1
|
Abduraman MA, Amanah A, Hamid SBS, Abdullah MFIL, Sulaiman SF, Tan ML. The regulatory effects of mitragynine on P-glycoprotein transporter. J Pharm Pharmacol 2025; 77:321-334. [PMID: 39541262 DOI: 10.1093/jpp/rgae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Kratom preparation containing Mitragyna speciosa Korth plant is frequently used as a recreational drug. Mitragynine, a major alkaloid isolated from M. speciosa, is often detected concurrently with other drugs during forensic analysis, indicating a safety concern. P-glycoprotein (P-gp) is a multidrug transporter. Modulation of P-gp transport activity by drugs or herbal compounds in the brain may lead to drug-herb interactions, resulting in neurotoxicity. We aim to determine the effects of mitragynine on the P-gp regulation and possible neurotoxicity. METHODS The effects of mitragynine on the P-gp regulation were investigated in human brain capillary endothelial cells (hCMEC/D3) using molecular docking and dynamic simulation and an optimized bidirectional transport assay, respectively. Repeated-dose treatment and neurotoxicity assessment were carried out using a blood-brain barrier model and polimerase chain reaction (PCR) array. KEY FINDINGS Mitragynine inhibits the P-gp transport activity via binding onto the nucleotide-binding domain site and forms a stable interaction with the P-gp protein complex. Nontoxic concentrations of mitragynine (<4 μM) and substrate drugs (0.001 μM) in the cells significantly enhanced endothelial cell permeability and elicited signs of neurotoxicity in PC-12 cells. CONCLUSIONS Mitragynine is likely a P-gp inhibitor, hence concurrent administration of kratom products with P-gp substrates may lead to clinically significant interactions and neurotoxicity.
Collapse
Affiliation(s)
- Muhammad Asyraf Abduraman
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institute of Biotechnology Malaysia, 11700, Gelugor, Pulau Pinang, Malaysia
| | - Shahrul Bariyah Sahul Hamid
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | | | - Shaida Fariza Sulaiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Roe AL, Krzykwa J, Calderón AI, Bascoul C, Gurley BJ, Koturbash I, Li AP, Liu Y, Mitchell CA, Oketch-Rabah H, Si L, van Breemen RB, Walker H, Ferguson SS. Developing a Screening Strategy to Identify Hepatotoxicity and Drug Interaction Potential of Botanicals. J Diet Suppl 2024; 22:162-192. [PMID: 39450425 DOI: 10.1080/19390211.2024.2417679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Botanical supplements, herbal remedies, and plant-derived products are used globally. However, botanical dietary supplements are rarely subjected to robust safety testing unless there are adverse reports in post-market surveillance. Botanicals are complex and difficult to assess using current frameworks designed for single constituent substances (e.g. small molecules or discrete chemicals), making safety assessments costly and time-consuming. The liver is a primary organ of concern for potential botanical-induced hepatotoxicity and botanical-drug interactions as it plays a crucial role in xenobiotic metabolism. The NIH-funded Drug Induced Liver Injury Network noted that the number of botanical-induced liver injuries in 2017 nearly tripled from those observed in 2004-2005. New approach methodologies (NAMs) can aid in the rapid and cost-effective assessment of botanical supplements for potential hepatotoxicity. The Hepatotoxicity Working Group within the Botanical Safety Consortium is working to develop a screening strategy that can help reliably identify potential hepatotoxic botanicals and inform mechanisms of toxicity. This manuscript outlines the Hepatotoxicity Working Group's strategy and describes the assays selected and the rationale for the selection of botanicals used in case studies. The selected NAMs evaluated as a part of this effort are intended to be incorporated into a larger battery of assays to evaluate multiple endpoints related to botanical safety. This work will contribute to a botanical safety toolkit, providing researchers with tools to better understand hepatotoxicity associated with botanicals, prioritize and plan future testing as needed, and gain a deeper insight into the botanicals being tested.
