife.32036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Little is known about the capacity of lower vertebrates to experience itch. A screen of itch-inducing compounds (pruritogens) in zebrafish larvae yielded a single pruritogen, the TLR7 agonist imiquimod, that elicited a somatosensory neuron response. Imiquimod induced itch-like behaviors in zebrafish distinct from those induced by the noxious TRPA1 agonist, allyl isothiocyanate. In the zebrafish, imiquimod-evoked somatosensory neuronal responses and behaviors were entirely dependent upon TRPA1, while in the mouse TRPA1 was required for the direct activation of somatosensory neurons and partially responsible for behaviors elicited by this pruritogen. Imiquimod was found to be a direct but weak TRPA1 agonist that activated a subset of TRPA1 expressing neurons. Imiquimod-responsive TRPA1 expressing neurons were significantly more sensitive to noxious stimuli than other TRPA1 expressing neurons. Together, these results suggest a model for selective itch via activation of a specialized subpopulation of somatosensory neurons with a heightened sensitivity to noxious stimuli. Itch is a common and uncomfortable sensation that creates a strong desire to scratch. This mechanism may have evolved so animals can remove harmful parasites or substances from themselves. Feelings like touch, pain, and itch arise when stimuli such as mechanical pressure, temperature, or chemicals activate groups of specialized neurons in the skin. This response takes place when certain proteins – or receptors – at the surface of the neurons are stimulated. For instance, TRP ion channels such as TRPA1 play an important role in both the itch and pain responses. In mammals, directly activating these channels elicits pain. Itch is felt when itch responsive receptors are activated on a distinct set of neurons, which in turn activate TRP receptors. Although these processes have been well-studied in mammals, little is known about the existence of itch sensation in other animals. To explore this, Esancy, Condon, Feng et al. exposed zebrafish to chemicals that induce itch in mammals, and found that imiquimod, a medicine used to treat certain skin conditions, can elicit itch in fish. When this chemical was injected into the lips of a fish, the animal rubbed them against the walls of its tank, akin to scratching an itch. Further experiments showed that imiquimod directly activated the pain-sensing ion channel TRPA1. In fact, this receptor was essential to the ‘scratching’ behavior: fish genetically engineered to lack TRPA1 did not react to the drug. Fluorescent proteins were then used to track when the neurons that carry TRPA1 were activated.This revealed that, in the skin of zebrafish, there are at least two functionally distinct populations neurons that express TRPA1. One population, whose activation is associated with the animal ‘scratching’, responds even when TRPA1 receives a low level of stimulation. The other population is less sensitive: it responds only to high-intensity stimuli and is associated with a pain response such as freezing and slower movements. Further experiments in the mouse suggest that this mechanism is present in mammals as well. This coding strategy explains how pain and itch can be experienced when the same receptors are being activated. Studying how animals like fish experience itch gives an insight into how detecting these sensations could have evolved. In turn, understanding this mechanism at the molecular and cellular levels may help find new ways to design better treatments for itch and pain disorders.
Collapse
Affiliation(s)
- Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Jing Feng
- Center for the Study of Itch, Washington University, St. Louis, United States
| | - Corinna Kimball
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| |
Collapse
|
14
|
Cui TT, Wang GX, Wei NN, Wang K. A pivotal role for the activation of TRPV3 channel in itch sensations induced by the natural skin sensitizer carvacrol. Acta Pharmacol Sin 2018; 39:331-335. [PMID: 29094727 DOI: 10.1038/aps.2017.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023]
Abstract
Itching is an intricate, common symptom of dermatologic and systemic diseases, and both TRPV3 and TRPA1 channels have been suggested to function as downstream effector targets. But the relative contributions of TRPV3 and TRPA1 to itch sensation in vivo remain unclear. To dissect the role of TRPA1 or TRPV3 in the cutaneous sensation of itching, we took the advantage of a natural compound carvacrol from oregano, and examined its effect on the induction of scratching behavior in mice. We showed that the intradermal injection of carvacrol (0.01%, 0.1% and 1%, 50 μL) induced scratching in a concentration-dependent manner. But in TRPV3-knockout mice, the scratching induced by carvacrol (1%, 50 μL) was markedly decreased by approximately 64% (from 275 scratching bouts down to 90) within 60 min. Further analysis revealed that TRPV3-knockout caused a reduction of scratching bouts for approximately 40% in the first 20 min (the initial phase), whereas the scratching bouts were reduced by approximately 90% in the last 40 min (the sustained phase). These results were in consistence with those in our whole-cell recordings in HEK-293T cells expressing either TRPA1 or TRPV3: carvacrol exhibited similar potencies in activating either TRPA1 or TRPV3, but carvacrol-activated TRPA1 current showed a rapid desensitization, which was reduced by approximately 90% within 5 min before a complete washout, whereas carvacrol-induced TRPV3 current showed a slow desensitization that caused less than 30% of current reduction in 10 min and left a significant residual TRPV3 current after washout. Our results demonstrate that carvacrol from plant oregano is a skin sensitizer or allergen; TRPV3 is involved in the initial phase and the sustained phase of pruritus, whereas TRPA1 likely contributes to the initial phase.
Collapse
|
15
|
Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull 2018; 34:120-142. [PMID: 29282613 PMCID: PMC5799130 DOI: 10.1007/s12264-017-0200-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.
