1
|
ONO N, HORIKOSHI J, IZAWA T, NISHIYAMA K, TANAKA M, KUWAMURA M, AZUMA YT. L-arginine-induced pancreatitis aggravated by inhibiting Na +/Ca 2+ exchanger 1. J Vet Med Sci 2023; 85:657-666. [PMID: 37100607 PMCID: PMC10315542 DOI: 10.1292/jvms.22-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Na+/Ca2+ exchangers (NCX) are an exchange transporter of Na+ and Ca2+ ions on the plasma membrane. There are three types of NCX: NCX1, NCX2, and NCX3. We have been working for many years to understand the role of NCX1 and NCX2 in gastrointestinal motility. In this study, we focused on the pancreas, an organ closely related to the gastrointestinal tract, and used a mouse model of acute pancreatitis to investigate a possible role for NCX1 in the pathogenesis of pancreatitis. We characterized a model of acute pancreatitis induced by excessive doses of L-arginine. We administered the NCX1 inhibitor SEA0400 (1 mg/kg) 1 hr prior to L-arginine-induced pancreatitis and evaluated pathological changes. Mice treated with NCX1 inhibitors show exacerbation of the disease with decreased survival and increased amylase activity in response to L-arginine-induced experimental acute pancreatitis, and this exacerbation correlates with increased autophagy mediated by LC3B and p62. These results suggest that NCX1 has a role in regulating pancreatic inflammation and acinar cell homeostasis.
Collapse
Affiliation(s)
- Naoshige ONO
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Joji HORIKOSHI
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Takeshi IZAWA
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Kazuhiro NISHIYAMA
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Miyuu TANAKA
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Mitsuru KUWAMURA
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Yasu-Taka AZUMA
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| |
Collapse
|
2
|
Azuma YT, Suzuki S, Nishiyama K, Yamaguchi T. Gastrointestinal motility modulation by stress is associated with reduced smooth muscle contraction through specific transient receptor potential channel. J Vet Med Sci 2021; 83:622-629. [PMID: 33583865 PMCID: PMC8111361 DOI: 10.1292/jvms.20-0490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive stress response causes disability in social life. There are many diseases
caused by stress, such as gastrointestinal motility disorders, depression, eating
disorders, and cardiovascular diseases. Transient receptor potential (TRP) channels
underlie non-selective cation currents and are downstream effectors of G protein-coupled
receptors. Ca2+ influx is important for smooth muscle contraction, which is
responsible for gastrointestinal motility. Little is known about the possible involvement
of TRP channels in the gastrointestinal motility disorders due to stress. The purpose of
this study was to measure the changes in gastrointestinal motility caused by stress and to
elucidate the mechanism of these changes. The stress model used the water immersion
restraint stress. Gastrointestinal motility, especially the ileum, was recorded responses
to electric field stimulation (EFS) by isometric transducer. EFS-induced contraction was
significantly reduced in the ileum of stressed mouse. Even under the conditions treated
with atropine, EFS-induced contraction was significantly reduced in the ileum of stressed
mouse. In addition, carbachol-induced, neurokinin A-induced, and substance P-induced
contractions were all significantly reduced in the ileum of stressed mouse. Furthermore,
the expression of TRPC3 was decreased in the ileum of stressed mouse. These results
suggest that the gastrointestinal motility disorders due to stress is associated with
specific non-selective cation channel.
Collapse
Affiliation(s)
- Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Sho Suzuki
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
3
|
Multipurpose Na + ions mediate excitation and cellular homeostasis: Evolution of the concept of Na + pumps and Na +/Ca 2+ exchangers. Cell Calcium 2020; 87:102166. [PMID: 32006802 DOI: 10.1016/j.ceca.2020.102166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Ionic signalling is the most ancient form of regulation of cellular functions in response to environmental challenges. Signals, mediated by Na+ fluxes and spatio-temporal fluctuations of Na+ concentration in cellular organelles and cellular compartments contribute to the most fundamental cellular processes such as membrane excitability and energy production. At the very core of ionic signalling lies the Na+-K+ ATP-driven pump (or NKA) which creates trans-plasmalemmal ion gradients that sustain ionic fluxes through ion channels and numerous Na+-dependent transporters that maintain cellular and tissue homeostasis. Here we present a brief account of the history of research into NKA, Na+ -dependent transporters and Na+ signalling.
Collapse
|
4
|
Liao QS, Du Q, Lou J, Xu JY, Xie R. Roles of Na +/Ca 2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol 2019; 25:287-299. [PMID: 30686898 PMCID: PMC6343099 DOI: 10.3748/wjg.v25.i3.287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
The Na+/Ca2+ exchanger (NCX) protein family is a part of the cation/Ca2+ exchanger superfamily and participates in the regulation of cellular Ca2+ homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption. This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.