Collapse
Affiliation(s)
- Amy L Roe
- Procter & Gamble Healthcare, Cincinnati, OH, USA
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Cécile Bascoul
- Product Safety, dōTERRA International, Pleasant Grove, UT, USA
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, University of MS, University, MS, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Yitong Liu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | | | - Hellen Oketch-Rabah
- Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lin Si
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, USA
| | - Richard B van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | | | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
3
|
Moesgaard L, Pedersen ML, Uhd Nielsen C, Kongsted J. Structure-based discovery of novel P-glycoprotein inhibitors targeting the nucleotide binding domains. Sci Rep 2023; 13:21217. [PMID: 38040777 PMCID: PMC10692163 DOI: 10.1038/s41598-023-48281-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
P-glycoprotein (P-gp), a membrane transport protein overexpressed in certain drug-resistant cancer cells, has been the target of numerous drug discovery projects aimed at overcoming drug resistance in cancer. Most characterized P-gp inhibitors bind at the large hydrophobic drug binding domain (DBD), but none have yet attained regulatory approval. In this study, we explored the potential of designing inhibitors that target the nucleotide binding domains (NBDs), by computationally screening a large library of 2.6 billion synthesizable molecules, using a combination of machine learning-guided molecular docking and molecular dynamics (MD). 14 of the computationally best-scoring molecules were subsequently tested for their ability to inhibit P-gp mediated calcein-AM efflux. In total, five diverse compounds exhibited inhibitory effects in the calcein-AM assay without displaying toxicity. The activity of these compounds was confirmed by their ability to decrease the verapamil-stimulated ATPase activity of P-gp in a subsequent assay. The discovery of these five novel P-gp inhibitors demonstrates the potential of in-silico screening in drug discovery and provides a new stepping point towards future potent P-gp inhibitors.
Collapse
Affiliation(s)
- Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, 5230, Denmark.
| | - Maria L Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, 5230, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, 5230, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, 5230, Denmark
| |
Collapse
|
4
|
Hossain R, Sultana A, Nuinoon M, Noonong K, Tangpong J, Hossain KH, Rahman MA. A Critical Review of the Neuropharmacological Effects of Kratom: An Insight from the Functional Array of Identified Natural Compounds. Molecules 2023; 28:7372. [PMID: 37959790 PMCID: PMC10648626 DOI: 10.3390/molecules28217372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Kratom (Mitragyna speciosa Korth. Havil) has been considered a narcotic drug for years, barred by the law in many parts of the world, while extensive research over the past few decades proves its several beneficial effects, some of which are still in ambiguity. In many countries, including Thailand, the indiscriminate use and abuse of kratom have led to the loss of life. Nonetheless, researchers have isolated almost fifty pure compounds from kratom, most of which are alkaloids. The most prevalent compounds, mitragynine and 7-hydroxy mitragynine, are reported to display agonist morphine-like effects on human μ-opioid receptors and antagonists at κ- and δ-opioid receptors with multimodal effects at other central receptors. Mitragynine is also credited to be one of the modulatory molecules for the Keap1-Nrf2 pathway and SOD, CAT, GST, and associated genes' upregulatory cascades, leading it to play a pivotal role in neuroprotective actions while evidently causing neuronal disorders at high doses. Additionally, its anti-inflammatory, antioxidative, antibacterial, and gastroprotective effects are well-cited. In this context, this review focuses on the research gap to resolve ambiguities about the neuronal effects of kratom and demonstrate its prospects as a therapeutic target for neurological disorders associated with other pharmacological effects.