Collapse
Affiliation(s)
- Carlene Moore
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Wang G, Wang K. The Ca 2+-Permeable Cation Transient Receptor Potential TRPV3 Channel: An Emerging Pivotal Target for Itch and Skin Diseases. Mol Pharmacol 2017; 92:193-200. [PMID: 28377424 DOI: 10.1124/mol.116.107946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 02/14/2025] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels such as TRPA1 and TRPV1 have been identified as downstream ion channel targets in the transduction of itch. As a member of the temperature-sensitive TRP family, the Ca2+-permeable nonselective cation channel TRPV3 is expressed abundantly in skin keratinocytes. Recent identification of gain-of-function mutations of human TRPV3 from patients with Olmsted syndrome, which is characterized by severe itching and palmoplantar and periorificial keratoderma, unveils its crucial role in chronic itch and skin diseases. In this review, we will focus on recent progress made in the understanding of TRPV3 that emerges as an attractive target for developing effective antipruritic therapy for chronic itch or skin-related diseases.
Collapse
Affiliation(s)
- Gongxin Wang
- Department of Pharmacology, Qingdao University School of Pharmacy and Institute of Innovative Drugs, Qingdao University, Qingdao, Shandong Province, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy and Institute of Innovative Drugs, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
17
|
Hasan R, Leeson-Payne ATS, Jaggar JH, Zhang X. Calmodulin is responsible for Ca 2+-dependent regulation of TRPA1 Channels. Sci Rep 2017; 7:45098. [PMID: 28332600 PMCID: PMC5362816 DOI: 10.1038/srep45098] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly.
Collapse
Affiliation(s)
- Raquibul Hasan
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Alasdair T S Leeson-Payne
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xuming Zhang
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.,Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.,Schcool of Life &Health Sciences, Aston University, Aston triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
18
|
Kittaka H, Uchida K, Fukuta N, Tominaga M. Lysophosphatidic acid-induced itch is mediated by signalling of LPA 5 receptor, phospholipase D and TRPA1/TRPV1. J Physiol 2017; 595:2681-2698. [PMID: 28176353 DOI: 10.1113/jp273961] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Lysophosphatidic acid (LPA) is an itch mediator, but not a pain mediator by a cheek injection model. Dorsal root ganglion neurons directly respond to LPA depending on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). LPA-induced itch-related behaviours are decreased in TRPA1-knockout (KO), TRPV1KO or TRPA1TRPV1 double KO mice. TRPA1 and TRPV1 channels are activated by intracellular LPA, but not by extracellular LPA following LPA5 receptor activation with an activity of Ca2+ -independent phospholipase A2 and phospholipase D. Intracellular LPA interaction sites of TRPA1 are KK672-673 and KR977-978 (K: lysine, R: arginine). ABSTRACT Intractable and continuous itch sensations often accompany diseases such as atopic dermatitis, neurogenic lesions, uremia and cholestasis. Lysophosphatidic acid (LPA) is an itch mediator found in cholestatic itch patients and it induces acute itch and pain in experimental rodent models. However, the molecular mechanism by which LPA activates peripheral sensory neurons remains unknown. In this study, we used a cheek injection method in mice to reveal that LPA induced itch-related behaviours but not pain-related behaviours. The LPA-induced itch behaviour and cellular effects were dependent on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which are important for itch signal transduction. We also found that, among the six LPA receptors, the LPA5 receptor had the greatest involvement in itching. Furthermore, we demonstrated that phospholipase D (PLD) plays a critical role downstream of LPA5 and that LPA directly and intracellularly activates TRPA1 and TRPV1. These results suggest a unique mechanism by which cytoplasmic LPA produced de novo could activate TRPA1 and TRPV1. We conclude that LPA-induced itch is mediated by LPA5 , PLD, TRPA1 and TRPV1 signalling, and thus targeting TRPA1, TRPV1 or PLD could be effective for cholestatic itch interventions.
Collapse
Affiliation(s)
- Hiroki Kittaka
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Naomi Fukuta
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.,Institute for Environmental and Gender-Specific Medicine, Juntendo University, Urayasu, 279-0021, Japan
| |
Collapse
|
19
|
The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergol Int 2017; 66:22-30. [PMID: 28012781 DOI: 10.1016/j.alit.2016.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/24/2022] Open
Abstract
Itch is an unpleasant cutaneous sensation that can arise following insect bites, exposure to plant ingredients, and some diseases. Itch can also have idiopathic causes. Itch sensations are thought to protect against external insults and toxic substances. Although itch is not directly lethal, chronic and long lasting itch in certain diseases can worsen quality of life. Therefore, the mechanisms responsible for chronic itch require careful investigation. There is a significant amount of basic research concerning itch, and the effect of various itch mediators on primary sensory neurons have been studied. Interestingly, many mediators of itch involve signaling related to transient receptor potential (TRP) channels. TRP channels, especially thermosensitive TRP channels, are expressed by primary sensory neurons and skin keratinocytes, which receive multimodal stimuli, including those that cause itch sensations. Here we review the molecular and cellular mechanisms of itch and the involvement of TRP channels in mediating itch sensations.
Collapse
|
20
|
Chen Y, Fang Q, Wang Z, Zhang JY, MacLeod AS, Hall RP, Liedtke WB. Transient Receptor Potential Vanilloid 4 Ion Channel Functions as a Pruriceptor in Epidermal Keratinocytes to Evoke Histaminergic Itch. J Biol Chem 2016; 291:10252-10262. [PMID: 26961876 PMCID: PMC4858974 DOI: 10.1074/jbc.m116.716464] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/29/2016] [Indexed: 12/25/2022] Open
Abstract
TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wolfgang B Liedtke
- From the Departments of Neurology, Neurobiology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710 and Neurology Clinics for Headache, Head Pain and Trigeminal Sensory Disorders, Duke University Medical Center, Durham, North Carolina 27705
| |
Collapse
|
21
|
Gomtsyan A, Szallasi A. Targeting TRP channels: beyond TRPV1. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:387-8. [PMID: 25662184 DOI: 10.1007/s00210-015-1089-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Arthur Gomtsyan
- Department of Chemistry, Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL, 60064, USA,
| | | |
Collapse
|