Collapse
Affiliation(s)
- Qiu-Shi Liao
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
5
|
Nishiyama K, Aono K, Fujimoto Y, Kuwamura M, Okada T, Tokumoto H, Izawa T, Okano R, Nakajima H, Takeuchi T, Azuma YT. Chronic kidney disease after 5/6 nephrectomy disturbs the intestinal microbiota and alters intestinal motility. J Cell Physiol 2018; 234:6667-6678. [PMID: 30317589 DOI: 10.1002/jcp.27408] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Organ-organ crosstalk is involved in homeostasis. Gastrointestinal symptoms are common in patients with renal failure. The aim of this study was to elucidate the relationship between gastrointestinal motility and gastrointestinal symptoms in chronic kidney disease. We performed studies in C57BL/6 mice with chronic kidney disease after 5/6 nephrectomy. Gastrointestinal motility was evaluated by assessing the ex vivo responses of ileum and distal colon strips to electrical field stimulation. Feces were collected from mice, and the composition of the gut microbiota was analyzed using 16S ribosomal RNA sequencing. Mice with chronic kidney disease after 5/6 nephrectomy showed a decreased amount of stool, and this constipation was correlated with a suppressed contraction response in ileum motility and decreased relaxation response in distal colon motility. Spermine, one of the uremic toxins, inhibited the contraction response in ileum motility, but four types of uremic toxins showed no effect on the relaxation response in distal colon motility. The 5/6 nephrectomy procedure disturbed the balance of the gut microbiota in the mice. The motility dysregulation and constipation were resolved by antibiotic treatments. The expression levels of interleukin 6, tumor necrosis factor-α, and iNOS in 5/6 nephrectomy mice were increased in the distal colon but not in the ileum. In addition, macrophage infiltration in 5/6 nephrectomy mice was increased in the distal colon but not in the ileum. We found that 5/6 nephrectomy altered gastrointestinal motility and caused constipation by changing the gut microbiota and causing colonic inflammation. These findings indicate that renal failure was remarkably associated with gastrointestinal dysregulation.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Kimiya Aono
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Toshiya Okada
- Department of Laboratory Animal Science, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Hayato Tokumoto
- Laboratory of Bioscience and Biotechnology, Division of Biological Science, Osaka Prefecture University Graduate School of Science, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Ryoichi Okano
- Laboratory of Separation Science and Engineering, Division of Chemical Engineering, Osaka Prefecture University Graduate School of Engineering, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| |
Collapse
|
6
|
Reyes-García J, Flores-Soto E, Carbajal-García A, Sommer B, Montaño LM. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int J Mol Med 2018; 42:2998-3008. [PMID: 30280184 PMCID: PMC6202086 DOI: 10.3892/ijmm.2018.3910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
In airway smooth muscle, the intracellular basal Ca2+ concentration [b(Ca2+)i] must be tightly regulated by several mechanisms in order to maintain a proper airway patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic reticulum Ca2+-ATPase 2b, plasma membrane Ca2+-ATPase 1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ channels, including the L-type voltage dependent Ca2+ channel (L-VDCC), T-type voltage dependent Ca2+ channel (T-VDCC) and transient receptor potential canonical 3 (TRPC3), appear to be constitutively active under basal conditions via the action of different signaling pathways, and are responsible for Ca2+ influx to maintain b[Ca2+]i. The two types of voltage-dependent Ca2+ channels (L- and T-type) are modulated by phosphorylation processes mediated by mitogen-activated protein kinase kinase (MEK) and extracellular-signal-regulated kinase 1 and 2 (ERK1/2). The MEK/ERK signaling pathway can be activated by G-protein-coupled receptors through the αq subunit when the endogenous ligand (i.e., acetylcholine, histamine, leukotrienes, etc.) is present under basal conditions. It may also be stimulated when receptor tyrosine kinases are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L-VDCC on Ser496 of the β2 subunit and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, and enabling it to switch between an open and closed state. T-VDCC is also probably phosphorylated by ERK1/2, although further research is required to identify the phosphorylation sites. TRPC3 is directly activated by diacylglycerol produced by phospholipase C (PLCβ or γ). Constitutive inositol 1,4,5-trisphosphate production induces the release of Ca2+ from the sarcoplasmic reticulum through inositol triphosphate receptor 1. This ion induces Ca2+-induced Ca2+ release through the ryanodine receptor 2 (designated as Ca2+ ‘sparks’). Therefore, several Ca2+ handling mechanisms are finely tuned to regulate basal intracellular Ca2+ concentrations. It is conceivable that alterations in any of these processes may render airway smooth muscle susceptible to develop hyperresponsiveness that is observed in ailments such as asthma.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
7
|
Fatty acid transport protein 1 enhances the macrophage inflammatory response by coupling with ceramide and c-Jun N-terminal kinase signaling. Int Immunopharmacol 2017; 55:205-215. [PMID: 29272817 DOI: 10.1016/j.intimp.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Macrophages are important cells that need to be controlled at the site of inflammation. Several factors are involved in chronic inflammation and its timely resolution. Free fatty acids drive the inflammatory response in macrophages and contribute to the vicious cycle of the inflammatory response. However, the identity of the uptake pathways of fatty acids is not fully clear in macrophages and how the inflammatory responses are regulated by the uptake of fatty acids remain poorly understood. We investigated the relationship between fatty acid transport protein (FATP) and the inflammatory response signaling pathway in macrophages as the first report. The FATP family has composed six isoforms, FATP1-6. We found that FATP1 is the most highly expressed isoform in macrophages. Forced expression of FATP1 enhanced production of inflammatory cytokines, such as TNFα and IL-6 concomitant with the increased uptake of fatty acids, increased level of ceramide, and increased phosphorylation of c-Jun N-terminal kinase (JNK). The enhancement by FATP1 was abolished by treatment with a JNK inhibitor, NF-κB inhibitor, or ceramide synthesis inhibitor. siRNA-mediated knockdown of FATP1 strongly inhibited the production of TNFα and IL-6. Similarly, an inhibitor of FATP1 inhibited the production of TNFα and IL-6. Finally, an inhibitor of FATP1 attenuated the production of inflammatory cytokines in bronchoalveolar lavage fluid in an LPS-induced acute lung injury in vivo mouse model. In summary, we propose that FATP1 is an important regulator of inflammatory response signaling in macrophages. Our findings suggest that ceramide-JNK signaling is important to terminate or sustain inflammation.