Collapse
Affiliation(s)
- Rahni Hossain
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Abida Sultana
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Manit Nuinoon
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kunwadee Noonong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kazi Helal Hossain
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes (HMRI), Pasadena, CA 91105, USA;
| | - Md Atiar Rahman
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
5
|
Tanna RS, Cech NB, Oberlies NH, Rettie AE, Thummel KE, Paine MF. Translating Kratom-Drug Interactions: From Bedside to Bench and Back. Drug Metab Dispos 2023; 51:923-935. [PMID: 37286363 PMCID: PMC10353077 DOI: 10.1124/dmd.122.001005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Kratom is a botanical natural product belonging to the coffee family, with stimulant effects at low doses and opioid-like effects at higher doses. During the last two decades, kratom has been purported as a safer alternative to pharmaceutical and illicit drugs to self-manage pain and opioid withdrawal symptoms. Kratom alkaloids, typically mitragynine, have been detected in biologic samples from overdose deaths. These deaths are often observed in combination with other drugs and are suspected to result from polyintoxications. This review focuses on the potential for kratom to precipitate pharmacokinetic interactions with object drugs involved in these reported polyintoxications. The legal status, chemistry, pharmacology, and toxicology are also summarized. The aggregate in vitro and clinical data identified kratom and select kratom alkaloids as modulators of cytochrome P450 (P450) enzyme activity, notably as inhibitors of CYP2D6 and CYP3A, as well as P-glycoprotein-mediated efflux activity. These inhibitory effects could increase the systemic exposure to co-consumed object drugs, which may lead to adverse effects. Collectively, the evidence to date warrants further evaluation of potential kratom-drug interactions using an iterative approach involving additional mechanistic in vitro studies, well designed clinical studies, and physiologically based pharmacokinetic modeling and simulation. This critical information is needed to fill knowledge gaps regarding the safe and effective use of kratom, thereby addressing ongoing public health concerns. SIGNIFICANCE STATEMENT: The botanical kratom is increasingly used to self-manage pain and opioid withdrawal symptoms due to having opioid-like effects. The legal status, chemistry, pharmacology, toxicology, and drug interaction potential of kratom are reviewed. Kratom-associated polyintoxications and in vitro-in vivo extrapolations suggest that kratom can precipitate pharmacokinetic drug interactions by inhibiting CYP2D6, CYP3A, and P-glycoprotein. An iterative approach that includes clinical studies and physiologically based pharmacokinetic modeling and simulation is recommended for further evaluation of potential unwanted kratom-drug interactions.
Collapse
Affiliation(s)
- Rakshit S Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Allan E Rettie
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Taneja SB, Callahan TJ, Paine MF, Kane-Gill SL, Kilicoglu H, Joachimiak MP, Boyce RD. Developing a Knowledge Graph for Pharmacokinetic Natural Product-Drug Interactions. J Biomed Inform 2023; 140:104341. [PMID: 36933632 PMCID: PMC10150409 DOI: 10.1016/j.jbi.2023.104341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Pharmacokinetic natural product-drug interactions (NPDIs) occur when botanical or other natural products are co-consumed with pharmaceutical drugs. With the growing use of natural products, the risk for potential NPDIs and consequent adverse events has increased. Understanding mechanisms of NPDIs is key to preventing or minimizing adverse events. Although biomedical knowledge graphs (KGs) have been widely used for drug-drug interaction applications, computational investigation of NPDIs is novel. We constructed NP-KG as a first step toward computational discovery of plausible mechanistic explanations for pharmacokinetic NPDIs that can be used to guide scientific research. METHODS We developed a large-scale, heterogeneous KG with biomedical ontologies, linked data, and full texts of the scientific literature. To construct the KG, biomedical ontologies and drug databases were integrated with the Phenotype Knowledge Translator framework. The semantic relation extraction systems, SemRep and Integrated Network and Dynamic Reasoning Assembler, were used to extract semantic predications (subject-relation-object triples) from full texts of the scientific literature related to the exemplar natural products green tea and kratom. A literature-based graph constructed from the predications was integrated into the ontology-grounded KG to create NP-KG. NP-KG was evaluated with case studies of pharmacokinetic green tea- and kratom-drug interactions through KG path searches and meta-path discovery to determine congruent and contradictory information in NP-KG compared to ground truth data. We also conducted an error analysis to identify knowledge gaps and incorrect predications in the KG. RESULTS The fully integrated NP-KG consisted of 745,512 nodes and 7,249,576 edges. Evaluation of NP-KG resulted in congruent (38.98% for green tea, 50% for kratom), contradictory (15.25% for green tea, 21.43% for kratom), and both congruent and contradictory (15.25% for green tea, 21.43% for kratom) information compared to ground truth data. Potential pharmacokinetic mechanisms for several purported NPDIs, including the green tea-raloxifene, green tea-nadolol, kratom-midazolam, kratom-quetiapine, and kratom-venlafaxine interactions were congruent with the published literature. CONCLUSION NP-KG is the first KG to integrate biomedical ontologies with full texts of the scientific literature focused on natural products. We demonstrate the application of NP-KG to identify known pharmacokinetic interactions between natural products and pharmaceutical drugs mediated by drug metabolizing enzymes and transporters. Future work will incorporate context, contradiction analysis, and embedding-based methods to enrich NP-KG. NP-KG is publicly available at https://doi.org/10.5281/zenodo.6814507. The code for relation extraction, KG construction, and hypothesis generation is available at https://github.com/sanyabt/np-kg.
Collapse
Affiliation(s)
- Sanya B Taneja
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15206, USA.
| | - Tiffany J Callahan
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | | | - Halil Kilicoglu
- School of Information Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Marcin P Joachimiak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard D Boyce
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| |
Collapse
|
7
|
What Is the Kratom Overdose Risk? A Systematic Literature Review. CURRENT ADDICTION REPORTS 2023. [DOI: 10.1007/s40429-022-00464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Swogger MT, Smith KE, Garcia-Romeu A, Grundmann O, Veltri CA, Henningfield JE, Busch LY. Understanding Kratom Use: A Guide for Healthcare Providers. Front Pharmacol 2022; 13:801855. [PMID: 35308216 PMCID: PMC8924421 DOI: 10.3389/fphar.2022.801855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Kratom (Mitragyna speciosa Korth., Rubiaceae) is a plant native to Southeast Asia, where it has been used for centuries as a mild stimulant and as medicine for various ailments. More recently, as kratom has gained popularity in the West, United States federal agencies have raised concerns over its safety leading to criminalization in some states and cities. Some of these safety concerns have echoed across media and broad-based health websites and, in the absence of clinical trials to test kratom’s efficacy and safety, considerable confusion has arisen among healthcare providers. There is, however, a growing literature of peer-reviewed science that can inform healthcare providers so that they are better equipped to discuss kratom use with consumers and people considering kratom use within the context of their overall health and safety, while recognizing that neither kratom nor any of its constituent substances or metabolites have been approved as safe and effective for any disease. An especially important gap in safety-related science is the use of kratom in combination with physiologically active substances and medicines. With these caveats in mind we provide a comprehensive overview of the available science on kratom that has the potential to i clarity for healthcare providers and patients. We conclude by making recommendations for best practices in working with people who use kratom.
Collapse
Affiliation(s)
- Marc T Swogger
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| | - Kirsten E Smith
- Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Grundmann
- Department of Pharmaceutical Sciences, Midwestern University College of Pharmacy, Glendale, AZ, United States.,College of Pharmacy, Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Charles A Veltri
- Department of Pharmaceutical Sciences, Midwestern University College of Pharmacy, Glendale, AZ, United States
| | - Jack E Henningfield
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pinney Associates, Bethesda, MD, United States
| | - Lorna Y Busch
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
9
|
Hiranita T, Obeng S, Sharma A, Wilkerson JL, McCurdy CR, McMahon LR. In vitro and in vivo pharmacology of kratom. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:35-76. [PMID: 35341571 DOI: 10.1016/bs.apha.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kratom products have been historically and anecdotally used in south Asian countries for centuries to manage pain and opioid withdrawal. The use of kratom products has dramatically increased in the United States. More than 45 kratom alkaloids have been isolated, yet the overall pharmacology of the individual alkaloids is still not well characterized. The purpose of this chapter is to summarize in vitro and in vivo opioid activities of the primary kratom alkaloid mitragynine and its more potent metabolite 7-hydroxymitragynine. Following are experimental procedures described to characterize opioid receptor activity; receptor binding and functional assays, antinociceptive assays, operant conditioning assays, and respiratory plethysmography. The capacity of kratom alkaloids to confer tolerance and physical dependence as well as their pharmacokinetic properties are also summarized. The data reviewed here suggest that kratom products and mitragynine possess low efficacy agonist activity at the mu-opioid receptor in vivo. In addition, kratom products and mitragynine have been demonstrated to antagonize the effects of high efficacy mu-opioid agonists. The data further suggest that 7-hydroxymitragynine formed in vivo by metabolism of mitragynine may be minimally involved in the overall behavioral profile of mitragynine and kratom, whereas 7-hydroxymitragynine itself, at sufficiently high doses administered exogenously, shares many of the same abuse- and dependence-related behavioral effects associated with traditional opioid agonists. The apparent low efficacy of kratom products and mitragynine at mu-opioid receptors supports the development of these ligands as effective and potentially safe medications for opioid use disorder.