Collapse
|
8
|
Nishiyama K, Tanioka K, Azuma YT, Hayashi S, Fujimoto Y, Yoshida N, Kita S, Suzuki S, Nakajima H, Iwamoto T, Takeuchi T. Na +/Ca 2+ exchanger contributes to stool transport in mice with experimental diarrhea. J Vet Med Sci 2016; 79:403-411. [PMID: 27928109 PMCID: PMC5326949 DOI: 10.1292/jvms.16-0475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Na+/Ca2+ exchanger (NCX) is a bidirectional transporter that is
controlled by membrane potential and transmembrane gradients of Na+ and
Ca2+. To reveal the functional role of NCX on gastrointestinal motility, we
have previously used NCX1 and NCX2 heterozygote knockout mice (HET). We found that NCX1
and NCX2 play important roles in the motility of the gastric fundus, ileum and distal
colon. Therefore, we believed that NCX1 and NCX2 play an important role in transport of
intestinal contents. Here, we investigated the role of NCX in a mouse model of
drug-induced diarrhea. The fecal consistencies in NCX1 HET and NCX2 HET were assessed
using a diarrhea induced by magnesium sulfate, 5-hydroxytryptamine (5-HT) and
prostaglandin E2 (PGE2). NCX2 HET, but not NCX1 HET, exacerbated
magnesium sulfate-induced diarrhea by increasing watery fecals. Likewise, 5-HT-induced
diarrheas were exacerbated in NCX2 HET, but not NCX1 HET. However, NCX1 HET and NCX2 HET
demonstrated PGE2 induced diarrhea similar to those of wild-type mice (WT). As
well as the result of the distal colon shown previously, in the proximal and transverse
colons of WT, the myenteric plexus layers and the longitudinal and circular muscle layers
were strongly immunoreactive to NCX1 and NCX2. In this study, we demonstrate that NCX2 has
important roles in development of diarrhea.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fujimoto Y, Hayashi S, Azuma YT, Mukai K, Nishiyama K, Kita S, Morioka A, Nakajima H, Iwamoto T, Takeuchi T. Overexpression of Na +/Ca 2+ exchanger 1 display enhanced relaxation in the gastric fundus. J Pharmacol Sci 2016; 132:181-186. [PMID: 27816547 DOI: 10.1016/j.jphs.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023] Open
Abstract
In gastric smooth muscles, the released Ca2+ activates the contractile proteins and Ca2+ taken up from the cytosol cause relaxation. The Na+/Ca2+ exchanger (NCX) is an antiporter membrane protein that controls Ca2+ influx and efflux across the membrane. However, the possible relation of NCX in gastric fundus motility is largely unknown. Here, we investigated electric field stimulation (EFS)-induced relaxations in the circular muscles of the gastric fundus in smooth muscle-specific NCX1 transgenic mice (Tg). EFS caused a bi-phasic response, transient and sustained relaxation. The sustained relaxation prolonged for an extended period after the end of the stimulus. EFS-induced transient relaxation and sustained relaxation were greater in Tg than in wild-type mice (WT). Disruption of nitric oxide component by N-nitro-l-arginine, EFS-induced transient and sustained relaxations caused still marked in Tg compared to WT. Inhibition of PACAP by antagonist, EFS-induced sustained relaxation in Tg was not seen, similar to WT. Nevertheless, transient relaxation remained more pronounced in Tg than in WT. Next, we examined responses to NO and PACAP in smooth muscles. The magnitudes of NOR-1, which generates NO, and PACAP-induced relaxations were greater in Tg than in WT. In this study, we demonstrate that NCX1 regulates gastric fundus motility.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Satomi Hayashi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan.
| | - Kazunori Mukai
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Satomi Kita
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ai Morioka
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Takahiro Iwamoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| |
Collapse
|