Collapse
Affiliation(s)
- Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Translational Drug Development Core, Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Translational Drug Development Core, Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
10
|
Hanapi NA, Chear NJY, Azizi J, Yusof SR. Kratom Alkaloids: Interactions With Enzymes, Receptors, and Cellular Barriers. Front Pharmacol 2021; 12:751656. [PMID: 34867362 PMCID: PMC8637859 DOI: 10.3389/fphar.2021.751656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
Parallel to the growing use of kratom, there is a wealth of evidence from self-report, preclinical, and early clinical studies on therapeutic benefits of its alkaloids in particular for treating pain, managing substance use disorder, and coping with emotional or mental health conditions. On the other hand, there are also reports on potential health risks concerning kratom use. These two aspects are often discussed in reviews on kratom. Here, we aim to highlight specific areas that are of importance to give insights into the mechanistic of kratom alkaloids pharmacological actions. This includes their interactions with drug-metabolizing enzymes and predictions of clinical drug-drug interactions, receptor-binding properties, interactions with cellular barriers in regards to barrier permeability, involvement of membrane transporters, and alteration of barrier function when exposed to the alkaloids.
Collapse
Affiliation(s)
- Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Siti R Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
11
|
Hartley C, Bulloch M, Penzak SR. Clinical Pharmacology of the Dietary Supplement, Kratom (Mitragyna speciosa). J Clin Pharmacol 2021; 62:577-593. [PMID: 34775626 DOI: 10.1002/jcph.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022]
Abstract
Kratom (Mitragyna speciosa) consists of over 40 alkaloids with two of them, mitragynine (MG) and 7-OH-mitragynine (7-OH-MG) being the main psychoactive compounds. MG and 7-OH-MG each target opioid receptors and have been referred to as atypical opioids. They exert their pharmacologic effects on the μ, δ, and κ opioid receptors. In addition, they affect adrenergic, serotonergic, and dopaminergic pathways. Kratom has been touted as an inexpensive, legal alternative to standard opioid replacement therapy such as methadone and buprenorphine. Other uses for kratom include chronic pain, attaining a "legal high," and numerous CNS disorders including anxiety depression and post-traumatic stress disorder (PTSD). Kratom induces analgesia and mild euphoria with a lower risk of respiratory depression or adverse central nervous system effects compared to traditional opioid medications. Nonetheless, kratom has been associated with both physical and psychological dependence with some individuals experiencing classic opioid withdrawal symptoms upon abrupt cessation. Kratom use has been linked to serious adverse effects including liver toxicity, seizures, and death. These risks are often compounded by poly-substance abuse. Further, kratom may potentiate the toxicity of coadministered medications through modulation of cytochrome P450, P-glycoprotein, and uridine diphosphate glucuronosyltransferase enzymes (UGDT). In 2016 the U.S. Drug Enforcement Administration (DEA) took steps to classify kratom as a federal schedule 1 medication; however, due to public resistance, this plan was set aside. Until studies are conducted that define kratom's role in treating opioid withdrawal and/or other CNS conditions, kratom will likely remain available as a dietary supplement for the foreseeable future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chad Hartley
- Department of Pharmacy Practice, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, 36849, United States
| | - Marilyn Bulloch
- Department of Pharmacy Practice, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, 36849, United States
| | - Scott R Penzak
- Department of Pharmacy Practice, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, 36849, United States
| |
Collapse
|
12
|
Bishop-Freeman SC, Friederich LW, Feaster MS, Hudson JS. Buprenorphine-Related Deaths in North Carolina from 2010-2018. J Anal Toxicol 2021; 45:780-791. [PMID: 34145443 DOI: 10.1093/jat/bkab073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Buprenorphine is a commonly prescribed medication for the treatment of opioid-use disorder. As prescriptions increase in North Carolina, buprenorphine is more frequently encountered statewide in routine postmortem casework. Between 2010 and 2018, there were 131 select cases investigated by the Office of the Chief Medical Examiner where buprenorphine was detected in peripheral blood and considered a primary cause of death, with no other opioids present and no other non-opioid substances found in the lethal range. The decedents ranged in age from 14 to 64 years, with 67% male. The mean/median peripheral blood concentrations were 4.1/2.1 ng/mL for buprenorphine and 7.8/3.4 ng/mL for the metabolite, norbuprenorphine. These postmortem blood concentrations overlap antemortem therapeutic concentrations in plasma reported in the literature for opioid-dependent subjects receiving sublingual maintenance therapy. The pathologist considered scene findings, prescription history, autopsy findings, toxicological analysis, and decedent behavior prior to death to conclude a drug-related cause of death. Many of the deaths were complicated by the presence of other central nervous system depressants along with contributory underlying cardiovascular and respiratory disease. The three most prevalent additive substances were alprazolam, ethanol, and gabapentin, found in 67, 36, and 32 cases out of 131, respectively. Interpreting buprenorphine involvement in a death is complex, and instances may be under-estimated in epidemiological data because of the lack of a defined toxic or lethal range in postmortem blood along with its good safety profile. As expansion to access of opioid-use disorder treatment becomes a priority, awareness of the challenges of postmortem interpretation is needed as increased use and diversion of buprenorphine are inevitable.
Collapse
Affiliation(s)
- Sandra C Bishop-Freeman
- Office of the Chief Medical Examiner, Raleigh, NC, USA.,UNC Department of Pathology and Laboratory Medicine, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
13
|
Anand A, Hosanagar A. The Addictive Potential and Challenges With Use of the "Herbal Supplement" Kratom: A Case Report and Literature Review. PAIN MEDICINE 2021; 23:4-9. [PMID: 33822210 DOI: 10.1093/pm/pnab126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Akhil Anand
- Alcohol and Drug Recovery Center, Center for Behavioral Health, Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, OH, USA
| | - Avinash Hosanagar
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.,VA Ann Arbor Healthcare System, Mental Health Service, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Ya K, Methaneethorn J, Tran QB, Trakulsrichai S, Wananukul W, Lohitnavy M. Development of a Physiologically Based Pharmacokinetic Model of Mitragynine, Psychoactive Alkaloid in Kratom ( Mitragyna Speciosa Korth.), In Rats and Humans. J Psychoactive Drugs 2020; 53:127-139. [PMID: 34003732 DOI: 10.1080/02791072.2020.1849877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitragynine is a major psychoactive alkaloid in leaves of kratom (Mitragyna speciosa Korth.). To understand its disposition in organs, this study aimed to develop a physiologically based pharmacokinetic (PBPK) model that predicts mitragynine concentrations in plasma and organ of interests in rats and humans. The PBPK model consisted of six organ compartments (i.e. lung, brain, liver, fat, slowly perfused tissues, and rapidly perfused tissue). From systematic searching, three pharmacokinetic studies of mitragynine (two studies in rats and 1 study in humans) were retrieved from the literature. Berkeley Madonna Software (version 8.3.18) was used for model development and model simulation. The developed PBPK model consisted of biologically relevant features following involvement of (i) breast cancer-resistant protein (BCRP) in brain, (ii) a hepatic cytochrome P450 3A4 (CYP3A4)-mediated metabolism in the liver, and (iii) a diffusion-limited transport in fat. The simulations adequately describe simulated and observed data in the two species with different dosing regimens. PBPK models of mitragynine in rats and humans were successfully developed. The models may be used to guide optimal mitragynine dosing regimens.
Collapse
Affiliation(s)
- Kimheang Ya
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Janthima Methaneethorn
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Quoc Ba Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Winai Wananukul
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Manupat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
15
|
Birer-Williams C, Gufford BT, Chou E, Alilio M, VanAlstine S, Morley RE, McCune JS, Paine MF, Boyce RD. A New Data Repository for Pharmacokinetic Natural Product-Drug Interactions: From Chemical Characterization to Clinical Studies. Drug Metab Dispos 2020; 48:1104-1112. [PMID: 32601103 PMCID: PMC7543481 DOI: 10.1124/dmd.120.000054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
There are many gaps in scientific knowledge about the clinical significance of pharmacokinetic natural product-drug interactions (NPDIs) in which the natural product (NP) is the precipitant and a conventional drug is the object. The National Center for Complimentary and Integrative Health created the Center of Excellence for NPDI Research (NaPDI Center) (www.napdi.org) to provide leadership and guidance on the study of pharmacokinetic NPDIs. A key contribution of the Center is the first user-friendly online repository that stores and links pharmacokinetic NPDI data across chemical characterization, metabolomics analyses, and pharmacokinetic in vitro and clinical experiments (repo.napdi.org). The design is expected to help researchers more easily arrive at a complete understanding of pharmacokinetic NPDI research on a particular NP. The repository will also facilitate multidisciplinary collaborations, as the repository links all of the experimental data for a given NP across the study types. The current work describes the design of the repository, standard operating procedures used to enter data, and pharmacokinetic NPDI data that have been entered to date. To illustrate the usefulness of the NaPDI Center repository, more details on two high-priority NPs, cannabis and kratom, are provided as case studies. SIGNIFICANCE STATEMENT: The data and knowledge resulting from natural product-drug interaction (NPDI) studies is distributed across a variety of information sources, rendering difficulties to find, access, and reuse. The Center of Excellence for NPDI Research addressed these difficulties by developing the first user-friendly online repository that stores data from in vitro and clinical pharmacokinetic NPDI experiments and links them with study data from chemical characterization and metabolomics analyses of natural products that are also stored in the repository.
Collapse
Affiliation(s)
- Caroline Birer-Williams
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Brandon T Gufford
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Eric Chou
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Marijanel Alilio
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Sidney VanAlstine
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Rachael E Morley
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Jeannine S McCune
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Mary F Paine
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Richard D Boyce
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| |
Collapse
|
16
|
Abstract
Kratom (Mitragyna speciosa) leaves contain the mu opioid partial agonists mitragynine and 7-hydroxymitragynine. The US Drug Enforcement Agency considers it a 'drug of concern', and the US FDA is reviewing kratom, but there is a paucity of information regarding health effects. Liver injury is often cited as a potential health consequence, however the same few case reports are repeatedly referenced, without a broader context. Furthermore, reports have largely lacked standardized causality assessment methods. The objective is to evaluate causality in kratom liver injury, through a comprehensive scoping review of human cases, and by reviewing epidemiologic, animal, and mechanistic reports that relate to kratom liver injury. Hepatotoxicity causality was systematically examined using the Roussel Uclaf Causality Assessment Method (RUCAM) for case reports. Biopsy findings, potential pathophysiologic mechanisms, and management options are discussed. This review identified 26 case reports and abstracts, in addition to 7 cases reported from the Drug-Induced Liver Injury Network, 25 in FDA databases, and 27 in internet user forums. Latency periods to symptom onset had a median of 20.6 days and mean of 21 days (range 2-49). Common presenting signs and symptoms were abdominal discomfort, jaundice, pruritis, and dark urine. Histologic findings were predominantly cholestatic, although, biochemically, the condition was heterogenous or mixed; the median R ratio was 3.4 and the mean was 4.6 (range 0.24-10.4). Kratom likely causes liver injury based on the totality of low-quality human evidence, and, in the context of epidemiologic, animal, and mechanistic studies. It remains unclear which subgroups of users are at heightened risk.
Collapse
Affiliation(s)
- Jonathan Schimmel
- Department of Emergency Medicine, Division of Medical Toxicology, Mount Sinai Hospital Icahn School of Medicine, New York, NY, USA.
| | - Richard C Dart
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA
| |
Collapse
|
17
|
Abstract
PURPOSE This article presents updated information on kratom (Mitragyna speciosa), a natural opioid with stimulant properties that is currently sold in the United States without a prescription. SUMMARY Kratom exerts opioid and alpha-2 agonistic effects, as well as anti-inflammatory and mild stimulant effects. Respiratory depression has not been commonly reported, but kratom does cause a host of adverse effects. While kratom may have a role in patients who are in chronic pain or dependent on opioid painkillers or heroin, this needs to be established in clinical trials. Kratom may have drug interactions as both a cytochrome P-450 system substrate and inhibitor. Kratom does not appear in normal drug screens and, especially when ingested with other substances of abuse, may not be recognized as an agent of harm. There are numerous cases of death in kratom users, but many involved polypharmaceutical ingestions. There are assessments where people have been unable to stop using kratom therapy and withdrawal signs/symptoms occurred in patients or their newborn babies after kratom cessation. Both banning and failure to ban kratom places people at risk; a middle-ground alternative, placing it behind the pharmacy counter, might be useful. CONCLUSION Kratom has a unique pharmacologic profile that might offer advantages over other opioids, but its high abuse liability, potential for drug interactions and adverse events, and inadequate research into the balance of benefits to harm are concerning. There is mounting information on the adverse events associated with kratom use and potential treatments that can be useful to clinicians.
Collapse
Affiliation(s)
- C Michael White
- University of Connecticut School of Pharmacy, Storrs, CT, and Department of Pharmacy, Hartford Hospital, Hartford, CT
| |
Collapse
|
18
|
Abstract
The psychoactive plant kratom is a native plant to Southeast Asia, and its major bioactive alkaloid is mitragynine. Mitragynine exerts its analgesic properties by acting on the opioid receptors. One of its active metabolites, 7-hydroxymytraginine, is found to be 40 times more potent than mitragynine and 10 times more potent than morphine. Interestingly, current research suggests that mitragynine behaves as an atypical opioid agonist, possessing analgesic activity with less severe side effects than those of typical opioids. Although Thailand and Malaysia have criminalized the use, possession, growing, or selling of kratom due to its abuse potential, kratom still remains unregulated in the United States. The U.S. Drug Enforcement Agency (DEA) listed kratom as a "drug of concern" in 2008 with the intent to temporarily place mitragynine and 7-hydroxymitragynine onto Schedule I of the Controlled Substances Act. However, responses from the general public, U.S. Congress, and Kratom Alliances had the DEA retract their intent. Kratom is currently marketed in the United States as a dietary or herbal supplement used to treat chronic pain, anxiety, and depression with over $207 million in annual sales in the United States alone. Here, we will review the traditional and medicinal uses of kratom along with the synthesis of its bioactive ingredients and their pharmacology, metabolism, and structure-activity relationships. The importance in society of this currently controversial substance will also be discussed.
Collapse
Affiliation(s)
- Changho Han
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Joza Schmitt
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kristen M Gilliland
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
19
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
20
|
Meireles V, Rosado T, Barroso M, Soares S, Gonçalves J, Luís Â, Caramelo D, Simão AY, Fernández N, Duarte AP, Gallardo E. Mitragyna speciosa: Clinical, Toxicological Aspects and Analysis in Biological and Non-Biological Samples. MEDICINES 2019; 6:medicines6010035. [PMID: 30836609 PMCID: PMC6473843 DOI: 10.3390/medicines6010035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
The abuse of psychotropic substances is a well-known phenomenon, and many of them are usually associated with ancestral traditions and home remedies. This is the case of Mitragyna speciosa (kratom), a tropical tree used to improve work performance and to withstand great heat. According to several published studies, the main reasons for kratom consumption involve improving sexual performance and endurance, but also social and recreational uses for the feeling of happiness and euphoria; it is also used for medical purposes as a pain reliever, and in the treatment of diarrhea, fever, diabetes, and hypertension. However, this plant has gained more popularity amongst young people over the last years. Since it is available on the internet for purchase, its use is now widely as a drug of abuse, namely as a new psychoactive substance, being a cheaper alternative to opioids that does not require medical prescription in most countries. According to internet surveys by the European Monitoring Centre for Drugs and Drug Addiction in 2008 and 2011, kratom was one of the most widely supplied new psychoactive substances. The composition of kratom is complex; in fact, more than 40 different alkaloids have been identified in Mitragyna speciosa so far, the major constituent being mitragynine, which is exclusive to this plant. Besides mitragynine, alkaloids such as corynantheidine and 7-hydroxamitragynine also present pharmacological effects, a feature that may be attributed to the remaining constituents as well. The main goal of this review is not only to understand the origin, chemistry, consumption, and analytical methodologies for analysis and mechanism of action, but also the use of secondary metabolites of kratom as therapeutic drugs and the assessment of potential risks associated with its consumption, in order to aid health professionals, toxicologists, and police authorities in cases where this plant is present.
Collapse
Affiliation(s)
- Vânia Meireles
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal.
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Joana Gonçalves
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Débora Caramelo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Nicolás Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA). Junín 956 7mo piso. Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina.
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| |
Collapse
|